446 Section 0\7

TA: Varun Ananth

Plans for today!

s~

This

Reminders

Kernelized Linear Regression
PyTorch Colab Notebook (No Demo)

Reminders

e HW2 due 2 days ago
e HW3 due next 11/19 @ 11:59 PM

e Midterm grades out!
o Please only submit a regrade request if you have a strong case for
extra points

Nothing else to say... How’s life?

Kernels

Kernels
2DDVIIVIVIIIVNININID

This concept stumped me
when | took the class. It
can be difficult to
understand so spend
some time digesting it

- But maybe we can
simplify things...
Let’s start with why

0000000

x, (feature)

Can you draw a
horizontal line to No
separate these classes?

Kernels
2DDVIIVIVIIIVNININID

We need to create a new
feature from what we
have (which is x,)

o(x) = [¢1(x), p2()]
Feat{re ¢1 (CL’) =X

 ba(a) =

0000000

x, (feature)

Can you draw a
horizontal line to
separate these classes?

Kernels
2DDVIIVIVIIIVNININID

We need to create a new
feature from what we
have (which is x,)

d(x) = [¢1(x), p2(z)]
p1(z) =z
P2(x) = z°

x, (new feature)

O
O
o ©

x, (feature)

Can you draw a
horizontal line to Yes
separate these classes?

Problems with efficiency «— THIS IS WHY!

If we did things step by step...

1. Take our n data points, each one a d dimensional vector
ot apply our kernel ma

space/time complexity
3. Performli sion on the explode
4. Most likely fail...

lowing up the

Kernel trick!

(You can write these down if you
Ridge Regression Reminders: want to follow along!)

Variables:

nxd 5 d Our goal is to get from ridge
X eR , yeRM wekR regression to kernelized
linear regression

Optimization objective:

It involves multiple pieces that
seem disjoint but will fit
. 2 2
argm1n| |y — Xw| |2 .)\| |w| |2 together at the end, so feel free
w to ask for some backtracking

W

Closed-form solution:

W= (X"X+A)XTy

ﬁ)ﬂ’ﬂl Shaw WzxX'a for S a
L-:) Sant oS .SWW(\':«) W E Spav Cx)

Why is this important?

1. We need to show we can find weights
w that are in the span of the
datapoints because...

2. Itimplies that we can write w as a
linear combination of the datapoints
(x.) and some scale factors (a,)...

n
. . - 2 NN
3. And this fact is crucial for some later wW=X"a= E T;Q;
=1

In other words:

We want to show this is true
evenifd>n

algebra

ﬁiﬂ’ﬂl S how \,’{,:_XT& f=v Sore &
L—> Sane oS _Sl’wwn-j \n/ 65504/] CX_)

-___,_--—"'———-_

@
\;‘\/ :()(TX+—)\I)"XTY (XTx +>~I)>(T3_‘ XT[KXT-H\I)
=X (XX 1) Y)
A) x" Q)(X + \T) T4 ") xT
W = X as
! ® D

w=X"X+X)"X"y N

_ ®
Srepd. Shoaw WaxXa for S a =X (xxT 1)y
[~ gane as Showig \W € Span Cx) L\;\\‘ = 5T Y,

W Can be C XPreSSeL as o Y vear covH\ahpA

of X x. .. %)

) (Note that this is always
\/ + true of w at any point
N I along the optimization

= . e trajectory not just at the
\/\{ = Z X' 0\‘ — >< a end... but that proof is

124 beyond the scope here)

Let’s do feature expansion!
From now on we are working with the expanded teature set:

X = ¢(X)

NEW Optimization objective:

Wy = argmin||y —
w

You actually already
implemented this with
polynomial regression

P(X

p—_—

w|l3 + Allwl]2

But our computational demons
surface again. What if our feature
set blows up so that d >>n? Or
even blows up to infinite
dimensions?

Sley 2 Powre Riume Kearssmn wik befrers
X — ¢(X)

g = argminly — ¢(X)[w]||3 + All[w]|]3

If w=¢(X) a

B = g iy — S(X)[D(X) "a]lI3 + A[¢(X) " allf3

This is why we needed step 1. It makes this substitution possible no matter the
dimensionality of the “blown up” X!

Syep2bl Debie, e, Kemmel X e R

Im/mpﬁ- JisFinCHIN
L?Kf(met funiran ;K (X, x) ép(x) k)

L? rarn oK ER = KX, X}

How can we
construct the kernel
matrix using the
kernel function?

K . DKX.)‘T(D(X:)~ :

(x,%) = Px) Pls,)
Q00 PeTi o] KedT | K= Kk

Take a second to convince

T) J ourself this is true. The
) DX) @LX") CD(K)_ ymain takeaway is the
— \]/ formulation of the kernel
M al _ matrix below.
—ox)— [|
1 ; 06 - Px
—bix)— | , |

K= MX)%)T X"

If K = ¢(X)o(X)T

a

argmin||y — H(X)D(X) " all3 + N|¢(X) " all3

= argmin||y — ¢(X)d(X) " all5 + Xa' ¢(X)p(X) " a

a

= argmin||y — Kal|? + Aa' Ka y C

a

Now you are gonna take this all the way to the end!

Go to your section handout...

S\tcﬁ}; Derive
2a. Kernelized Linear Regression

Recall that the definition of a kernel is the following:

Definition 1. A function K : R% x R — R is a kernel for a map ¢ if K(z,z') = ¢(z) - ¢(z') = (¢(z), ¢(z')) for all
z,z'.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters
w = argmin,, L(w) for a dataset (z;,y;);-, that minimize the following loss function:

n

L(w) = Z(wTﬂii —4:)* + w3

i=1

Note that from class, we know there is an optimal « that lies in the span of the datapoints. Concretely, there exist
ai,...,an, € Rsuchthatw =)" a;z;. Also recall from lecture that the expression of our loss function L(w) in terms
of the kernel is:

L(w) = ||y — Ka||2 + M\a"Ka

Solve for the optimal a

2a. Kernelized Linear Regression

Note that from class, we know there is an optimal % that lies in the span of the datapoints. Concretely, there exist
ai,...,a, € Rsuchthatw =)" a;z;. Also recall from lecture that the expression of our loss function L(w) in terms
of the kernel is:

L(w) = |ly — Ka||3 + M\a"Ka

Setting gradient of L(w) with respect to « equal to 0O:

VaoL(w) =0

—2K (y — Ka) + 2\Ka = 0
—K(y —Ka) + XKa =0
KKa—y+2Xa)=0
K(K+AX)a—-y)=0
KK+ Al)a =Ky
a=K+)ty

Quick high-level recap

A kernel K (a,b) takes in d dimensional vectors a, b and gives us a scalar.

When you construct a kernel such that K(a,b) = ¢(a)’ ¢(b)

We can ultimately use K to efficiently apply ¢ to our features.

Mercer’s conditions: \

e K must be symmetric Can have infinite
e K must be positive definite dimensions

SHp 4. Pleditt

AN &
Volma\ (ose: Y SN 2 2 K

A A
Lorre @se; N = Wy O=) = 0000

= @(X)Ta §'z)
You need some extra

% Q. (P(X (DCZ—) steps to predict a new

datapoint, but the

predictive power
Za K (X 2_.) compared to

— computational cost is

12 well worth it!

Let's vectorize this!

2b. Kernelized Linear Regression

L(w) =) (w"z; —y;)* + Al|wl|3 L(w) = ||y — Ka|[? + AaTKa

Let us assume that we were using a linear kernel where K;; = =7 ;. Suppose we have X5 that we want to
make prediction for after training on Xi.i,. Express the estimate Y in terms of Kiovainn = xtmmxmn, Viraims
Xirain and Xies;. What would the general prediction formula look like if we are not using a linear kernel?
Express the solution in terms of Kirain test Solution:

2b. Kernelized Linear Regression

2 T
L(w) = 3wz - :)* + Allwl[3 L(w) = |ly — Ka|[3 + Aa"Ka
i=1
Let us assume that we were using a linear kernel where K;; = a:;ij Suppose we have X;.;; that we want to

make prediction for after training on X.i,. Express the estimate Y in terms of K;qin = Xtmth:’;am, Vtrains
Xirain and Xies;. What would the general prediction formula look like if we are not using a linear kernel?
Express the solution in terms of Kirain, test Solution:

A

Y = Xeestw
T A
= XtEStXTraina

= Xtestxt:,;ain (Ktrain + I)_1 Ytrain

General Solution for Kernel Ridge

A

Y= Ktrain, test (¥

— T
Where KtTain,test - Xtestx

train

1 2 3([x] |0 R
Takeaways 2 4 1||v]=|o
12 3]L%] |0 e
e Kernels are at their core a Ax = 0
computational efficiency
trick

o Employed when feature mapping
is computationally too much

e Kernels must satisfy m
Mercer’s condition B
o Symmetric, positive-definite
e \We perform kernelized
linear regression which has
extra steps

Input Space Feature Space

What you think of when someone
says “Kernel” says a lot about you...

Do this in your own time if you
want a tutorial on how to make a
neural net in PyTorch!

PyTorch Colab

https://colab.research.google.com/drive/1O-te5Sy2guzd2kDnlBbMNPPEALPl_Yt3?usp=share_link

Questions/Chat Time!

Old Slides

How do we use K?

Proof in slides!

Kernelized Linear Regression rewrites how we calculate w:

n

W= E T

=1

How do we find o € R™?
: nxn : = o, g Yoes vile NT il
Define the kernel matriz K € R where K; ; = K(zi,z;) = ¢(x;) ' ¢(x;).
a=(K+)y

Now if we want to make a new prediction § on a datapoint z, we have to do something extra:

n

g = Z K(zi, 2)x

1=1

RBF Kernels

RBF kernels measure the similarity between the input vectors by
calculating their distance in the input feature space.

If x and y are close together, K(x, y) approaches 1

If x and y are further apart, K(x, y) approaches 0

RBF Kernel is infinite-dimensional

Consider a Taylor series expansion

Taylor series expansion of RBF Kernel

["(.'If, Ij) — ()_'7||I—(/”-2

S IT

Feature 1 Feature 2 Feature 3 Feature 4

There’s infinite number of features!

Why do we care about infinite dimensions?

By mapping the XOR dataset into
infinite-dimensional feature space,

XOR Dataset with RBF Kernel Decision Boundary

We can implicitly map it into

we can use linear regression to
draw a linear decision boundary,
correctly separating the XOR
dataset in this infinite-dimensional
feature space

0.2 ‘—
This is what the decision W

looks like when we project it down

to the original feature space

'infinite-dimensional feature space
using the kernel trick with RBF
Kernel! More details in HW3 A3

X1

Controls the rate of decay for the similarity score

Smaller gamma results in a smoother mapping

Datapointsin 1d

Mapping into
2d feature space
Smoother mapping
- L — o
| T |
Dedision boundary
-]
a
=} @
Less smooth mapping
&
® ®
° ° ©
» L]
a I a
5 a
n

.

Decision boundary

Mapping back
to input space

=i

A less smooth mapping can
cause overfitting!

You will get more practice with using kernel regression in
HW3

o kpoiy(z,2) = (1 + 2" 2)% where d € N is a hyperparameter,

o krbt(z, 2) = exp(—7|lz — :]|::) where 4 > 0 is a hyperparameter’.

You will be doing polynomial kernel regression, and RBF kernel
regression, just like what we showed you today, but on the
same dataset.

You will also experiment with searching for hyperparameters
such as gamma.

