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Plans for today!

1. This
2. Reminders
3. Kernelized Linear Regression
4. PyTorch Colab Notebook (No Demo)



Reminders

● HW2 due 2 days ago
● HW3 due next 11/19 @ 11:59 PM
● Midterm grades out!

○ Please only submit a regrade request if you have a strong case for 
extra points

Nothing else to say… How’s life?



Kernels



Kernels 
?????????????????
??????????????

This concept stumped me 
when I took the class. It 
can be difficult to 
understand so spend 
some time digesting it

- But maybe we can 
simplify things… 
Let’s start with why Can you draw a 

horizontal line to 
separate these classes?
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Kernels 
?????????????????
??????????????

We need to create a new 
feature from what we 
have (which is x1)

Can you draw a 
horizontal line to 
separate these classes?

x
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 (feature)

Feature 
map



Kernels 
?????????????????
??????????????

We need to create a new 
feature from what we 
have (which is x1)

Can you draw a 
horizontal line to 
separate these classes?
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Problems with efficiency ← THIS IS WHY!

If we did things step by step…

1. Take our n data points, each one a d dimensional vector
2. To EACH datapoint, apply our kernel map (       ), further blowing up the 

space/time complexity
3. Perform linear regression on the exploded set of features
4. Most likely fail…

Kernel trick!



(You can write these down if you 
want to follow along!)

Our goal is to get from ridge 
regression to kernelized 
linear regression

It involves multiple pieces that 
seem disjoint but will fit 
together at the end, so feel free 
to ask for some backtracking



Why is this important?

1. We need to show we can find weights 
w that are in the span of the 
datapoints because…

2. It implies that we can write w as a 
linear combination of the datapoints 
(xi) and some scale factors (ai)...

3. And this fact is crucial for some later 
algebra

In other words:

We want to show this is true 
even if d > n





(Note that this is always 
true of w at any point 
along the optimization 
trajectory not just at the 
end… but that proof is 
beyond the scope here) 



You actually already 
implemented this with 
polynomial regression

But our computational demons 
surface again. What if our feature 
set blows up so that d >> n? Or 
even blows up to infinite 
dimensions?



This is why we needed step 1. It makes this substitution possible no matter the 
dimensionality of the “blown up” X!



How can we 
construct the kernel 

matrix using the 
kernel function?

(I know this seems like a tangent. Trust me 
it will all come full circle)



Take a second to convince 
yourself this is true. The 
main takeaway is the 

formulation of the kernel 
matrix below.



Now you are gonna take this all the way to the end!

Go to your section handout…



2a. Kernelized Linear Regression

Solve for the optimal α



2a. Kernelized Linear Regression



Quick high-level recap

Can have infinite 
dimensions

Mercer’s conditions:
● K must be symmetric
● K must be positive definite



You need some extra 
steps to predict a new 

datapoint, but the 
predictive power 

compared to 
computational cost is 

well worth it!
Let’s vectorize this!



2b. Kernelized Linear Regression



2b. Kernelized Linear Regression



Takeaways

● Kernels are at their core a 
computational efficiency 
trick

○ Employed when feature mapping 
is computationally too much

● Kernels must satisfy 
Mercer’s condition

○ Symmetric, positive-definite
● We perform kernelized 

linear regression which has 
extra steps

What you think of when someone 
says “Kernel” says a lot about you…



PyTorch Colab

Do this in your own time if you 
want a tutorial on how to make a 
neural net in PyTorch!

https://colab.research.google.com/drive/1O-te5Sy2guzd2kDnlBbMNPPEALPl_Yt3?usp=share_link


Questions/Chat Time!



Old Slides



How do we use K?
Proof in slides!



RBF Kernels

RBF kernels measure the similarity between the input vectors by 
calculating their distance in the input feature space.

If x and y are close together, K(x, y) approaches 1

If x and y are further apart, K(x, y) approaches 0



RBF Kernel is infinite-dimensional

Consider a Taylor series expansion



Taylor series expansion of RBF Kernel

Feature 1 Feature 2 Feature 3 Feature 4

There’s infinite number of features!



Why do we care about infinite dimensions?

By mapping the XOR dataset into 
infinite-dimensional feature space, 
we can use linear regression to 
draw a linear decision boundary, 
correctly separating the XOR 
dataset in this infinite-dimensional 
feature space

This is what the decision boundary 
looks like when we project it down 
to the original feature space

We can implicitly map it into 
infinite-dimensional feature space 
using the kernel trick with RBF 
Kernel! More details in HW3 A3



Controls the rate of decay for the similarity score

γ =0.1

γ =0.2
γ =1

Smaller gamma results in a smoother mapping



A less smooth mapping can 
cause overfitting!



You will get more practice with using kernel regression in 
HW3

You will be doing polynomial kernel regression, and RBF kernel 
regression, just like what we showed you today, but on the 
same dataset.
You will also experiment with searching for hyperparameters 
such as gamma.


