
446 Section 0
TA: Varun Ananth

7

Plans for today!

1. This
2. Reminders
3. Kernelized Linear Regression
4. PyTorch Colab Notebook (No Demo)

Reminders

● HW2 due 2 days ago
● HW3 due next 11/19 @ 11:59 PM
● Midterm grades out!

○ Please only submit a regrade request if you have a strong case for
extra points

Nothing else to say… How’s life?

Kernels

Kernels
?????????????????
??????????????

This concept stumped me
when I took the class. It
can be difficult to
understand so spend
some time digesting it

- But maybe we can
simplify things…
Let’s start with why Can you draw a

horizontal line to
separate these classes?

x
1
 (feature)

No

Kernels
?????????????????
??????????????

We need to create a new
feature from what we
have (which is x1)

Can you draw a
horizontal line to
separate these classes?

x
1
 (feature)

Feature
map

Kernels
?????????????????
??????????????

We need to create a new
feature from what we
have (which is x1)

Can you draw a
horizontal line to
separate these classes?

x
1
 (feature)

Yes
x
2

(
n
e
w

f
e
a
t
u
r
e
)

Problems with efficiency ← THIS IS WHY!

If we did things step by step…

1. Take our n data points, each one a d dimensional vector
2. To EACH datapoint, apply our kernel map (), further blowing up the

space/time complexity
3. Perform linear regression on the exploded set of features
4. Most likely fail…

Kernel trick!

(You can write these down if you
want to follow along!)

Our goal is to get from ridge
regression to kernelized
linear regression

It involves multiple pieces that
seem disjoint but will fit
together at the end, so feel free
to ask for some backtracking

Why is this important?

1. We need to show we can find weights
w that are in the span of the
datapoints because…

2. It implies that we can write w as a
linear combination of the datapoints
(xi) and some scale factors (ai)...

3. And this fact is crucial for some later
algebra

In other words:

We want to show this is true
even if d > n

(Note that this is always
true of w at any point
along the optimization
trajectory not just at the
end… but that proof is
beyond the scope here)

You actually already
implemented this with
polynomial regression

But our computational demons
surface again. What if our feature
set blows up so that d >> n? Or
even blows up to infinite
dimensions?

This is why we needed step 1. It makes this substitution possible no matter the
dimensionality of the “blown up” X!

How can we
construct the kernel

matrix using the
kernel function?

(I know this seems like a tangent. Trust me
it will all come full circle)

Take a second to convince
yourself this is true. The
main takeaway is the

formulation of the kernel
matrix below.

Now you are gonna take this all the way to the end!

Go to your section handout…

2a. Kernelized Linear Regression

Solve for the optimal α

2a. Kernelized Linear Regression

Quick high-level recap

Can have infinite
dimensions

Mercer’s conditions:
● K must be symmetric
● K must be positive definite

You need some extra
steps to predict a new

datapoint, but the
predictive power

compared to
computational cost is

well worth it!
Let’s vectorize this!

2b. Kernelized Linear Regression

2b. Kernelized Linear Regression

Takeaways

● Kernels are at their core a
computational efficiency
trick

○ Employed when feature mapping
is computationally too much

● Kernels must satisfy
Mercer’s condition

○ Symmetric, positive-definite
● We perform kernelized

linear regression which has
extra steps

What you think of when someone
says “Kernel” says a lot about you…

PyTorch Colab

Do this in your own time if you
want a tutorial on how to make a
neural net in PyTorch!

https://colab.research.google.com/drive/1O-te5Sy2guzd2kDnlBbMNPPEALPl_Yt3?usp=share_link

Questions/Chat Time!

Old Slides

How do we use K?
Proof in slides!

RBF Kernels

RBF kernels measure the similarity between the input vectors by
calculating their distance in the input feature space.

If x and y are close together, K(x, y) approaches 1

If x and y are further apart, K(x, y) approaches 0

RBF Kernel is infinite-dimensional

Consider a Taylor series expansion

Taylor series expansion of RBF Kernel

Feature 1 Feature 2 Feature 3 Feature 4

There’s infinite number of features!

Why do we care about infinite dimensions?

By mapping the XOR dataset into
infinite-dimensional feature space,
we can use linear regression to
draw a linear decision boundary,
correctly separating the XOR
dataset in this infinite-dimensional
feature space

This is what the decision boundary
looks like when we project it down
to the original feature space

We can implicitly map it into
infinite-dimensional feature space
using the kernel trick with RBF
Kernel! More details in HW3 A3

Controls the rate of decay for the similarity score

γ =0.1

γ =0.2
γ =1

Smaller gamma results in a smoother mapping

A less smooth mapping can
cause overfitting!

You will get more practice with using kernel regression in
HW3

You will be doing polynomial kernel regression, and RBF kernel
regression, just like what we showed you today, but on the
same dataset.
You will also experiment with searching for hyperparameters
such as gamma.

