
Section 07: Kernels
Let φ : Rd → Rk be a feature map, defineK as the kernel function, and define G to be the kernel matrix of φ.

(a) The kernel matrix is symmetric, that is, show Gi,j = Gj,i.

(b) The kernel matrix G is positive semi-definite, that is, for any column vector x, x>Gx ≥ 0.

(c) Mercer’s theorem: A function K : Rn×Rn → R is a valid kernel if and only if the corresponding kernel matrix
G is symmetric and positive definite.

1. Kernelized Linear Regression

Recall that the definition of a kernel is the following:
Definition 1. A function K : Rd × Rd → R is a kernel for a map φ if K(x, x′) = φ(x) · φ(x′) = 〈φ(x), φ(x′)〉 for all
x, x′.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters
ŵ = argminw L(w) for a dataset (xi, yi)

n
i=1 that minimize the following loss function:

L(w) =
n∑

i=1

(wTxi − yi)
2 + λ||w||22

Note that from class, we know there is an optimal ŵ that lies in the span of the datapoints. Concretely, there exist
α1, ..., αn ∈ R such that ŵ =

∑n
i αixi. Also recall from lecture that the expression of our loss function L(w) in terms

of the kernel is:

L(w) = ||y − Kα||22 + λαTKα

This derivation can be seen here on slide 53.

(a) Solve for the optimal α̂.

1

https://courses.cs.washington.edu/courses/cse446/23au/schedule/lecture_10/lecture_10.pdf


(b) Let us assume that we were using a linear kernel where Kij = xT
i xj . Suppose we have Xtest that we want to

make prediction for after training on Xtrain. Express the estimate Ŷ in terms of Ktrain = XtrainXT
train, ytrain,

Xtrain and Xtest. What would the general prediction formula look like if we are not using a linear kernel?
Express the solution in terms of Ktrain, test

2. Proving ŵ ∈ Span(x1, ..., xn)

We will prove this through contradiction. Assume ŵ /∈ span(x1, ..., xn) solves argminw L(w). Then, there exists a
component of ŵ that is perpendicular to the span, which we will call w⊥. Concretely,

ŵ = w̄ + w⊥

Where w̄ =
∑n

i αixi is the component of ŵ in the span of the datapoints.

To show that w⊥ is part of our optimal parameters, we need to consider both the error term and the regular-
ization term of L(w). Since w̄ and w⊥ are perpendicular to each other, their contribution to L(w) can be minimized
independently. Let us split the error and regularization terms into their w̄ and w⊥ components.

(a) First, we will find the optimal hyperparameter selection for the error term of our loss function in terms of w̄
and w⊥. Show that ŵ · xi = w̄ · xi, for every xi. (Hint: what is the relationship of w⊥ and xi)

(b) We have shown that for the optimal solution, the error term relies only on Span(x1, ...xn). Let us find the
regularization term in terms of w̄ and w⊥ and the range of values it can take. Now, show that ||ŵ||22 ≥ ||w̄||22.
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(c) We now know the minimum value of the regularization term and what it is equal to with respect to ŵ and
w⊥. Finally, show that ŵ ∈ Span(x1, ..., xn). (Hint: Think about the regularization term. What is w⊥ when
the regularization term is minimized?)
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