Section 07: Kernels

Let $\phi \colon \mathbb{R}^d \to \mathbb{R}^k$ be a feature map, define K as the kernel function, and define G to be the kernel matrix of ϕ .

- (a) The kernel matrix is symmetric, that is, show $G_{i,j} = G_{j,i}$.
- (b) The kernel matrix G is positive semi-definite, that is, for any column vector x, $x^{\top}Gx \geq 0$.
- (c) *Mercer's* theorem: A function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a valid kernel if and only if the corresponding kernel matrix G is symmetric and positive definite.

1. Kernelized Linear Regression

Recall that the definition of a kernel is the following:

Definition 1. A function $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a *kernel* for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle$ for all x, x'.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters $\hat{w} = \arg\min_{w} L(w)$ for a dataset $(x_i, y_i)_{i=1}^n$ that minimize the following loss function:

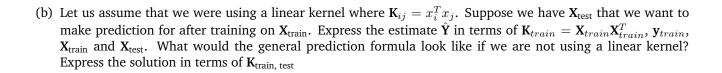
$$L(w) = \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

Note that from class, we know there is an optimal \hat{w} that lies in the span of the datapoints. Concretely, there exist $\alpha_1,...,\alpha_n \in \mathbb{R}$ such that $\hat{w} = \sum_i^n \alpha_i x_i$. Also recall from lecture that the expression of our loss function L(w) in terms of the kernel is:

$$L(w) = ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

This derivation can be seen here on slide 53.

(a) Solve for the optimal $\hat{\alpha}$.



2. Proving $\hat{w} \in \text{Span}(x_1, ..., x_n)$

We will prove this through contradiction. Assume $\hat{w} \notin \operatorname{span}(x_1,...,x_n)$ solves $\operatorname{arg\,min}_w L(w)$. Then, there exists a component of \hat{w} that is perpendicular to the span, which we will call w^{\perp} . Concretely,

$$\hat{w} = \bar{w} + w^{\perp}$$

Where $\bar{w} = \sum_{i=1}^{n} \alpha_{i} x_{i}$ is the component of \hat{w} in the span of the datapoints.

To show that w^{\perp} is part of our optimal parameters, we need to consider both the error term and the regularization term of L(w). Since \bar{w} and w^{\perp} are perpendicular to each other, their contribution to L(w) can be minimized independently. Let us split the error and regularization terms into their \bar{w} and w^{\perp} components.

(a) First, we will find the optimal hyperparameter selection for the error term of our loss function in terms of \bar{w} and w^{\perp} . Show that $\hat{w} \cdot x_i = \bar{w} \cdot x_i$, for every x_i . (Hint: what is the relationship of w^{\perp} and x_i)

(b) We have shown that for the optimal solution, the error term relies only on $\operatorname{Span}(x_1,...x_n)$. Let us find the regularization term in terms of \bar{w} and w^{\perp} and the range of values it can take. Now, show that $||\hat{w}||_2^2 \ge ||\bar{w}||_2^2$.

