Section 07: Kernels

Let ¢: R? — R be a feature map, define K as the kernel function, and define G to be the kernel matrix of ¢.

(a) The kernel matrix is symmetric, that is, show G; ; = G, ;.
(b) The kernel matrix G is positive semi-definite, that is, for any column vector z, =" G2 > 0.

(c) Mercer’s theorem: A function K : R™ x R™ — R is a valid kernel if and only if the corresponding kernel matrix
G is symmetric and positive definite.

1. Kernelized Linear Regression

Recall that the definition of a kernel is the following:

Definition 1. A function K : R? x R? — R is a kernel for a map ¢ if K(z,7") = ¢(z) - p(2') = (¢(x), p(2")) for all
z, 7.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters
@ = argmin,, L(w) for a dataset (x;,y;);—, that minimize the following loss function:

n

L(w) = (w"z; — y;)* + Alwl]3

=1

Note that from class, we know there is an optimal « that lies in the span of the datapoints. Concretely, there exist
a1, ..., 0, € Rsuch thatw = Z? a;x;. Also recall from lecture that the expression of our loss function L(w) in terms
of the kernel is:

L(w) = |y — KOéH% + AoTKa

This derivation can be seen here on slide 53.

(a) Solve for the optimal a.


https://courses.cs.washington.edu/courses/cse446/23au/schedule/lecture_10/lecture_10.pdf

(b) Let us assume that we were using a linear kernel where K;; = xij Suppose we have X5 that we want to
make prediction for after training on Xirin. Express the estimate Y in terms of Kyyqn, = XirainXhains Yerain,
Xirain and Xees;. What would the general prediction formula look like if we are not using a linear kernel?
Express the solution in terms of Kain, test

2. Proving w € Span(zy,...,x,)

We will prove this through contradiction. Assume @ ¢ span(z1, ..., z,) solves argmin,, L(w). Then, there exists a
component of w0 that is perpendicular to the span, which we will call w*. Concretely,

W=w+w

Where @ = > a;z; is the component of & in the span of the datapoints.

To show that w™ is part of our optimal parameters, we need to consider both the error term and the regular-
ization term of L(w). Since w and w' are perpendicular to each other, their contribution to L(w) can be minimized

independently. Let us split the error and regularization terms into their @ and w* components.

(a) First, we will find the optimal hyperparameter selection for the error term of our loss function in terms of w
and w*. Show that @ - z; = w - x;, for every x;. (Hint: what is the relationship of w* and x;)

(b) We have shown that for the optimal solution, the error term relies only on Span(zy,...x,). Let us find the
regularization term in terms of w and w' and the range of values it can take. Now, show that ||%||2 > ||w0]|3.



(c) We now know the minimum value of the regularization term and what it is equal to with respect to @ and
w*. Finally, show that @ € Span(zi, ..., x,). (Hint: Think about the regularization term. What is w* when
the regularization term is minimized?)
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