Section 07: Solutions

Let ¢: R? — R be a feature map, define K as the kernel function, and define G to be the kernel matrix of ¢.

(a) The kernel matrix is symmetric, that is, show G; ; = G, ;.
(b) The kernel matrix G is positive semi-definite, that is, for any column vector z, =" G2 > 0.

(c) Mercer’s theorem: A function K : R™ x R™ — R is a valid kernel if and only if the corresponding kernel matrix
G is symmetric and positive definite.

1. Kernelized Linear Regression

Recall that the definition of a kernel is the following:

Definition 1. A function K : R? x R? — R is a kernel for a map ¢ if K(z,7") = ¢(z) - p(2') = (¢(x), p(2")) for all
z, 7.

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal parameters
@ = argmin,, L(W) for a dataset (x;,y;);_, that minimize the following loss function:

n

L(w) = (w"z; — y;)* + Alwl]3

=1

Note that from class, we know there is an optimal « that lies in the span of the datapoints. Concretely, there exist
a1, ..., 0, € Rsuch thatw = Z? a;x;. Also recall from lecture that the expression of our loss function L(w) in terms
of the kernel is:

L(w) = |y — KaH% + AoTKa

This derivation can be seen here on slide 53.
(a) Solve for the optimal a.

Solution:

Setting gradient of L(w) with respect to « equal to O:

VoL(w)=0

—2K (y — Ka) 4 2XKa = 0
—K(y — Ka) + AKa =0
KKa—-y+Xa)=0
K((K+A)a—y)=0
K(K+ Al)o = Ky
a=K+)"y

(b) Let us assume that we were using a linear kernel where K;; = szxj Suppose we have X5 that we want to
make prediction for after training on Xiin. Express the estimate Y in terms of K,qin = XirainXhains Yirain,
Xirain and Xees;. What would the general prediction formula look like if we are not using a linear kernel?
Express the solution in terms of Kuain, st Solution:


https://courses.cs.washington.edu/courses/cse446/23au/schedule/lecture_10/lecture_10.pdf

Y = Xiest
T A
= XtEStXTraina

= Xtestxtqgain (Ktrain + A ) ! Ytrain

General Solution for Kernel Ridge

Y= Ktrain, test X

— T
Where Ktrain,test - XtestX

train

2. Proving w € Span(zy,...,x,)
We will prove this through contradiction. Assume @ ¢ span(zy, ..., z,) solves argmin,, L(w). Then, there exists a
component of « that is perpendicular to the span, which we will call w'. Concretely,
W=w+w"
Where w = " a;; is the component of % in the span of the datapoints.
To show that w™ is part of our optimal parameters, we need to consider both the error term and the regular-

ization term of L(w). Since w and w™ are perpendicular to each other, their contribution to L(w) can be minimized
independently. Let us split the error and regularization terms into their w and w' components.

(a) First, we will find the optimal hyperparameter selection for the error term of our loss function in terms of w
and w'. Show that @ - z; = @ - x;, for every z;. (Hint: what is the relationship of w* and x;)
Solution:

w is perpendicular to each z;
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(b) We have shown that for the optimal solution, the error term relies only on Span(zx,...x,). Let us find the
regularization term in terms of w and w' and the range of values it can take. Now, show that ||@||3 > ||w]|3.
Solution:

@[3 = [l@ + w|[3
= (0 +wh)T (w0 + wh)
=wlw + 20T wt + (wh)Twt
= [[@[5 + [[w"[[3 asw' wh = (w,w") =0

> ||wl[3

(c) We now know the minimum value of the regularization term and what it is equal to with respect to @ and



w*. Finally, show that @ € Span(zi,...,x,). (Hint: Think about the regularization term. What is w* when
the regularization term is minimized?)
Solution:

Note that in the loss function, we’re trying to minimize the magnitude of w (with the regularization term
Al|w||3). Now note that if V;% T z; = w”xz;, and ||w||2 > ||w||3, then our optimization will always choose
w* = 0 (as we favor smaller solutions), meaning that & = w and @ € Span(x1, ..., ¥, ), which completes
the contradiction.

Remark For running Jupytor Notebook locally, the following are required:
» Jupyter Notebook [Install]|[Document]
* ipywidgets
* pytorch
* matplotlib

* numpy


https://docs.jupyter.org/en/latest/start/index.html
https://docs.jupyter.org/en/latest/running.html
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