446 Section 06

TA: Varun Ananth



Plans for today!

a s b=

This

Reminders

PyTorch Tutorial (No Demo)
GD, SGD, Mini-Batch GD
Gradient Descent Proofs



Reminders

e HW2 due November 5th
o Keep track of your late days!
e How was the midterm?



Gradient Descent

VS.
Stochastic Gradient Descent

VS.
Mini-Batch Gradient Descent



Gradient Descent Variants (for this class)

Gradient Descent (GD)

e Take a step after |ooking at every single datapoint in the training set

Stochastic Gradient Descent (SGD)

e Take a step after looking at 1 randomly sampled point from the training set

Mini-Batch Gradient Descent (Mini-Batch GD)

e Take a step after looking at n sampled datapoints from the training set

These definitions are specific and important for this class, but...



Gradient Descent Variants (as discussed in industry)

What it references

Method

The general idea of training a model by
GD taking gradients on some loss function
— may use advanced optimizers with
gradients (i.e. AdamW)

SGD Calculating the gradients based on:

\ : all the n data points from the training set
\ The general idea of taking steps in the

loss landscape with some randomness
to it

This is how people talk about them IRL. Note that SGB & Minibatch are used interchangeably.



Note: From here on out in Gradient Descent (GD)

this class, the definitions Take a step after looking at every single datapoint in the training set
f h h Stochastic Gradient Descent (SGD)
o t ese terms are tEi Take a step after looking at 1 randomly sampled point from the training set
ones — Mini-Batch Gradient Descent (Mini-Batch GD)
- Take a step after looking at n sampled datapoints from the training set
Batch Gradient Descent Stochastic Gradient Descent Mini-Batch Gradient Descent
>

Another way of looking at things!



Stochastic Gradient Descent

1 n
wtt) = ) _ . = ; V¢, ('w(t)).

The computational cost of a single step here is O(dn). To reduce cost, one idea is to just use a subset of all samples
to approximate the full gradient. Specifically, consider revising the gradient descent step as follows:

'll)(t+l) = 'llJ(t) =7 '

where I, is chosen randomly within {1, 2, ..., n} with equal probability. This is called stochastic gradient descent
(SGD), and the computational cost of a single step now reduces to O(d).

Is this estimator unbiased?

Yes!

* By, [V, (w®)] = 13" | Ve(w®), which is the full gradient. Hence the estimate of gradient is unbi-
ased.



Issues with SGD — MiniBatch GD

e Although the estimator is unbiased overall, a single point gradient estimate is very noisy
o Pros:
m Noise within the optimization process is not inherently a bad thing. It can help you
escape sub-optimal local minima and “wander/explore” the loss landscape more.
m For giant datasets SGD is also more computationally feasible
o Cons:
m Noisy updates mean you could also wander off the optimal path if the loss landscape
is simpler

Gradient descent is theoretically nice but computationally expensive...
SGD is noisy (maybe too noisy) but computationally efficient...

Meet in the middle with MiniBatch GD!



3b. MiniBatch Gradient Descent

Short form: Take gradient of loss with n datapoints, take a step, and
repeat (as opposed to taking the loss over all datapoints)

Choice of n can have impacts... Can you think of some?

The choice of the optimal batch size is not an easy question, and there is no standard answer to it. How-
ever, we still try to provide some important intuitions regarding the choice of batch size. Firstly, when
the objective function (to be minimized) behaves “better” (e.g., Lipschitz continuous, strong convex) than
convex functions, the difference in the convergence rates between GD and SGD becomes significant, sug-
gesting a nontrivial gain of having a faster convergence rate and hence we should consider relatively larger
batch size. Secondly, a smaller batch size yields less stable gradient estimates, suggesting that we shall
employ a fairly small step size/learning rate. An increase in the batch size can be paired with an increase
in the step size/learning rate.




Pytorch Tutorial

This Colab notebook walks you
through a basic PyTorch tutorial.
Very helpful for future homeworks!

We suggest doing this notebook if
you don’t know PyTorch or need a
refresher. It is optional!


https://colab.research.google.com/drive/14v-GvPGFjbKg1ev_8p-u11UBSypiopIt#scrollTo=Tur-YOxpJhxQ

Gradient Descent
Proofs



Additional Definitions: Lipschitz Continuity

Functions can be shown to be K-Lipschitz

Definition 1 (Lipschitz continuous function). A function f : R™ — R™ is K-Lipschitz for some K > (), and some p-norm ifT:

Ve, [1£(2) = F(o)lly < Kz = yll,_—ust hinkof dsolute value for

Wikipedia: there exists a real number [K]
such that, for every pair of points on the
graph of this function [x,y], the absolute
value of the slope of the line connecting
them [|f(x) - f(y)|] is not greater than this
real number

Geometric intuition: The function’s derivative
must be bounded by K




Proving convergence in # of steps given conditions...

Assume that f: R™ — R is convex and differentiable, and additionally,

IVf(z) = VIl < Lz —y|, forany z,y,
i.e., V[ is Lipschitz continuous with constant L > 0.

o  The derivative of f never changes by a rate more than L
o L>=0

= %
o Think about what this means:
o Stepsizeis <1/L

The gradient can’t change by a large
number (bounded by L)

Let’'s see what the
proof says we can

guarantee: When we estimate the gradient, our \

approximation won’t degrade as quickly
< /



Proving convergence in # of steps given conditions...

\

e fis convex and differentiable everywhere

o Good properties for gradient descent! Means that:
e Gradient of fis L-Lipschitz '

o The derivative of f never changes by a rate more than L

o L>0
e Stepsizeis<1/L J

2
*
|zo — z*||
f(zx) - f (2%) < . keN
2nk

What do the variables mean? (Check the section notes)



After we take k

steps...
Initial error of

initialization point vs

best parame?er(s cut by a factor of k,
The difference and is cut further the

between the lowest Wil be higher the step size
possible loss and less than

our current loss

N

f (xg) —

We will always get closer and closer, but now we can have this guarantee
with a non-infinitesimal step size thanks to Lipschitz continuity!



Takeaways

Lipschitz continuity is a really
good property to have on the

gradient of your loss function
o  Lower L/K-Lipschitz is better

If you know this about your loss
function, you can make step
size larger which leads to
faster convergence!




Questions/Chat Time!



