
TA: Varun Ananth

446 Section 06



Plans for today!

1. This
2. Reminders
3. PyTorch Tutorial (No Demo)
4. GD, SGD, Mini-Batch GD
5. Gradient Descent Proofs



Reminders

● HW2 due November 5th
○ Keep track of your late days!

● How was the midterm?



Gradient Descent 
vs. 
Stochastic Gradient Descent 
vs. 
Mini-Batch Gradient Descent



Gradient Descent Variants (for this class)

Gradient Descent (GD)

● Take a step after looking at every single datapoint in the training set 

Stochastic Gradient Descent (SGD)

● Take a step after looking at 1 randomly sampled point from the training set

Mini-Batch Gradient Descent (Mini-Batch GD)

● Take a step after looking at n sampled datapoints from the training set

These definitions are specific and important for this class, but…



Gradient Descent Variants (as discussed in industry)

This is how people talk about them IRL. Note that SGB & Minibatch are used interchangeably.

Method

GD

SGD

Mini-Batch GD

What it references

The general idea of training a model by 
taking gradients on some loss function 
– may use advanced optimizers with 

gradients (i.e. AdamW)

Calculating the gradients based on:
all the n data points from the training set

a subset of m data points from training set

The general idea of taking steps in the 
loss landscape with some randomness 

to it



Another way of looking at things!

Note: From here on out in 
this class, the definitions 
of these terms are these 
ones →

Gradient Descent (GD)
 Take a step after looking at every single datapoint in the training set 

Stochastic Gradient Descent (SGD)
 Take a step after looking at 1 randomly sampled point from the training set

Mini-Batch Gradient Descent (Mini-Batch GD)
 Take a step after looking at n sampled datapoints from the training set



Stochastic Gradient Descent

Is this estimator unbiased?

Yes!



Issues with SGD → MiniBatch GD

● Although the estimator is unbiased overall, a single point gradient estimate is very noisy
○ Pros: 

■ Noise within the optimization process is not inherently a bad thing. It can help you 
escape sub-optimal local minima and “wander/explore” the loss landscape more. 

■ For giant datasets SGD is also more computationally feasible
○ Cons: 

■ Noisy updates mean you could also wander off the optimal path if the loss landscape 
is simpler

Gradient descent is theoretically nice but computationally expensive…

SGD is noisy (maybe too noisy) but computationally efficient…

Meet in the middle with MiniBatch GD! 



3b. MiniBatch Gradient Descent

Short form: Take gradient of loss with n datapoints, take a step, and 
repeat (as opposed to taking the loss over all datapoints)

Choice of n can have impacts… Can you think of some?



Pytorch Tutorial

This Colab notebook walks you 
through a basic PyTorch tutorial. 
Very helpful for future homeworks!

We suggest doing this notebook if 
you don’t know PyTorch or need a 
refresher. It is optional!

https://colab.research.google.com/drive/14v-GvPGFjbKg1ev_8p-u11UBSypiopIt#scrollTo=Tur-YOxpJhxQ


Gradient Descent 
Proofs



Additional Definitions: Lipschitz Continuity

Functions can be shown to be K-Lipschitz

(Just think of absolute value for 
simplicity)

Geometric intuition: The function’s derivative 
must be bounded by K

Wikipedia: there exists a real number [K] 
such that, for every pair of points on the 
graph of this function [x,y], the absolute 
value of the slope of the line connecting 
them [|f(x) - f(y)|] is not greater than this 
real number



Proving convergence in # of steps given conditions…

○ The derivative of f never changes by a rate more than L
○ L >= 0

○ Step size is < 1/L
Think about what this means:

The gradient can’t change by a large 
number (bounded by L)

When we estimate the gradient, our 
approximation won’t degrade as quickly

Let’s see what the 
proof says we can 

guarantee:



Proving convergence in # of steps given conditions…

● f is convex and differentiable everywhere
○ Good properties for gradient descent!

● Gradient of f is L-Lipschitz
○ The derivative of f never changes by a rate more than L
○ L > 0

● Step size is < 1/L

Means that:

What do the variables mean? (Check the section notes)



Initial error of 
initialization point vs 
best parameter(s)...

After we take k 
steps…

The difference 
between the lowest 
possible loss and 
our current loss

cut by a factor of k, 
and is cut further the 
higher the step size 

isWill be 
less than

We will always get closer and closer, but now we can have this guarantee 
with a non-infinitesimal step size thanks to Lipschitz continuity!



Takeaways

● Lipschitz continuity is a really 
good property to have on the 
gradient of your loss function

○ Lower L/K-Lipschitz is better

● If you know this about your loss 
function, you can make step 
size larger which leads to 
faster convergence!



Questions/Chat Time!


