
Section 05: Convexity and Gradient Descent

1. K-fold Cross-Validation (Demonstrative code)

1 # Given dataset of 1000-by-50 feature matrix X, and 1000-by-1 labels vector

2 import numpy as np

3

4 X = np.random.random((1000,50))

5 y = np.random.random((1000,))

6

7 def fit(Xin, Yin, lbda):

8 mu = np.mean(Xin, axis=0)

9 Xin = Xin - mu

10 w = np.linalg.solve(np.dot(Xin.T, Xin) + lbda, np.dot(Xin.T, Yin))

11 b = np.mean(Yin) - np.dot(w, mu)

12 return w, b

13

14

15 def predict(w, b, Xin):

16 return np.dot(Xin, w) + b

17

18

19 # Note: X, y are all the data and labels for the entire experiments

20 # We first split the data into the training set and test set.

21 N_SAMPLES = X.shape[0]

22 idx = np.random.permutation(N_SAMPLES)

23 K_FOLD = 5

24

25 # We use an array of randomized indices to slice the data into the training and test sets.

26 NON_TEST = idx[0: 9 * N_SAMPLES // 10]

27 N_PER_FOLD = len(NON_TEST) // K_FOLD

28 TEST = idx[9 * N_SAMPLES // 10::]

29

30 # regularization coefficient candidates to choose from

31 lbdas = [0.1, 0.2, 0.3]

32 err = np.zeros(len(lbdas))

33

34

35 for lbda_idx, lbda in enumerate(lbdas):

36 for i in range(K_FOLD):

37 # CRUCIAL: we use slicing to calculate the indices the training set and validation set should use!

38 # Using the ith fold as the validation set

39 VAL = NON_TEST[i * N_PER_FOLD:(i+1) * N_PER_FOLD]

40 # Using the rest as the train set

41 TRAIN = np.concatenate((NON_TEST[:i * N_PER_FOLD], NON_TEST[(i + 1) * N_PER_FOLD:]))

42

43 ytrain = y[TRAIN]

44 Xtrain = X[TRAIN]

45 yval = y[VAL]

46 Xval = X[VAL]

47

48 w, b = fit(Xtrain, ytrain, lbda)

49 yval_hat = predict(w, b, Xval)

50 # accumulate error from this fold of validation set

51 err[lbda_idx] += np.mean((yval_hat - yval)**2)

52

53 # calculate the error for the k-fold validation

54 err[lbda_idx] /= K_FOLD

1

55

56 # After trying all candidates for the regularization coefficient, we select the best lambda.

57 lbda_best = lbdas[np.argmin(err)]

58

59 # Fit the model again using all training data from CV.

60 Xtot = np.concatenate((Xtrain, Xval), axis=0)

61 ytot = np.concatenate((ytrain, yval), axis=0)

62

63 w, b = fit(Xtot, ytot, lbda_best)

64

65 ytest = y[TEST]

66 Xtest = X[TEST]

67

68 # Predict values using model fit on entire training set and the separate test set, and report error.

69 ytot_hat = predict(w, b, Xtot)

70 train_error = np.mean((ytot_hat - ytot) ** 2)

71 ytest_hat = predict(w, b, Xtest)

72 test_error = np.mean((ytest_hat - ytest) ** 2)

73

74 print('Best choice of lambda = ', lbda_best)

75 print('Train error = ', train_error)

76 print('Test error = ', test_error)

2

2. Lasso and CV (Demonstrative Code)

1 import numpy as np

2

3 LR = 0.01

4 NUM_ITERATIONS = 500

5

6 # NOTE: here, X and Y represent only the training data, not the overall dataset (train + test).

7 X = np.random.random((1000, 50))

8 Y = np.random.random((1000,))

9

10 def predict(w, b, Xin):

11 return np.dot(Xin, w) + b

12

13 def fit(Xin, Yin, l1_penalty) :

14 # no_of_training_examples, no_of_features

15 m, n = Xin.shape

16

17 # weight initialization

18 w = np.zeros(n)

19 b = 0

20

21 # gradient descent learning

22 for i in range(NUM_ITERATIONS) :

23 w, b = update_weights(w, b, Xin, Yin, l1_penalty)

24

25 return w, b

26

27 def update_weights(w, b, Xin, Yin, l1_penalty) :

28 m, n = Xin.shape

29 Y_pred = predict(w, b, Xin)

30

31 # calculate gradients

32 dW = np.zeros(n)

33 for j in range(n) :

34 if w[j] > 0 :

35 dW[j] = (- (2 * (Xin[:, j]).dot(Yin - Y_pred))

36 + l1_penalty) / m

37 else :

38 dW[j] = (- (2 * (Xin[:, j]).dot(Yin - Y_pred))

39 - l1_penalty) / m

40

41 db = - 2 * np.sum(Yin - Y_pred) / m

42

43 # update weights

44 w = w - LR * dW

45 b = b - LR * db

46

47 return w, b

48

49 def rmse_lasso(w, b, Xin, Yin):

50 Y_pred = predict(w, b, Xin)

51 return rmse(Yin, Y_pred)

52

53 def rmse(a, b):

54 return np.sqrt(np.mean(np.square(a - b)))

55

56 # candidate values for l1 penalty

57 l1_penalties = 10 ** np.linspace(-5, -1)

58 err = np.zeros(len(l1_penalties))

59

3

60 # We will perform 10-fold CV. Here, we will create the training and validation sets by

61 # creating an indices array with randomized index values to use when slicing our training data.

62 k_fold = 10

63 num_samples = len(X) // k_fold

64 indices = np.random.permutation(len(X))

65

66 for idx, l1_penalty in enumerate(l1_penalties):

67 for k in range(k_fold): #10-fold CV

68 # slice larger training set into validation and training sets for each fold

69 VAL = indices[k * num_samples : (k + 1) * num_samples]

70 TRAIN = np.concatenate((indices[: k * num_samples], indices[(k + 1) * num_samples:]))

71

72 x_train_fold = X[TRAIN]

73 y_train_fold = Y[TRAIN]

74

75 x_val_fold = X[VAL]

76 y_val_fold = Y[VAL]

77

78 w, b = fit(x_train_fold, y_train_fold, l1_penalty)

79

80 # accumulate error from this fold of validation set

81 err[idx] += rmse_lasso(w, b, x_val_fold, y_val_fold)

82

83 #calculate error for kth fold

84 err[idx]/=k_fold

85

86 l1_penalty_best = l1_penalties[np.argmin(err)]

87

88 print('Best choice of l1_penalty = ', l1_penalty_best)

4

3. Subgradients

We start with the definition of subgradients before discussing the motivation and its usefulness.

Definition 1 (subgradients). A vector g ∈ Rd is a subgradient of a convex function f : D −→ R at x ∈ D ⊆ Rd if

f(y) ≥ f(x) + gT (y − x) for all y ∈ D.

One interpretation of subgradient g is that the affine function (of y) f(x) + gT (y − x) is a global underestimator of
f . Note that if a convex function f is differentiable at x (i.e., ∇f(x) exists), then f(y) ≥ f(x) +∇f(x)T (y − x) is
true for all y ∈ D, meaning that ∇f(x) is a subgradient of f at x. But a subgradient can exist even when f is not
differentiable at x.

(a) Why are subgradients useful in optimization? If g = 0 is a subgradient of a function f at x∗, what does it
imply?

(b) What are the subgradients of f(x) = max(x, x2) at 0, with x ∈ R? (Hint: draw a picture and note that sub-
gradients at a point might not be unique)

(c) Some important results about subgradients are

• If f is convex, then a subgradient of f at x ∈ int(D) (interior of the domain of f) always exists.

• If f is convex, then f is differentiable at x if and only if ∇f(x) is the only subgradient of f at x.

• A point x∗ is a global minimizer of a function f (not necessarily convex) if and only if g = 0 is a subgra-
dient of f at x∗.

4. Convexity

Convexity is defined for both sets and functions. For todaywe’ll focus on discussing the convexity of functions.

Definition 2 (convex functions). A function f : Rd → R is convex on a set A if for all x, y ∈ A and λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

When this definition holds with the inequality being reversed, then f is said to be concave. From the definition, it
is clear that a function f is convex if and only if −f is concave.

(a) Why do we care whether a function is convex or not?

(b) Which of the following functions are convex? (Hint: draw a picture!)

(i) |x|

(ii) cos(x)

(iii) xTx

(c) Can a function be both convex and concave on the same set? If so, give an example. If not, describe why not.

5

5. Practical Methods for Checking Convexity

Using the definition to check whether a function is convex or not can be a tedious task in many situations. Some
basic methods that can help us achieve the task in an efficient way are introduced below:

• for differentiable function, examine f(y) ≥ f(x) +∇f(x)T (y − x) for any x, y in the domain of f .

• for twice differentiable functions, examine ∇2f(x) � 0 (i.e., the Hessian matrix is positive semidefinite).

• nonnegative weighted sum

• composition with affine function

• pointwise maximum and supremum

Note: there are even more such methods, which are covered in a convex optimization course or textbook.

(a) If f is differentiable, then f is convex if and only if f(y) ≥ f(x)+∇f(x)T (y−x) for any x, y in the domain of
f . A geometric interpretation of this characterization is that any tangent plane of a convex function f must lie
entirely below f . One interesting application of this characterization is one of the most important inequalities
in probability and statistics: the Jensen’s inequality, which states that Ef(X) ≥ f(E(X)) when f is convex.
Prove Jensen’s inequality using the other inequality mentioned here.

(b) If f is twice differentiable with convex domain, then f is convex if and only if

∇2f(x) � 0,

for any x in the domain of f . Use this method to show that the objective function in linear regression is convex.

(c) Let α ≥ 0 and β ≥ 0, and if f and g are convex, then αf , f + g, αf + βg are all convex. One application:
When a (possibly complicated) objective function can be expressed as a sum (e.g., the negative log-likelihood
function), then showing the convexity of each individual term is typically easier.

(d) Suppose f(·) is convex, then g(x) := f(Ax+ b) is convex. Use this method to show that ||Ax+ b||1 is convex
(in x), where ||z||1 =

∑
i |zi|.

(e) Suppose you know that f1 and f2 are convex functions on a set A. The function g(x) := max{f1(x), f2(x)} is
also convex on A. In general, if f(x, y) is convex in x for each y, then g(x) := supy f(x, y) is convex. Use this
method to show that the largest eigenvalue of a matrix X, λMax(X), is convex in X (Using the definition of
convexity would make this question quite difficult).

(f) Does the same result hold for h(x) := min{f1(x), f2(x)}? If so, give a proof. If not, provide convex functions
f1, f2 such that h is not convex.

6. Gradient Descent

We will now examine gradient descent algorithm and study the effect of learning rate α on the convergence of the
algorithm. Recall from lecture that Gradient Descent takes on the form of xt+1 = xt − α∇f

(a) Assume that f : Rn → R is convex and differentiable, and additionally,

||Of(x)− Of(y)|| ≤ L||x− y|| for any x, y

6

I.e., Of is Lipschitz continuous with constant L > 0
Show that:
Gradient descent with fixed step size η ≤ 1

L satisfies

f(x(k))− f(x∗) ≤ ||x(0) − x∗||2

2ηk

I.e., gradient descent has convergence rate O(1k)

Hints:

(i) Of is Lipschitz continuous with constant L > 0 → f(y) ≤ f(x) + Of(x)(y − x) + L
2 ||y − x||2 for all x, y.

(ii) f is convex → f(x) ≤ f(x∗) + Of(x)(x − x∗), where x∗ is the local minima that the gradient descent
algorithm is converging to.

(iii) 2ηOf(x)(x− x∗)− η2||Of(x)||2 = ||x− x∗||2 − ||x− ηOf(x)− x∗||2

7

	K-fold Cross-Validation (Demonstrative code)
	Lasso and CV (Demonstrative Code)
	Subgradients
	Convexity
	Practical Methods for Checking Convexity
	Gradient Descent

