446 Section 4 «— (3 - n(-1))

TA: Varun Ananth

Plans for today!

2 ol

This

Reminders
Train/Val/Test Problems
Gradient Descent

Generalized Least Squares
Ridge/LASSO (if time)

Reminders

e HW1 was due yesterday

o Remember the late day policy!
o HW2is released

o Miferm in 4 week..
o February Tth, Friday

Problems 1.1, 1.2

_ What do you never ever ever ever ever ever ever ever
You are given blocks do?

of code, and

something is Tune your model on your test set!

wrong/not totally right

with how they deal

with the data. Training Ghosing Preprocessing, small
parameters Rypamaiamelers changes, etc...

Easy to Busviskiin Hard to
remember... y b remember
b Very sinister!
Identify them and

propose solutions!

A\ W N -

1.1. Program 1

Given dataset of 1000-by-50@ feature

matrix X, and 1000-by-1 labels vector .
mu is calculated from the
entire data (train + test),

intertwining them!

mu = np.mean(X, axis=@)
X=X-mu

idx = np.random.permutation(1000)
TRAIN = idx[@:900]
TEST = idx[900::]

— This is bad!

ytrain =

Xtrain = X[TRAIN, :]

solve for argmin_w | |Xtrain*w - ytrain||_2 H

w = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain)) CaICUIate a mean JUSt

on the train data, and
y[TEST] use this to de-mean
XCTEST, :1 both the train and test
datasets

b = np.mean(ytrain)

ytest
Xtest

train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,
np.dot(Xtrain, w)+b - ytrain) / len(TRAIN)

test_error = np.dot(np.dot(Xtest, w)+b - ytest,
np.dot(Xtest, w)+b - ytest) / len(TEST)

print('Train error = ', train_error)
print('Test error = ', test_error)

Y ¥4 MY EH YN

CR R

s ytot = np.concatenate((ytrain, yval), axis=0)

2 a2

¥eyda

]

% err = np.zeros(len(lambdas))

def fit(Xin, Yin, _lambda):

w = np.linalg. solve(np.dot(Xin.T, Xin) + _lambda = np.eye(Xin.shape[11), np.dot(Xin.T, Yin)) Th e fi nal mOd el iS trai ned

b = np.mean(Yin) - np.dot(w, mu)
return w, b

R ey on BOTH the training

return np.dot(Xin, w) + b

i e and validation sets.

VAL = 1dx[809:980]

= TEST = idx[900::]

ytrain = y[TRAIN]
Xtrain = X[TRAIN, :]
yval = y[VAL]

Xval = X[VAL, :]

his is... eh...

demean data

nmu = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - mu

Xval = Xval - mu

use validation set to pick the best hyper-parameter to use

lambdas = [10 ** -5, 18 += -4, 18 *= -3, 10 == -2]

Your hyperparameters
selected on just the train
data may not hold for
train + val
e Tradeoff between more
data and better test
error estimate

for idx, _lambda in enumerate(lambdas):
w, b = fit(Xtrain, ytrain, _lambda)
yval_hat = predict(w, b, Xval)
err[idx] = np.mean((yval_hat - yval)*=2)

= lambdas[np.argmin(err

Xtot = np.concatenate((Xtrain, Xval), axis=8)

b = fit(Xtot, ytot, lambda_best)

ytest = y[1E5
Xtest = X[TEST, :J

demean data
Xtest = Xtest - mu

ytot_hat = predict(w, b, Xtot, lambda_best)

train_error = np.mean((ytot_hat - ytot) =*2)
ytest_hat = predict(w, b, Xtest, lambda_best)
test_error = np.mean((ytest_hat - ytest) **2)

print('Train error = ', train_error)
print('Test error = ', test_error)

Gradient Descent

Gradient Descent

Purpose of this
exercise:
Understanding how
gradient descent
relates to
approximations, and
why it works.

Consider some function f(w), which has some w, for which w, = argmin,, f(w):

Jw)

We = arg min f(w)

2a

(a) For some w that is very close to wy, give the Taylor series approximation for f(w) starting at f(wyg).

Lemem b T £ xS 2
L L ik
Lurlion Auss o P 2

1) £)
’(\()() D_) + ﬂ—‘ '-M) + 2 ("9\) ¥ 3 (’0“)

A L |
Betre ond dertes APPOXmatons

L.> T O g?fﬂ)}(‘;/"wf‘e)

T xaor o+)) 0las® AUy A

2a (answer)

(a) For some w that is very close to wy, give the Taylor series approximation for f(w) starting at f(wy).

For w very close to wg, we see that f(w) =~ f(wg) + (w — wy) (% w:w(,).

Jw)

ki (W)

[
W wy = arg min f(w)
w

2b

(b) Now, let us choose some 1 > 0 that is very small. With this very small 7, let’s assume that wy, = wp —
7 (%gl .w:w(,). Using your approximation from part (a), give an expression for f(w,).

< Hint: Plug in
f(w) = f(w) + (w —wo) (L |). ™

- J
Y

Fancy way of saying f'(w,)

(Derivative of f(w) at w,)

2b (answer)

3

w=

df (w)
dw

f(wo) + (w1 — wo) (

)

w=

S| 3

- B

=

N’

" R

o

S

_

D B

(o]

3

I

2
TR

—~ =
3

/W_;w I

= 3

Mt T

T2
P b <

S

w (

/l‘\ n

-+ |

=) =)

s =

S S

2C

(c) Given your expression for f(w;) from part (b), explain why, if n is small enough and if the function approx-
imation is a good enough approximation, we are guaranteed to move in the “right” direction closer to the
minimum w,.

Remember: Hint: Why
would this be
We want to

L : good?
/ minimize this df(w) @

f(wr) = f(wg) — 7 “dw | w=wo

2¢ (answer)

Note that in part (b), the derivative is squared and will always be a nonnegative value. Therefore, f(w;) <

f(wo).

2
f(wr) = f(wo) — 7 %)- =g

In English: The loss function after a weight
update will always evaluate to be smaller than
before the weight update

- If the step size is small enough

- If the approximation is good enough

2d (answer)

Gradient descent is written as:

Convergence
Fot b = 0,128 v Wiess =05 —7] (% | w:wk). guarantees iff
Note that as k — oo, (% | U,:wk) ~ 0. convex!

We visualize as:

Jw)

T 1 1 T T } i T i | :
Wo W W, W Wy = arg min f(w)
w

Generalized Least
Squares

Least Squares
Proof(s)

Has shown up...

e Inlecture (Lecture 2)

e On your homework
(A5 Ridge
Regression proof)

e And now here!

You can look at the
generalized proof in your
own time.

Should look familiar...

£)
0Q
=
2
B
|
.
_|
<
+
>~
S
|
S
_|
s

n
~ T
Weeneral = E L%z +AD

i=1

3.2a

l
l
| Dgeneral = (X ' X +AD) !X Ty
l

(a) In the simple least squares case (A = 0 above), what happens to the resulting & if we double all the values of
Yi?

3.2a (answer)

l
l
| Dgeneral = (X ' X +AD) !X Ty
l

(a) In the simple least squares case (A = 0 above), what happens to the resulting @ if we double all the values of
Yi?

Solution:

As can be seen from the formula @ = (X" X)"!X "y, doubling y doubles w as well. This makes sense
intuitively as well because if the observations are scaled up, the model should also be.

3.2b

l
l
| Dgeneral = (X ' X +AD) !X Ty
l

(b) In the simple least squares case (A = 0 above), what happens to the resulting @ if we double the data matrix
X Rnxd?

3.2b (answer)

|
|
|
: Weeneral = (XTX =D)‘D)_IXT?/ :
|
|

(b) In the simple least squares case (A = 0 above), what happens to the resulting @ if we double the data matrix
X Rnxd?

Solution:

As can be seen from the formula & = (X' X) !X "y, doubling X halves w. This also makes sense intu-
itively because the error we are trying to minimize is | Xw — y||3, and if the X has doubled, while y has
remained unchanged, then w must compensate for it by reducing by a factor of 2.

Ridge vs. LASSO

feature component x_2

15

10

-10 <5

-15

ridge regularization (L2)

® MLE

@ ridge regularized

1

-15

1

-10

) 1

-5 0 5
feature component x_1

10

1

15

feature component x_2

=10

L

15

10

-15

LASSO regularization (L1)

® MLE

® LASSO regularized

L

<,

L

T
-15 -10

L} 1)

1
-5 0 5 10 15
feature component x_1

Questions/Chat Time!

