
Section 04: Solutions
Solution:

• Problem 1: Give students 3-4 mins per problem to work through Prob 1.1 and 1.2.

• Problem 2: Gradient Descent parts a-d & slide walkthrough

• Problem 3: Part 3.1 (optional review), Part 3.2 a-b (conceptual review)

1. Biased Test Error

Is the test error unbiased for these programs? If not, how can we fix the code so it is?

1.1. Program 1

1 # Given dataset of 1000-by-50 feature

2 # matrix X, and 1000-by-1 labels vector

3

4 mu = np.mean(X, axis=0)

5 X = X - mu

6

7 idx = np.random.permutation(1000)

8 TRAIN = idx[0:900]

9 TEST = idx[900::]

10

11 ytrain = y[TRAIN]

12 Xtrain = X[TRAIN, :]

13

14 # solve for argmin_w ||Xtrain*w - ytrain||_2

15 w = np.linalg.solve(np.dot(Xtrain.T, Xtrain), np.dot(Xtrain.T, ytrain))

16

17 b = np.mean(ytrain)

18

19 ytest = y[TEST]

20 Xtest = X[TEST, :]

21

22 train_error = np.dot(np.dot(Xtrain, w)+b - ytrain,

23 np.dot(Xtrain, w)+b - ytrain) / len(TRAIN)

24 test_error = np.dot(np.dot(Xtest, w)+b - ytest,

25 np.dot(Xtest, w)+b - ytest) / len(TEST)

26

27 print('Train error = ', train_error)

28 print('Test error = ', test_error)

Solution:

The error is at the beginning of the program on lines 4 and 5. Notice how µ is a function of both the train and
test data. By de-meaning the entire dataset before splitting, we are intertwining the train and test data. The
correct procedure is:

• Split into train and test

• Compute the mean of the train data, µtrain

• De-mean both the train and test data with µtrain

1

1.2. Program 2

1 # We are given: 1) dataset X with n=1000 samples and 50 features and 2) a vector y of length 1000 with labels.

2 # Consider the following code to train a model, using cross validation to perform hyperparameter tuning.

3

4 def fit(Xin, Yin, _lambda):

5 w = np.linalg.solve(np.dot(Xin.T, Xin) + _lambda * np.eye(Xin.shape[1]), np.dot(Xin.T, Yin))

6 b = np.mean(Yin) - np.dot(w, mu)

7 return w, b

8

9 def predict(w, b, Xin):

10 return np.dot(Xin, w) + b

11

12 idx = np.random.permutation(1000)

13 TRAIN = idx[0:800]

14 VAL = idx[800:900]

15 TEST = idx[900::]

16

17 ytrain = y[TRAIN]

18 Xtrain = X[TRAIN, :]

19 yval = y[VAL]

20 Xval = X[VAL, :]

21

22 # demean data

23 mu = np.mean(Xtrain, axis=0)

24 Xtrain = Xtrain - mu

25 Xval = Xval - mu

26

27 # use validation set to pick the best hyper-parameter to use

28 lambdas = [10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2]

29 err = np.zeros(len(lambdas))

30

31 for idx, _lambda in enumerate(lambdas):

32 w, b = fit(Xtrain, ytrain, _lambda)

33 yval_hat = predict(w, b, Xval)

34 err[idx] = np.mean((yval_hat - yval)**2)

35

36 lambda_best = lambdas[np.argmin(err)]

37

38 Xtot = np.concatenate((Xtrain, Xval), axis=0)

39 ytot = np.concatenate((ytrain, yval), axis=0)

40

41 w, b = fit(Xtot, ytot, lambda_best)

42

43 ytest = y[TEST]

44 Xtest = X[TEST, :]

45

46 # demean data

47 Xtest = Xtest - mu

48

49 ytot_hat = predict(w, b, Xtot)

50 train_error = np.mean((ytot_hat - ytot) **2)

51 ytest_hat = predict(w, b, Xtest)

52 test_error = np.mean((ytest_hat - ytest) **2)

53

54 print('Train error = ', train_error)

55 print('Test error = ', test_error)

Solution:

2

We are adding the validation data back into training (creating Xtot), and then retraining the whole model on
this data. However, optimal value of λ depends on size of the training dataset, so by adding more data we are
using sub-optimal value in final fit call. In general, models get better the more data you give them, but only add
the validation set back in if you are confident the hyperparameter doesn’t depend on the number of elements,
and that you aren’t allowing your model access to the test set. Note: it is not incorrect to add validation data
back into training. It’s a trade-off between having more training data and having a reliable estimate of test
performance. See offering au24 slide 39 for reference.

3

https://courses.cs.washington.edu/courses/cse446/24au/schedule/lecture_09/lecture_9_annotated.pdf

2. Gradient Descent

Like we’ve seen in lecture, gradient descent is an important algorithm commonly used to train machine learning
models, particularly useful for when there is no closed form solution for the minimum of a loss function. Here, we’ll
go through short introduction to the algorithm.

Consider some function f(w), which has some w∗ for which w∗ = argminw f(w):

Letw0 be some initial guess for the minimum of f(w). Gradient descent will allow us to improve this solution.

(a) For some w that is very close to w0, give the Taylor series approximation for f(w) starting at f(w0).

Solution:

For w very close to w0, we see that f(w) ≈ f(w0) + (w − w0)
(

df(w)
dw

∣∣∣ w=w0

)
.

(b) Now, let us choose some η > 0 that is very small. With this very small η, let’s assume that w1 = w0 −
η
(

df(w)
dw

∣∣∣ w=w0

)
. Using your approximation from part (a), give an expression for f(w1).

Solution:

4

w1 = w0 − η

(
df(w)

dw

∣∣∣∣ w=w0

)
f(w1) ≈ f(w0) + (w1 − w0)

(
df(w)

dw

∣∣∣∣ w=w0

)
= f(w0) +

(
w0 − η

(
df(w)

dw

∣∣∣∣ w=w0

)
− w0

)(
df(w)

dw

∣∣∣∣ w=w0

)
= f(w0)− η

(
df(w)

dw

∣∣∣∣ w=w0

)2

(c) Given your expression for f(w1) from part (b), explain why, if η is small enough and if the function approx-
imation is a good enough approximation, we are guaranteed to move in the “right” direction closer to the
minimum w∗.

Solution:

Note that in part (b), the derivative is squared and will always be a nonnegative value. Therefore, f(w1) <
f(w0).

(d) Building from your answer in part (c), write a general form for the gradient descent algorithm.

Solution:

Gradient descent is written as:

For k = 0, 1, 2, 3, ..., wk+1 = wk − η
(

df(w)
dw

∣∣∣ w=wk

)
.

Note that as k → ∞,
(

df(w)
dw

∣∣∣ w=wk

)
→ 0.

We visualize as:

5

3. Generalized Least Squares Regression

In class, we’ve seen linear regression and ridge regression. Here, we consider a problem that generalizes both of
these. As a reminder, in linear regression, we seek a model that captures a linear relationship between input data
and output data. The general case we consider imposes additional structure on the model.

Consider an experiment in which you have n data points xi ∈ Rd and corresponding n observations yi. We wish
to come up with a model ω ∈ Rd that satisfies the following properties: first, the error

∑n
i=1(x

>
i ω − yi)

2 should be
small; second, we don’t want small changes in training data resulting in large changes in solution; third, we want
to put different weights in controlling the magnitude of different coordinates of ω. We therefore define

ω̂general = argmin
ω

n∑
i=1

(yi − x>
i ω)

2 + λ
d∑

i=1

Diiω
2
i .

Here, D is a diagonal matrix, with positive entries on the diagonal. Observe that when D is the identity matrix, we
recover ridge regression, and when λ = 0, we recover least squares regression. Different weights on Dii cause the
magnitudes of ωi to be controlled differently.

3.1. Closed form in the general case

Deduce the closed form solution for ω̂general. You should be comfortable with proofs in the ”coordinate” form as well
as the ”matrix” form.

Solution:

We first give the proof using “matrix” notation. The objective function can be expressed as

f(ω) = ‖Xω − y‖22 + λω>Dω

= (Xω − y)>(Xω − y) + λω>Dω

= (Xω)>Xω − (Xω)>y − y>Xω + y>y + λω>Dω

= ω>X>Xω − 2ω>X>y + y>y + λω>Dω

= ω>(X>X + λD)ω − 2ω>X>y + y>y

The gradient of f is

∇f(ω) = ∇ω(ω
>(X>X + λD)ω − 2ω>X>y + y>y)

= ∇ω(ω
>(X>X + λD)ω)− 2∇ω(ω

>X>y) +∇ω(y
>y)

= 2(X>X + λD)ω − 2X>y

Here note that X>X + λD is a symmetric matrix, which explains the factor 2 in the gradient term. Setting the
gradient ∇f(ω) to zero, we can conclude that

(X>X + λD)ω̂general = X>y

If X>X + λD is full rank then we can get a unique solution:

ω̂general = (X>X + λD)−1X>y

SinceD is already given to be a diagonal matrix with strictly positive entries on the diagonal, any strictly positive
λ will make the matrix X>X + λD invertible.

Solution:

6

We now give a solution in the ”coordinate” form. The objective, when written in coordinate form, is f(ω) =∑n
i=1(yi − x>

i ω)
2 + λ

∑d
i=1 Diiω

2
i . As in the previous proof, we first simplify it as follows and then set it zero:

∇ω

[
n∑

i=1

(yi − x>
i ω)

2 + λ

d∑
i=1

Diiω
2
i

]
= ∇ω

n∑
i=1

(yi − x>
i ω)

2 +∇ωλ

d∑
i=1

Diiω
2
i

=

n∑
i=1

∇ω(yi − x>
i ω)

2 + 2λDω

= −
n∑

i=1

2xi(yi − x>
i ω) + 2λDω

= −
n∑

i=1

2xiyi +

n∑
i=1

2xix
>
i ω + 2λDω

= −2

n∑
i=1

xiyi + 2

(
n∑

i=1

xix
>
i + λD

)
ω

= 0 (set it to be 0)

ω̂general =

(
n∑

i=1

xix
>
i + λD

)−1(n∑
i=1

xiyi

)
Note that, as expected, this exactly matches the answer we got from the previous approach (because xi’s are all
the rows of X, and therefore

∑
i xiyi = X>y, and

∑
i xix

>
i = X>X).

7

3.2. Special cases: linear regression and ridge regression

(a) In the simple least squares case (λ = 0 above), what happens to the resulting ω̂ if we double all the values of
yi?

Solution:

As can be seen from the formula ω̂ = (X>X)−1X>y, doubling y doubles ω as well. This makes sense
intuitively as well because if the observations are scaled up, the model should also be.

(b) In the simple least squares case (λ = 0 above), what happens to the resulting ω̂ if we double the data matrix
X ∈ Rn×d?

Solution:

As can be seen from the formula ω̂ = (X>X)−1X>y, doubling X halves ω. This also makes sense intu-
itively because the error we are trying to minimize is ‖Xω − y‖22, and if the X has doubled, while y has
remained unchanged, then ω must compensate for it by reducing by a factor of 2.

(c) Suppose D = I (that is, it is the identity matrix). That is, this is the ridge regression setting. Explain why
λ > 0 ensures that the solution exists and the matrix can be inverted.

Solution:

The solution is ω̂ = (X>X + λI)−1X>y. We already saw in a previous part that X>X is always positive
semidefinite, that is, its eigenvalues are at least zero. Adding λI, where λ > 0, ensures that X>X + λI is
in fact positive definite. This helps us have a good condition number.

8

4. MAP as Regularization

Recall the regularization techniques that were presented in class this week and ponder their objectives:

(a) Ridge-Regression: ŵridge = argminw

n∑
i=1

(yi − x>
i w)

2 + λ‖w‖22

(b) LASSO: ŵLASSO = argminw

n∑
i=1

(yi − x>
i w)

2 + λ‖w‖1

Reminder: don’t ever regularize your bias term. This term doesn’t add any complexity to the model (since it just
shifts), so we’d like it to take on any value that best fits our training data.

The two types of regularization above can be derived from a statistical perspective in which we assume some prior
belief about what the weights of our model should be and then observe data to further update the belief.

More specifically, let w denote our weights and Y,X our data(Y represents the labels andX the inputs). As before,
p(X,Y |w) represents the likelihood function. We specify our belief of what the weights should be through a prior
distribution over p(w). Using Bayes’ Rule, we can write our updated belief of what the weights ought to be after
observing the data as:

p(w|X,Y) =
p(X,Y |w)p(w)

p(X,Y)
=

p(X,Y |w)p(w)∫
w′ p(X,Y |w′)p(w′)dw′

where we call p(w|X,Y) the posterior distribution and p(X,Y) the evidence.

What Maximum A Posteriori Estimation(MAP) does is compute the weights which maximize the posterior distri-
bution, p(w|X,Y). This type of estimation differs from MLE (which maximizes the likelihood function p(X,Y |w))
by taking into account our prior belief of what the weights are, namely p(w). More specifically, the MAP estimate
is:

ŵMAP = argmax
w

p(w|X,Y)

= argmax
w

p(X,Y |w)p(w)
p(X,Y)

= argmax
w

p(X,Y |w)p(w)

= argmax
w

log p(X,Y |w) + log p(w)

where we dispose of the denominator because it doesn’t depend on w. Contrast this with the MLE which is:

ŵMLE = argmax
w

p(X,Y |w)

Let us now study how we can obtain the Ridge and LASSO regression objectives from this perspective:

(a) Suppose the elements of w are independently distributed according to a Laplacian distribution:

p(wi) =
λ

4σ2
exp(−|wi|

λ

2σ2
).

Show that under this prior on w, MAP estimation of the linear measurement model recovers the LASSO ob-
jective.

Solution:

We work in the argmax space, which allows us to drop and add constants or monotonically increasing
functions as necessary.

9

argmax
w

p(w | Y,X) = argmax
w

log p(w | Y,X)

= argmax
w

log p(X,Y | w) + log p(w)

∗
= argmax

w
log
{
(2π)−

n
2

(
σ2
)−n

2 exp(−1

2
(Y −Xw)>(σ2I)−1(Y −Xw)

}
+

n∑
i=1

log
λ

4σ2
exp(−|wi|

λ

2σ2
)

= argmax
w

−n

2
log(2πσ2)− 1

2σ2
(Y −Xw)>(Y −Xw)

+ n log
λ

4σ2
− λ

2σ2

n∑
i=1

|wi|

∗∗
= argmax

w
− 1

2σ2

[
(Y −Xw)>(Y −Xw) + λ

n∑
i=1

|wi|

]
∗∗∗
= argmax

w
−‖Y −Xw‖22 + λ‖w‖1

= argmin
w

‖Y −Xw‖22 + λ‖w‖1,

where the first starred equality follows from applying the PDFs, and the second and third follow from
dropping constant terms or multipliers. In other words, solving MAP with a Laplacian prior also solves the
LASSO regression problem.

(b) Derive an expression for the prior on w that corresponds to the ridge regression objective. What is the signif-
icance of this result?

Solution:

Our high-level approach to this problem is to expand the terms of the objective to a form that resembles
the core of a PDF, then attach the additive/multiplicative constants necessary to recover the full form of
the PDF. We do this first with the likelihood term (since we know its form), and then with the prior.

argmin
w

‖Y −Xw‖22 + λ‖w‖22 = argmax
w

−(Y −Xw)>(Y −Xw) +−λw>w

= argmax
w

− 1

2σ2
(Y −Xw)>(Y −Xw)− λ

2σ2
w>w

= argmax
w

−n

2
log(2πσ2)− 1

2σ2
(Y −Xw)>(Y −Xw)− λ

2σ2
w>w

= argmax
w

N (Y ;Xw, σ2I)− λ

2σ2
w>w

= argmax
w

N (Y ;Xw, σ2I)− n

2
log
(
2π

σ2

λ

)
− 1

2
w>

(
σ2

λ
I
)−1

w

= argmax
w

N (Y ;Xw, σ2I) +N
(
w; 0,

σ2

λ
I
)
.

In other words, our prior is that w ∼ N
(
0, σ2

λ I
)
.

This means that when we apply `2 regularization to our linear regression problem (i.e., ridge regression),
we make the implicit assumption that our weight vector is drawn from a Gaussian prior. More generally,
we can see that applying various forms of regularization correspond to different prior assumptions on w.

10

	Biased Test Error
	Program 1
	Program 2

	Gradient Descent
	Generalized Least Squares Regression
	Closed form in the general case
	Special cases: linear regression and ridge regression

	MAP as Regularization

