446 Section 3.00000001

TA: Varun Ananth



Plans for today!

1. This

2. Reminders

3. Review Vector Calculus/Approximations
a. Wil be lecture/follow along style



Jacoblans and Hessians

And how it is just a fancy way to describe gradients
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1.1. Definitions
Let f : R™ -» Rand let g : R™ —» R™. The gradient of f(with respect to x) evaluated at x is the vector of partial

deriva-tives:
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The Jacobian of g(with respect to x) evaluated at x is the matrix of partial derivatives
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Sometimes the Jacobian is denoted by .J,(x), but we use V,g(x) to highlight that the Jacobian is nothing more than

the generalization of the gradient to functions which have a vector output.

The Hessian of f(with respect to x) evaluated at x is the matrix of partial derivatives
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Brndz, Dindz:
Sometimes the Hessian is denoted by H(x), but we use V2 f(z) to highlight that the Hessian is the Jacobian of the

gradient of f.
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Gradient



How do we calculate the gradient of a function with a vector
input?
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We simply do partial derivatives n times
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Visualizing the Gradient
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Jacobian



In machine learning, we don’t usually have the privilege of having a
function that outputs a real number. Usually, the function will output

a vector. For example:

Input layer Output layer
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A simple neural network
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What do we do now???
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Interpreting the Jacobian

How do we interpret the jacobian matrix?
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This matrix gives us an idea of how the output will change if we
slightly change the value of x.

For example, if we increase x,, how is g(x) affected?
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Hessian
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Problems 1.2 a-b

(a) Let f(z1,x2) = 27 + €2 + 2log(x,). What are the gradient and the Hessian of f?

Solve them! Ask for

help if you are stuck.

Look at section 1.1 for

help remembering (b) Note that V, f : R” — R”. What is the Jacobian of V, f?
how these gradients,

Jacobians, and

Hessians compute.



Answers

(a) Let f(z1,22) = 2% + e®12 4+ 2log(x2). What are the gradient and the Hessian of f?

Solution:
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(b) Note that V. f : R — R™. What is the Jacobian of V. f?
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Approximations



Linear Approximation

The derivative of f(x) at
some (x,y) can be used
to linearly approximate
f(x £ €)

Where ¢ is very tiny!

This extends to multivariate
functions... proof in your notes

Good
approximation

Bad approximatior



Linear Approximation

For a “many-to-one”
function, the gradient
gives us a vector we can
use to linearly
approximate a small area
around some X

What about a
“many-to-many” function?
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Problem 1.2 ¢

Also remember: For a

Remember that the “many-to-one” function, the
Jacobian is just the gradient gives us a vector we

can use to linearly
approximate a small area
around some x

gradient of a
“many-to-many”
function.

(c) The gradient V. f(x) offers the best linear approximation of [ around the point . What does the Jacobian of
a function g : R™ — R™ offer?



Answer

(c) The gradient V. f(z) offers the best linear approximation of f around the point . What does the Jacobian of
a function g : R™ — R™ offer?

Solution:

The Jacobian also offers the best linear approximation of ¢ around a point z, but now it approximates a
vector, instead of a scalar,
g(z +€) = g(x) + Vzg(z)e

where V.g(x)e is a matrix multiplication instead of a dot product.




Problem 1.2 d
(walkthrough)

(d) If we use the gradient and the Hessian of f : R™ — R, what type of an approximation for the function f
around a point 2 can we create.
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Problem 1.2 g
(IMPORTANT!)

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move
from z in directions d,,ds, d3 for which V.. f(z)"d, > 0,V.f(z)"dy < 0,V.f(z)Td; = 0? Can the same
conclusions be drawn about the function of [?
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Answer

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of [ if we move
from z in directions d,,ds, ds for which V, f(z)"d; > 0,V.f(z)Tdy < 0,V.f(z)Td3 = 0? Can the same
conclusions be drawn about the function of [?

Solution:

* d,: Value of approximation goes up.
* ds: Value of approximation goes down.
* d3: Value of approximation stays the same.

The same can be said for [, but only in the immediate vicinity of the point z.

Intuition used here will be useful on the exam



Properties



Useful rules!

Let f: R" - R, g: R" — R, . Below is a list of important gradient properties:
* Gradient of constant: V_.c = () € R" for a constant ¢ € R™.
* Linearity: V.(af + Bg)(z) = oV f(z) + BV.g(z) for a scalars a, 3 € R.
* Product rule: V.(fg)(z) = Vzf(z) - g(z) + Vzg(z) - f(z).

Let f: R®™ 5 R™, g:R™ - R™, h: R™ — RF [ : R™ — R. Below is a list of important Jacobian properties:
* Jacobian of constant: V.c = (0 € R™*™ for a constant ¢ € R"™.
* Linearity: V.(af + 89)(z) = aVzf(z) + BVzg(z) for a scalars a, 3 € R.
* Product rule: V,(f"g)(z) = [V f(2)]" g(z) + [Vag(2)]" f (z).
* Chain rule: V,(h o g)(z) = V,(z)h(g(z))Vag(z) and V(L 0 g)(z) = [[Vy@)l(9(2))]" Vag(z)]".



Ludwig Otto Hesse Carl Gustav Jacob Jacobi

Hessian Jacobian Gradient



Questions/Chat Time!



