
Section 03: Vector Calculus
This week in section, we’ll be focusing on vector calculus. See this week’s section solutions on the course website
for more content related to the bias-variance tradeoff discussed in lecture this week.

1. Vector Calculus

1.1. Definitions

Let f : Rn → R and let g : Rn → Rm. The gradient of f(with respect to x) evaluated at x is the vector of partial
derivatives:

∇xf(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 ∈ Rn

The Jacobian of g(with respect to x) evaluated at x is the matrix of partial derivatives:

∇xg(x) =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xn

...
. . .

...
∂gm(x)
∂x1

. . . ∂gm(x)
∂xn

 =

∇T
x g1(x)
...

∇T
x gm(x)

 ∈ Rm×n

Sometimes the Jacobian is denoted by Jg(x), but we use∇xg(x) to highlight that the Jacobian is nothing more than
the generalization of the gradient to functions which have a vector output.

The Hessian of f(with respect to x) evaluated at x is the matrix of partial derivatives:

∇2
xf(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n

 ∈ Rn×n

Sometimes the Hessian is denoted by Hf (x), but we use ∇2
xf(x) to highlight that the Hessian is the Jacobian of the

gradient of f.

1.2. Estimation

What the gradient and Jacobian at a point do is express how the output of a function changes when the input is
changed by a small amount. Thus, they can be used to approximate the values of a function close to the point at
which they are evaluated. Let’s see how we can do this for one variable. Let f : R → R:

df

dx
(x) = lim

ε→0

f(x+ ε)− f(x)

ε
⇔ df

dx
(x) ≈ f(x+ ε)− f(x)

ε
⇔ f(x+ ε) ≈ f(x) + ε

df

dx
(x)

Let us now extend this to multiple dimensions and derive the definition of the gradient starting from this approxi-
mation view point. Suppose we have a function f : Rn → R and we want to determine how the function changes
around a point x ∈ Rn. First we will determine how the function changes when we slightly vary its first coordi-
nate:

f(x1 + ε1, . . . , xn) ≈ f(x1, . . . , xn) + ε1
∂f

∂x1
(x1, . . . , xn)
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Now, let us slightly vary the first two coordinates:

f(x1 + ε1, x2 + ε2, . . . , xn) ≈ f(x1, x2 + ε2, . . . , xn) + ε1
∂f

∂x1
(x1, x2 + ε2, . . . , xn)

≈ f(x1, x2, . . . , xn) + ε2
∂f

∂x2
(x1, x2, . . . , xn)+

+ ε1
∂f

∂x1
(x1, x2, . . . , xn) + ε1ε2

∂f

∂x2

∂f

∂x1
(x1, x2, . . . , xn)

≈ f(x1, x2, . . . , xn) + ε1
∂f

∂x1
(x1, x2, . . . , xn) + ε2

∂f

∂x2
(x1, x2, . . . , xn)

where we eliminate the term where ε1ε2 because it would be very small compared to the others. Repeating the
process for all n dimensions we obtain the approximation:

f(x1 + ε1, . . . , xn + εn) ≈ f(x1, . . . , xn) +

n∑
i=1

εi
∂f

∂xi
(x1, x2, . . . , xn)

Let ε = [ε1, . . . , εn]
T and x = [x1, . . . , xn]

T , then we can rewrite the above as:

f(x+ ε) ≈ f(x) +∇xf(x)
T
ε

Questions:

1 Let f(x1, x2) = x2
1 + ex1x2 + 2 log(x2). What are the gradient and the Hessian of f?

2 Note that ∇xf : Rn → Rn. What is the Jacobian of ∇xf?

3 The gradient ∇xf(x) offers the best linear approximation of f around the point x. What does the Jacobian of
a function g : Rn → Rm offer?

4 If we use the gradient and the Hessian of f : Rn → R, what type of an approximation for the function f
around a point x can we create.
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Figure 1: Graph of the function f and the tangent plane.

5 Consider the function f(x1, x2) = 2 + 0.2(x1 − 3)2 + 0.2(x2 − 3)2 which is graphed below. The pink plane is
the tangent plane for the point x = (4, 4) and it represents the graph of the best linear approximation of f
around the point x. What is the function describing the tangent plane:

6 One thing to note is that the linear approximation becomes very poor once we move away from x. Suppose
we want a better approximation. For this purpose, we can use the Hessian as explained in part 2. Write down
this approximation for an arbitrary x. How good would this approximation be?

7 Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move
from x in directions d1, d2, d3 for which ∇xf(x)

T d1 > 0,∇xf(x)
T d2 < 0,∇xf(x)

T d3 = 0? Can the same
conclusions be drawn about the function of f?
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1.3. Algebra

Let f : Rn → R, g : Rn → R, . Below is a list of important gradient properties:

• Gradient of constant: ∇xc = 0 ∈ Rn for a constant c ∈ Rn.

• Linearity: ∇x(αf + βg)(x) = α∇xf(x) + β∇xg(x) for a scalars α, β ∈ R.

• Product rule: ∇x(fg)(x) = ∇xf(x) · g(x) +∇xg(x) · f(x).

Let f : Rn → Rm, g : Rn → Rm, h : Rm → Rk, l : Rm → R. Below is a list of important Jacobian properties:

• Jacobian of constant: ∇xc = 0 ∈ Rn×m for a constant c ∈ Rn.

• Linearity: ∇x(αf + βg)(x) = α∇xf(x) + β∇xg(x) for a scalars α, β ∈ R.

• Product rule: ∇x(f
T g)(x) = [∇xf(x)]

T g(x) + [∇xg(x)]
T f(x).

• Chain rule: ∇x(h ◦ g)(x) = ∇g(x)h(g(x))∇xg(x) and ∇x(l ◦ g)(x) =
[
[∇g(x)l(g(x))]

T∇xg(x)
]T

.

Questions:

1 Let f : Rn → R be f(x) = vTx for v ∈ Rn. Using the definition of the gradient, write out ∇xf(x) and specify
its dimensions.

2 Let f : Rn → Rn be f(x) = x. Using the definition of the Jacobian, write out ∇xf(x) and specify its dimen-
sions.

3 Let f : Rn → Rm be f(x) = Ax for A ∈ Rm×n. Using the definition of the Jacobian, write out ∇xf(x) and
specify its dimensions.

4 Let f : Rn → R be f(x) = αvTx+βwTx where α, β ∈ R and v, w ∈ Rn. Using the properties at the beginning
of the section and previous results, write out ∇xf(x).
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5 Let f : Rn → R be f(x) = xTAx and A ∈ Rn×n. Using the properties at the beginning of the section and
previous results, write out ∇xf(x).

6 With f defined as in the previous part, what is the Hessian of f . Only use previously proven facts and recall
that the Hessian is the Jacobian of the gradient.

7 Let f : Rm → R be f(x) = (Ax− y)TW (Ax− y) and A ∈ Rm×n,W ∈ Rn×n, y ∈ Rn. Using the properties at
the beginning of the section and previous results, write out ∇xf(x).
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