Section 03: Vector Calculus

This week in section, we’ll be focusing on vector calculus. See this week’s section solutions on the course website
for more content related to the bias-variance tradeoff discussed in lecture this week.

1. Vector Calculus

1.1. Definitions

Let f : R® — R and let g : R® — R™. The gradient of f(with respect to x) evaluated at x is the vector of partial
derivatives:
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The Jacobian of g(with respect to x) evaluated at x is the matrix of partial derivatives:
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Sometimes the Jacobian is denoted by J,(x), but we use V,g(z) to highlight that the Jacobian is nothing more than
the generalization of the gradient to functions which have a vector output.

The Hessian of f(with respect to x) evaluated at x is the matrix of partial derivatives:
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Sometimes the Hessian is denoted by H(z), but we use V2 f(x) to highlight that the Hessian is the Jacobian of the
gradient of f.

1.2. Estimation

What the gradient and Jacobian at a point do is express how the output of a function changes when the input is
changed by a small amount. Thus, they can be used to approximate the values of a function close to the point at
which they are evaluated. Let’s see how we can do this for one variable. Let f : R — R:
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Let us now extend this to multiple dimensions and derive the definition of the gradient starting from this approxi-
mation view point. Suppose we have a function f : R* — R and we want to determine how the function changes
around a point x € R™. First we will determine how the function changes when we slightly vary its first coordi-
nate:
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Now, let us slightly vary the first two coordinates:
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where we eliminate the term where e;e5 because it would be very small compared to the others. Repeating the
process for all n dimensions we obtain the approximation:

"9
f(x1+617"'7xn+6n) r"?‘f(xlv'"7$n)+Z€i87£(x171’27""xn)
i=1 ‘

(2
Lete=[e1,...,¢6,)T and x = [z1,...,2,]T, then we can rewrite the above as:
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Questions:

1 Let f(z1,22) = 23 + e®1®2 + 2log(xs). What are the gradient and the Hessian of f?

2 Note that V. f : R® — R". What is the Jacobian of V, f?

3 The gradient V, f(z) offers the best linear approximation of f around the point . What does the Jacobian of
a function g : R™ — R™ offer?

4 If we use the gradient and the Hessian of f : R” — R, what type of an approximation for the function f
around a point z can we create.



Figure 1: Graph of the function f and the tangent plane.

5 Consider the function f(z1,72) = 2+ 0.2(x; — 3)? + 0.2(x2 — 3)? which is graphed below. The pink plane is
the tangent plane for the point + = (4,4) and it represents the graph of the best linear approximation of f
around the point z. What is the function describing the tangent plane:

6 One thing to note is that the linear approximation becomes very poor once we move away from x. Suppose
we want a better approximation. For this purpose, we can use the Hessian as explained in part 2. Write down
this approximation for an arbitrary x. How good would this approximation be?

7 Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move
from x in directions dy,d, d3 for which V, f(z)Td; > 0,V,f(z)Tdy < 0,V,f(z)Td; = 0? Can the same
conclusions be drawn about the function of f?



1.3. Algebra
Let f: R™ - R, g : R® — R, . Below is a list of important gradient properties:
* Gradient of constant: V,c =0 € R” for a constant ¢ € R".
* Linearity: V (af + 8g)(z) = aV, f(z) + BV ,g(z) for a scalars «, 5 € R.
* Product rule: V,(fg)(z) = V,f(z) - g(x) + Vzg(x) - f(2).
Let f: R" - R™, g:R" — R™, h: R™ — R¥, [ : R™ — R. Below is a list of important Jacobian properties:
e Jacobian of constant: V c = 0 € R"*™ for a constant ¢ € R".
* Linearity: V (af + 89)(z) = aV, f(z) + BV 4g(z) for a scalars «, 5 € R.
* Product rule: V,(f"g)(z) = [Vof(2)]"g(x) + [Vog(a)]" f(2).
* Chain rule: V (ho g)(z) = Vg h(9(2))Veg(z) and V(I o g)(z) = [[Vg(r)l(g(x))]TVIg(x)]T.
Questions:

1 Let f : R” — R be f(x) = v for v € R™. Using the definition of the gradient, write out V. f() and specify
its dimensions.

2 Let f : R™ — R"™ be f(x) = z. Using the definition of the Jacobian, write out V, f(x) and specify its dimen-
sions.

3 Let f : R® — R™ be f(z) = Az for A € R™*". Using the definition of the Jacobian, write out V., f(z) and
specify its dimensions.

4 Let f : R" — Rbe f(z) = avTz + pwTz where o, 8 € R and v, w € R™. Using the properties at the beginning
of the section and previous results, write out V,, f(z).



5 Let f : R® — R be f(r) = 27 Ar and A € R"*". Using the properties at the beginning of the section and
previous results, write out V. f ().

6 With f defined as in the previous part, what is the Hessian of f. Only use previously proven facts and recall
that the Hessian is the Jacobian of the gradient.

7 Let f : R™ — R be f(z) = (Az — y)TW(Ax —y) and A € R™** W € R"*" y € R". Using the properties at
the beginning of the section and previous results, write out V,, f(x).
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