
Section 03: Solutions
This week in section, we’ll be focusing on vector calculus. See this week’s section solutions on the course website
for more content related to the bias-variance tradeoff discussed in lecture this week.

Solution:

Section Plan

• Reminders (5 min)

• Explain Gradients/Jacobians/Hessians. Slides exist for this, but teach however you see fit (15 min)

• Students do 1.2 a, b (10 min)

• Talk about approximations: 1.2 c, d.

• Introduce 1.2 g and have the students do it (5 min)

1. Vector Calculus

1.1. Definitions

Let f : Rn → R and let g : Rn → Rm. The gradient of f(with respect to x) evaluated at x is the vector of partial
derivatives:

∇xf(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 ∈ Rn

The Jacobian of g(with respect to x) evaluated at x is the matrix of partial derivatives:

∇xg(x) =


∂g1(x)
∂x1

. . . ∂g1(x)
∂xn

...
. . .

...
∂gm(x)
∂x1

. . . ∂gm(x)
∂xn

 =

∇T
x g1(x)
...

∇T
x gm(x)

 ∈ Rm×n

Sometimes the Jacobian is denoted by Jg(x), but we use∇xg(x) to highlight that the Jacobian is nothing more than
the generalization of the gradient to functions which have a vector output.

The Hessian of f(with respect to x) evaluated at x is the matrix of partial derivatives:

∇2
xf(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n

 ∈ Rn×n

Sometimes the Hessian is denoted by Hf (x), but we use ∇2
xf(x) to highlight that the Hessian is the Jacobian of the

gradient of f.

1.2. Estimation

What the gradient and Jacobian at a point do is express how the output of a function changes when the input is
changed by a small amount. Thus, they can be used to approximate the values of a function close to the point at
which they are evaluated. Let’s see how we can do this for one variable. Let f : R → R:

df

dx
(x) = lim

ε→0

f(x+ ε)− f(x)

ε
⇔ df

dx
(x) ≈ f(x+ ε)− f(x)

ε
⇔ f(x+ ε) ≈ f(x) + ε

df

dx
(x)
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Let us now extend this to multiple dimensions and derive the definition of the gradient starting from this approxi-
mation view point. Suppose we have a function f : Rn → R and we want to determine how the function changes
around a point x ∈ Rn. First we will determine how the function changes when we slightly vary its first coordi-
nate:

f(x1 + ε1, . . . , xn) ≈ f(x1, . . . , xn) + ε1
∂f

∂x1
(x1, . . . , xn)

Now, let us slightly vary the first two coordinates:

f(x1 + ε1, x2 + ε2, . . . , xn) ≈ f(x1, x2 + ε2, . . . , xn) + ε1
∂f

∂x1
(x1, x2 + ε2, . . . , xn)

≈ f(x1, x2, . . . , xn) + ε2
∂f

∂x2
(x1, x2, . . . , xn)+

+ ε1
∂f

∂x1
(x1, x2, . . . , xn) + ε1ε2

∂f

∂x2

∂f

∂x1
(x1, x2, . . . , xn)

≈ f(x1, x2, . . . , xn) + ε1
∂f

∂x1
(x1, x2, . . . , xn) + ε2

∂f

∂x2
(x1, x2, . . . , xn)

where we eliminate the term where ε1ε2 because it would be very small compared to the others. Repeating the
process for all n dimensions we obtain the approximation:

f(x1 + ε1, . . . , xn + εn) ≈ f(x1, . . . , xn) +

n∑
i=1

εi
∂f

∂xi
(x1, x2, . . . , xn)

Let ε = [ε1, . . . , εn]
T and x = [x1, . . . , xn]

T , then we can rewrite the above as:

f(x+ ε) ≈ f(x) +∇xf(x)
T
ε

Questions:

(a) Let f(x1, x2) = x2
1 + ex1x2 + 2 log(x2). What are the gradient and the Hessian of f?

Solution:

∇xf(x) =

[
∂f(x)
∂x1

∂f(x)
∂x2

]
=

[
2x1 + x2e

x1x2

x1e
x1x2 + 2

x2

]
and ∇2

xf(x) =

 ∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

 =

[
2 + x2

2e
x1x2 ex1x2 + x1x2e

x1x2

ex1x2 + x1x2e
x1x2 x2

1e
x1x2 − 2

x2
2

]

(b) Note that ∇xf : Rn → Rn. What is the Jacobian of ∇xf?

Solution:

∇x(∇xf)(x) =

[
∂(∇xf)1(x)

∂x1

∂(∇xf)1(x)
∂x2

∂(∇xf)2(x)
∂x1

∂(∇xf)2(x)
∂x2

]
=

[
2 + x2

2e
x1x2 ex1x2 + x1x2e

x1x2

ex1x2 + x1x2e
x1x2 x2

1e
x1x2 − 2

x2
2

]
= ∇2

xf(x)

(c) The gradient ∇xf(x) offers the best linear approximation of f around the point x. What does the Jacobian of
a function g : Rn → Rm offer?

Solution:

The Jacobian also offers the best linear approximation of g around a point x, but now it approximates a
vector, instead of a scalar,

g(x+ ε) ≈ g(x) +∇xg(x)ε
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Figure 1: Graph of the function f and the tangent plane.

where ∇xg(x)ε is a matrix multiplication instead of a dot product.

(d) If we use the gradient and the Hessian of f : Rn → R, what type of an approximation for the function f
around a point x can we create.

Solution:

Using the two, we can create the best quadratic approximation of f , given by:

f(x+ ε) ≈ f(x) +∇xf(x)
T
ε+

1

2
εT∇2

xf(x)ε

(e) Consider the function f(x1, x2) = 2+0.2(x1 − 3)2 +0.2(x2 − 3)2 which is graphed in figure 1. The pink plane
is the tangent plane for the point x = (4, 4) and it represents the graph of the best linear approximation of f
around the point x. What is the function describing the tangent plane:

Solution:

f((4, 4)) = 2.4 and ∇xf(x) =

[
0.4(x1 − 3)
0.4(x2 − 3)

]
and ∇xf((4, 4)) =

[
0.4
0.4

]
Tangent plane function:

f̂(y) = f(x) +∇xf(x)
T
(y − x) = 2.4 +

[
0.4
0.4

]T (
y −

[
4
4

] )
(f) One thing to note is that the linear approximation becomes very poor once we move away from x. Suppose

we want a better approximation. For this purpose, we can use the Hessian as explained in part 2. Write down
this approximation for an arbitrary x. How good would this approximation be?
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Solution:

f(y) = f(x) +∇xf(x)
T
(y − x) +

1

2
(y − x)T∇2

xf(x)(y − x)

We would be able to recreate f perfectly since f is quadratic.

(g) Draw the gradient on the picture. Describe what happens to the values of the approximation of f if we move
from x in directions d1, d2, d3 for which ∇xf(x)

T d1 > 0,∇xf(x)
T d2 < 0,∇xf(x)

T d3 = 0? Can the same
conclusions be drawn about the function of f?

Solution:

• d1: Value of approximation goes up.

• d2: Value of approximation goes down.

• d3: Value of approximation stays the same.

The same can be said for f , but only in the immediate vicinity of the point x.

1.3. Algebra

Let f : Rn → R, g : Rn → R, . Below is a list of important gradient properties:

• Gradient of constant: ∇xc = 0 ∈ Rn for a constant c ∈ Rn.

• Linearity: ∇x(αf + βg)(x) = α∇xf(x) + β∇xg(x) for a scalars α, β ∈ R.

• Product rule: ∇x(fg)(x) = ∇xf(x) · g(x) +∇xg(x) · f(x).

Let f : Rn → Rm, g : Rn → Rm, h : Rm → Rk, l : Rm → R. Below is a list of important Jacobian properties:

• Jacobian of constant: ∇xc = 0 ∈ Rn×m for a constant c ∈ Rn.

• Linearity: ∇x(αf + βg)(x) = α∇xf(x) + β∇xg(x) for a scalars α, β ∈ R.

• Product rule: ∇x(f
T g)(x) = [∇xf(x)]

T g(x) + [∇xg(x)]
T f(x).

• Chain rule: ∇x(h ◦ g)(x) = ∇g(x)h(g(x))∇xg(x) and ∇x(l ◦ g)(x) =
[
[∇g(x)l(g(x))]

T∇xg(x)
]T

.

Questions:

(a) Let f : Rn → R be f(x) = vTx for v ∈ Rn. Using the definition of the gradient, write out ∇xf(x) and specify
its dimensions.

Solution:

∇xf(x) =


∂vT x
∂x1

...
∂vT x
∂xn

 =


∂

∂x1

∑
i vixi

...
∂

∂xn

∑
i vixi

 =

v1...
vn

 = v ∈ Rn

(b) Let f : Rn → Rn be f(x) = x. Using the definition of the Jacobian, write out ∇xf(x) and specify its dimen-
sions.

Solution:

4



∇xf(x) =


∂x1

∂x1
. . . ∂x1

∂xn

...
. . .

...
∂xm

∂x1
. . . ∂xn

∂xn

 =

1 . . . 0
...

. . .
...

0 . . . 1

 = I ∈ Rn×n

(c) Let f : Rn → Rm be f(x) = Ax for A ∈ Rm×n. Using the definition of the Jacobian, write out ∇xf(x) and
specify its dimensions.

Solution:

∇xf(x) =


∂(Ax)1
∂x1

. . . ∂(Ax)1
∂xn

...
. . .

...
∂(Ax)m

∂x1
. . . ∂(Ax)m

∂xn

 =


∂

∂x1

∑
k A1kxk . . . ∂

∂xn

∑
k A1kxk

...
. . .

...
∂

∂x1

∑
k Amkxk . . . ∂

∂xn

∑
k Amkxk



=

A11 . . . A1n

...
. . .

...
Am1 . . . Amn

 = A ∈ Rm×n

(d) Let f : Rn → R be f(x) = αvTx+βwTx where α, β ∈ R and v, w ∈ Rn. Using the properties at the beginning
of the section and previous results, write out ∇xf(x).

Solution:

∇xf(x) = ∇x

(
αvTx+ βwTx

)
= α∇xv

Tx+ β∇xw
Tx = αv + βw

(e) Let f : Rn → R be f(x) = xTAx and A ∈ Rn×n. Using the properties at the beginning of the section and
previous results, write out ∇xf(x).

Solution:

∇xf(x) = ∇x

(
xTAx

)
= (∇xx)

T (Ax) + (∇xAx)Tx = IAx+ATx = (A+AT )x

where we used the product rule and split xTAx into g(x)Th(x) where g, h : Rn → Rn and g(x) = x and
h(x) = Ax

(f) With f defined as in the previous part, what is the Hessian of f . Only use previously proven facts and recall
that the Hessian is the Jacobian of the gradient.

Solution:

∇2
xf(x) = ∇x(∇xf)(x) = ∇x(A+AT )x = A+AT

where we used part 3 in the last step.

(g) Let f : Rm → R be f(x) = (Ax− y)TW (Ax− y) and A ∈ Rm×n,W ∈ Rn×n, y ∈ Rn. Using the properties at
the beginning of the section and previous results, write out ∇xf(x).

Solution:
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Let f = h ◦ g where g(x) = Ax − y and h(z) = zTWz. Using the chain rule and parts 3 and 5, we can
derive:

∇xf(x) = ∇x(h ◦ g)(x) =
[
[∇g(x)h(g(x))]

T∇xg(x)]
T

=
[
[(W +WT )(Ax− y)]TA]T

= AT (W +WT )(Ax− y)
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