446 Section 2

TA: Varun Ananth



Plans for today!

1. This

2. Reminders

3. Problems
a. P1a,b
b. Review Linear Regression
c. P2 (writing)




Reminders

e HWO due Oct 8 (next Wednesday)
Some tips:

- Use office hours to your advantage

- Student TA OH for homework questions
- Professor OH for conceptual questions

- Skim the homeworks the day they are assigned and try one problem
- Motivates you to get things done on time, starting an untouched assignment can be daunting

- Keep a tab open with the lecture slides while you do the homework for
reference



Problem 1



Context
(1a

We consider the linear measurement model (parameterized by w), y; = z]w + v; for i = 1,2,...,m. The noise
v; for different measurements (z;,y;) are all independent and identically distributed. Under our assumption of a
linear model, v; = y; —z, w. Note Per the principle of maximum likelihood estimation, we seek to maximize

m
logpu((x1,31), , (@m, ym)) = log [ [ p(ys — 2] w).
i=1

(a) Show that when the noise measurements follow a Gaussian distribution (v; ~ N'(0, 0?)), the maximum like-
lihood estimate of w is the solution to min,, | Xw — Y||§. Here each row in X corresponds to a x;, and each
row in Y to y;.
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Gaussian Distribution

We want to show: MLE of the
weights for linear model with a
Gaussian noise term reduces to

minimizing sum of squared
errors
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Linear model: y; = .’L',;r’u} -+ 05
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Here we use the fact that v. is i.i.d
from a 0-mean Gaussian to
introduce the Gaussian distribution
equation into our proof
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We have shown that using MLE on a linear model with a Gaussian noise
term results in the same optimization objective as minimizing the sum of
squared errors between the ground truth and the prediction!



MLE — Linear Regression
W = argmin i(y,- —1:)?
g i=1

= argmin Z(yi — (x; w+ b))

w

Find w that minimizes the SSE. This is w.

Plug in y; = x;r w + b.

=1
T i . .
We got here e Z(U' _ el Disregard b, since an intercept can be rep-
from MLE! e = : resented by appending a 1 to x.
i=1 ‘
T . A - . - .
0— 0 Z (e — T2 Find w by taking the partial derivative of
Ow 4 1 ot : the argmin term and setting it equal to 0.
1=
i
= —(y; — (% W))? Property of derivatives.
— Ow
=1
T
Now let's =Y 20y —x] W)(—x;) Derive.
complete the —
1=

proof




MLE — Linear Regression

n

= E (g — %] W)(x:) Divide by -2
=1
n

= E (x;)(y; — x, W) The term y; — X, W is a scalar. x = xc
i=1
n

= E (xiy; — XX, W) Distribute
=1
T TL

= E X;Y; — E x,;x;r\i/ Distribute

mn T
( E XX, )W = E X;Yi Move second term to LHS.
=1 =1



MLE — Linear Regression

Convert from vector summation form to
matrix form

(X" X=Xy

XY Ky Left multiply by (X' X)™
(XTX) Xy Cancel

(XTX) (X" X)W

w

| would try and understand this well! It’s really cool.

This is mostly in summation form until the very end. The lecture notes (should)
have it in matrix form until the very end. Look and study the one that makes

most sense to you.

Any questions?



/p(Z) = (1/2a) exp(—|z|/a)
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Linear model: ¥i = ;
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Wy e = argmaxlogp, ((z1,v1),+ , (Tm, Ym))

w
m

= arg max log Hp(yi — ] w)

= i=1
_ T _

= arg maleogp -, w) log(ab) = loga + log b]
= e .
T What do we plug in
here?

Let’s look at the steps before considering the distribution:
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Therefore the maximum likelihood estimate of w is w -
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constant offset doesn’t affect optimization

constant offset doesn’t affect optimization

arg min,, || Xw — Y|;.
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Visual similarities exist
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Laplacian, and the L2 norm
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Using Laplacian (sharp) as noise results in the
L1 norm (sharp) in the optimization equation

Using Gaussian (smooth) as noise results in
the 12 norm (smooth) in the optimization
equation
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Problem 2



Context (2)

Standardization Normalization
(.j) (J) man
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2.1. Data Standardization
Data standardization is the task of transforming each feature in our dataset to have mean 0 and variance 1. The

typical way to do this is using the Z-Score, which is defined as below:

(7)
fi(j) _ 5T
a;
Where p; is the mean of each feature and o; is the standard deviation of each feature, which are empirically calcu-
lated from the data.

Question: what should you do when o; = 0 for some i?

Solution:

Having o; = 0 for some feature means that the value for that feature is constant in our dataset. If we leave it
as 0, we will encounter a divide by O error. Since the feature is constant, once we subtract the mean, the new
value for the feature will be 0, so we can divide by anything except 0 to avoid this error.

Having o; = 0 is rare, and may be a sign something is wrong with your data or code. One specific case to watch
out for is appending your bias column of ones before standardizing.




2.2. Data Normalization

Data normalization refers to the task of rescaling each feature in our dataset to have range [0, 1].

One such method to achieve this is min-max scaling:

() min
e ot I
gk pMaT _ pmin

g’ 2

Where 2" 7% are the minimum and maximum values of feature i in our dataset, respectively.

When training and evaluating your model, you should calculate the parameters for your normalization or standard-
ization function on the training set ONLY!

Question 1: Should we always choose "™ and x™%* based on train data? Can we sometimes do better? Think
about cases when we have some underlying information about data.

Solution:

Consider RGB images. These are typically encoded as arrays of shape (3, height, width), with each value being
an integer in range [0, 255]. In this case we should just use z%* = 255 and ™" = () to normalize the data.

In general there can be many cases in which we will know max and/or min values of distribution. Always
examine and visualize data before transforming it.




Question 2: When can values outside of [0, 1] range in test set cause issues?

Solution:

This might lead to an issue if our model performs any transformations on data that have a limited domain.

Consider a model f(z) = log(z)Tw. In this case if test datapoint have a value below 0, this code will fail, as log
has domain [0, c0).

In general, after you visualize the data, think about what transforms are needed for it to be well behaved. Always
pay attention to domains and ranges of each transform since these may lead to NaNs.

2.1 and 2.2 will be important in HW1!



Employers
when you tell
them your app
uses linear
regression

Employers
when you tell
them your app
uses “machine
learning and
A.l”




Questions/Chat Time!



