
Section 02: Solutions
In this section, we explore maximum likelihood estimation with more examples of noise densities, review some
basics about subspaces in linear algebra, and go over data standardization and normalization.

Solution:

Section Plan

• Introductions (5 min)

• Do 1a succinctly (5 min) + linear regression proof (5 min)

• Students try 1b (10 min) + show answer (5 min)

• Review standardization versus normalization from Sec 2 (5 min) + ask for answers (5 min)

If time allows, do 3.2 (a, c, d).

Definitions, again!

Norms
We haven’t covered norms in much detail, but they are instrumental and show up quite often! We will cover them
later in more detail, but for now, it is sufficient to get yourself familiar with definitions for some of the most widely
used norms! For any vector v that is n-dimensional, i.e. v ∈ Rn, we have the following

(a) One-norm (`1): ||v||1 =
∑n

i=1 |vi|

(b) Two-norm (`2): ||v||2 =
√
vT v =

√∑n
i=1 v

2
i

(c) ∞-norm: ||v||∞ = maxi |vi|

Symmetric Matrices and the Quadratic Form
Let us define a matrix A ∈ Rn×n.

(a) We have that the matrix A is symmetric iff A = AT

(b) The quadratic form is defined to be xTAx for any vector x ∈ Rn. The matrix A is said to be positive semi-
definite if xTAx ≥ 0

Closure of the Normal and Laplacian under scale and shift

(a) Normal: If X ∼ N(µx, σ
2
x), then we have that Y = aX + b ∼ N (aµx + b, a2σ2

x).

(b) Laplacian: If X ∼ Laplace(µ, b) then kX + c ∼ Laplace(kµ+ c, |k|b)

1. Maximum Likelihood Estimation

In this section, we formulate maximum likelihood estimation for different noise densities as different minimization
problems. Specifically, we’ll see how each noise distribution corresponds to a specific objective function.

We consider the linear measurement model (parameterized by w), yi = x>
i w + vi for i = 1, 2, . . . ,m. The noise

vi for different measurements (xi, yi) are all independent and identically distributed. Under our assumption of a
linear model, vi = yi−x>

i w. Note Per the principle of maximum likelihood estimation, we seek to maximize

log pw((x1, y1), · · · , (xm, ym)) = log
m∏
i=1

p(yi − x>
i w).

(a) Show that when the noise measurements follow a Gaussian distribution (vi ∼ N (0, σ2)), the maximum like-
lihood estimate of w is the solution to minw ‖Xw − Y ‖22. Here each row in X corresponds to a xi, and each
row in Y to yi.

1



Solution:

When vi ∼ N (0, σ2), the density is given by the expression p(v) = 1√
2πσ2

e−v2/2σ2

. This implies that the
MLE of parameter is

ŵMLE = argmax
w

log pw((x1, y1), · · · , (xm, ym))

= argmax
w

log
m∏
i=1

p(yi − x>
i w)

= argmax
w

m∑
i=1

log p(yi − x>
i w) [log(ab) = log a+ log b]

= argmax
w

m∑
i=1

log
[

1√
2πσ2

e−(yi−x>
i w)2/2σ2

]

= argmax
w

m log
(

1√
2πσ2

)
+

m∑
i=1

− (yi − x>
i w)

2

2σ2

= argmax
w

m∑
i=1

− 1

2σ2
(yi − x>

i w)
2 (constant offset doesn’t affect results)

= argmax
w

m∑
i=1

−(yi − x>
i w)

2 (positive scalar scaling doesn’t affect results)

= argmin
w

m∑
i=1

(yi − x>
i w)

2 = argmin
w

‖Xw − Y ‖22

Therefore, the maximum likelihood estimate is given by argmin ‖Xw − Y ‖22, as claimed.

(b) When the noise measurements follow a Laplacian distribution (p(z) = (1/2a) exp(−|z|/a)), what is the maxi-
mum likelihood estimate of w? Express your answer as the solution to an optimization problem such as in the
previous part.

Solution:
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For a > 0, with density p(z) = (1/2a) exp(−|z|/a), we follow a similar procedure as in part (a)

ŵMLE = argmax
w

log pw((x1, y1), · · · , (xm, ym))

= argmax
w

log
m∏
i=1

p(yi − x>
i w)

= argmax
w

m∑
i=1

log p(yi − x>
i w) [log(ab) = log a+ log b]

= argmax
w

m∑
i=1

log
(

1

2a
· e

−|yi−xT
i w|

a

)

= argmax
w

m∑
i=1

log
(

1

2a

)
− |yi − xT

i w|
a

= argmax
w

m∑
i=1

−|yi − xT
i w|

a
constant offset doesn’t affect optimization

=
1

a
· argmax

w

m∑
i=1

−|yi − xT
i w|

= argmax
w

m∑
i=1

−|yi − xT
i w| constant offset doesn’t affect optimization

= argmin
w

m∑
i=1

|yi − xT
i w| = argmin

w
‖Xw − Y ‖1

Therefore the maximum likelihood estimate of w is ŵ = argminw ‖Xw − Y ‖1.

(c) When the noise measurements follow a uniform distribution (p(z) = (1/2a) on [−a, a]), what is the maximum
likelihood estimate of w? Express your answer as a condition to be satisfied by some function of w.

Solution:

For uniformly distributed vi on [−a, a], the density function is p(z) = 1
2a , we have that

ŵMLE = argmax
w

log pw((x1, y1), · · · , (xm, ym))

= argmax
w

log
m∏
i=1

p(yi − x>
i w)

= argmax
w

m∑
i=1

log p(yi − x>
i w) [log(ab) = log a+ log b]

Using an indicator function, we have that this can be simplified into

ŵMLE = argmax
w

m∑
i=1

log
(

1

2a
· 1{−a ≤ yi − xT

i w ≤ a}
)

= argmax
w

m∑
i=1

log
(

1

2a

)
+ log

(
1{−a ≤ yi − xT

i w ≤ a}
)
)

= argmax
w

m∑
i=1

log
(
1{−a ≤ yi − xT

i w ≤ a}
)
) Constant factor doesn’t affect optimization

We now simplify this to be
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ŵMLE = argmax

{
0 −a ≤ yi − xT

i w ≤ a

−∞ otherwise

We further simplify this to

ŵMLE = argmax

{
0 ||Y −Xw||∞ ≤ a

−∞ otherwise

Therefore the maximum likelihood estimate is given by any w that satisfies |Y −Xw||∞ ≤ a which is the
same as ||Xw − Y ||∞ ≤ a.

2. Data Normalization/Standardization

Sometimes, our features have very different ranges of values. This is not ideal and can lead to numerical issues
(e.g., overflow) and optimization difficulties.

There are two ways to take care of this issue. One is called data normalization, and the other is called data standard-
ization. Sometimes these terms are used interchangeably, but it is important to understand the difference.

Below, x(j)
i represents the value of the ith feature of the jth data point.

2.1. Data Standardization

Data standardization is the task of transforming each feature in our dataset to have mean 0 and variance 1. The
typical way to do this is using the Z-Score, which is defined as below:

x̃i
(j) =

x
(j)
i − µi

σi

Where µi is the mean of each feature and σi is the standard deviation of each feature, which are empirically calcu-
lated from the data.

Question: what should you do when σi = 0 for some i?

Solution:

Having σi = 0 for some feature means that the value for that feature is constant in our dataset. If we leave it
as 0, we will encounter a divide by 0 error. Since the feature is constant, once we subtract the mean, the new
value for the feature will be 0, so we can divide by anything except 0 to avoid this error.

Having σi = 0 is rare, and may be a sign something is wrong with your data or code. One specific case to watch
out for is appending your bias column of ones before standardizing.

2.2. Data Normalization

Data normalization refers to the task of rescaling each feature in our dataset to have range [0, 1].

One such method to achieve this is min-max scaling:

x̃i
(j) =

x
(j)
i − xmin

i

xmax
i − xmin

i

Where xmin
i , xmax

i are the minimum and maximum values of feature i in our dataset, respectively.

When training and evaluating your model, you should calculate the parameters for your normalization or standard-
ization function on the training set ONLY!
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In other words, if we were using Z-Score, we’d calculate our µi, σi on the training set, and use those same values
when standardizing our validation/test data. The same applies to normalization methods, such as min-max scaling,
where we want to determine xmin

i , xmax
i from training data. This will likely mean that we may get some values

outside [0, 1] after rescaling new data, but, given that our training dataset is large enough, this shouldn’t be much
of an issue (so unseen data likely won’t be wildly outside of [0, 1]).

Question 1: Should we always choose xmin
i and xmax

i based on train data? Can we sometimes do better? Think
about cases when we have some underlying information about data.

Solution:

Consider RGB images. These are typically encoded as arrays of shape (3, height, width), with each value being
an integer in range [0, 255]. In this case we should just use xmax

i = 255 and xmin
i = 0 to normalize the data.

In general there can be many cases in which we will know max and/or min values of distribution. Always
examine and visualize data before transforming it.

Question 2: When can values outside of [0, 1] range in test set cause issues?

Solution:

This might lead to an issue if our model performs any transformations on data that have a limited domain.
Consider a model f(x) = log(x)Tw. In this case if test datapoint have a value below 0, this code will fail, as log
has domain [0,∞).

In general, after you visualize the data, think about what transforms are needed for it to be well behaved. Always
pay attention to domains and ranges of each transform since these may lead to NaNs.

3. Linear Algebra Review Part 2

LetX ∈ Rm×n. X may not have full rank. We explore properties about the four fundamental subspaces ofX.

Please refer to section 3 of the supplementary material for more info on matrix properties and subspaces.

3.1. Connections between subspaces of X

Check the following facts.

(a) The rowspace of X is the columnspace of X>, and vice versa.

Solution:

The matrix X> is

1 4
2 5
3 6

. The rows of X are the columns of X>, and vice versa.

(b) The nullspace of X and the rowspace of X are orthogonal complements. This can be written in shorthand as
Null(X) = Range(X>)⊥. This is further equivalent to saying Range(X>) = Null(X)⊥.

Solution:

A vector v ∈ Null(X) if and only if Xv = 0, which is true if and only if for every row Xi of X, 〈Xi, v〉 = 0.
This is precisely the condition that v is perpendicular to each row of X, which is the stated claim.

(c) The nullspace of X> is orthogonal to the columnspace of X. This can be written in shorthand as Null(X>) =
Range(X)⊥.

Solution:
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This is seen by applying the previous result to X>.

3.2. Linear algebra facts for linear regression

We saw in lecture on Linear Regression that the closed form expression for linear regression without an offset
involves the term (X>X)−1.

(a) Is it true that the matrix X>X is always symmetric and positive semidefinite?

Solution:

Yes. Symmetry can be checked by computing the transpose. For any vector u, we have u>X>Xu =
‖Xu‖22 ≥ 0.

(b) State and prove the connection between the nullspace ofX and the nullspace ofX>X. That is, your statement
should look like one of the following: Null(X) ⊆ Null(X>X), or Null(X) ⊇ Null(X>X) or Null(X) =
Null(X>X).

Solution:

We have, Null(X) = Null(X>X). Let v ∈ Null(X). Then, one can check that X>Xv = 0, leading to
v ∈ Null(X>X), which proves Null(X) ⊆ Null(X>X). For the other direction, let 0 6= v ∈ Null(X>X).
Then, 0 = v>X>Xv = ‖Xv‖22, which implies v ∈ Null(X). Therefore, Null(X>X) ⊆ Null(X), which
finishes the proof.

(c) Is it true that X>X is always invertible?

Solution:

No, this isn’t always the case. Since Null(X) = Null(X>X) (see the answer to the previous question), the
matrix X>X is not invertible if X has a non-empty nullspace.

(d) Based on the above fact about the connection between the nullspaces of X and X>X and the expression for
linear regression without an offset (that we referred to two problems above), justify the use of “tall skinny”
data matrix X as opposed to a “short wide” matrix X.

Solution:

If X is “short and wide”, it has a non-empty nullspace. Therefore, X>X is not invertible.

(e) The columnspace and rowspace of X>X are the same, and are equal to the rowspace of X. (Hint: Use the
relationship between nullspace and rowspace.)

Solution:

X>X is symmetric, and from the previous parts, we have Row(X>X) = Col((X>X)>) = Col(X>X). By
previous parts again, we have: Row(X>X) = Null(X>X)⊥ = Null(X)⊥ = Row(X).
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