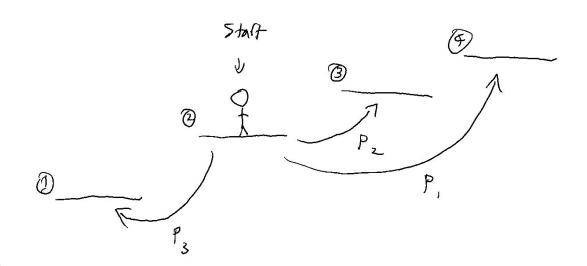
Problem 1

Context (1a)

New workout!

- Start at floor 2
 - o p₁: +2
 - o p₂: +1
 - \circ $p_3:-1$
- Do this twice
 - No resetting to floor 2



Questions

- After just 1
 iteration, what is
 your expected
 change in floor #?
 (E[Y])
- After 2 iterations, starting on floor
 2, what is the expected floor you end on? (E[X])

Bonus: Does E[X] change if you pick a p₁, p₂, p₃, and do the exercise twice without re-selecting?

$$+2$$
 $+1$ -1
 $2P_1 + P_2 - P_3$

$$F[Y] = 2P_1 + P_2 - P_3$$

$$\frac{12}{2P_1} + \frac{1}{P_2} - \frac{1}{P_3}$$

$$\frac{12}{2P_1} + \frac{1}{P_2} - \frac{1}{P_3}$$

 $= 2 + 4P_1 + 2P_2 - 2P_1$

No Charge, because:

$$P_1 \rightarrow +4$$
 $P_2 \rightarrow +2$
 $P_3 \rightarrow -2$
 $P_3 \rightarrow -2$

Context (1b)

Fact 1. Let $X_{(j)}$ denote the jth order statistic in a sample of i.i.d. random variables; that is, the jth element when the items are sorted in increasing order $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$.

The PDF of $X_{(j)}$ is given by:

$$f_{X_{(j)}}(x) = \frac{n!}{(n-i)!(i-1)!} [F(x)]^{j-1} [1 - F(x)]^{n-j} f(x). \tag{1}$$

Questions

(b) When a sample of 2N + 1 i.i.d. random variables is observed, the $(N + 1)^{st}$ smallest is called the sample median. If a sample of size 3 from a uniform distribution over [0,1] is observed, find the probability that the sample median is between $\frac{1}{4}$ and $\frac{3}{4}$. Hint: use Fact $\boxed{1}$.

More confusing than it needs to be...

First sentence: Defining what a median is. You already know this, don't let it confuse you

Second sentence: The actual question

Find the following, then plug & chug:

- *n* (not *N*)
- j
- *f(x)* (PDF)
- *F(x)* (CDF)

Hint: Both the PDF and CDF are piecewise

$$N=3$$
: 9: ver
Sample median would be the "mill
Lo $2N+1=3$... $N=1$
 $N+1=2$... $j=2$

Sample meron would be the "middle" sample when sorted

 $= 6 \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} X(1-x) dx$

 $P(\frac{1}{4} \leq x_{12}) \leq \frac{3}{4}) = \int_{\frac{1}{4}}^{\frac{3}{4}} f_{x_{(2)}}(x) dx$ $= \int_{\frac{3}{4}}^{\frac{3}{4}} \frac{3!}{(3-2)!(2-1)!} (x)^{2-1} (1-x)^{3-2} dx$ $= \int_{\frac{1}{4}}^{\frac{3}{4}} \frac{3!}{(3-2)!(2-1)!} (x)^{2-1} (1-x)^{3-2} dx$ (comes from Unit. dist PDF\CDF)

 $f(X) = \begin{cases} 1 & \text{if } 0 \leq X \leq 1 \\ 0 & \text{otherwise} \end{cases}$

$$\wedge$$

Problem 2

Quick Matrix Algebra/Calculus Refresher

Unsure if this has been taught before to you all (when I took 208, I definitely did not learn it)

Note: For the matrix calculus section to the right, **B** is a constant matrix.

Rule	Comments		
$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$	order is reversed, everything is transposed		
$(\mathbf{a}^T \mathbf{B} \mathbf{c})^T = \mathbf{c}^T \mathbf{B}^T \mathbf{a}$	as above		
$\mathbf{a}^T\mathbf{b} = \mathbf{b}^T\mathbf{a}$	(the result is a scalar, and the transpose of a scalar is itself)		
$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{AC} + \mathbf{BC}$	multiplication is distributive		
$(\mathbf{a} + \mathbf{b})^T \mathbf{C} = \mathbf{a}^T \mathbf{C} + \mathbf{b}^T \mathbf{C}$	as above, with vectors		
$\mathbf{AB} eq \mathbf{BA}$	multiplication is not commutative		

Scalar derivative		Vector derivative			
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T \mathbf{B}$	\rightarrow	В
bx	\rightarrow	\boldsymbol{b}	$\mathbf{x}^T\mathbf{b}$	\rightarrow	b
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$

Thank you: Kirsty McNaught

Context & Questions (2a-b)

You are given some matrices, their shapes, and are asked to manipulate them!

Hint 1: The "2" superscript means square the whole norm. This can be used on the norm equivalencies at the top of the section handout

$$X_{m \times n}$$
 . $W_{n \times 1}$. $Y_{m \times 1}$

Show that $||X_{w} - Y||_{2}^{2} = \sum_{i=1}^{m} (x_{i}^{T} w_{i} - y_{i})^{2}$

What is $\nabla_{w} ||X_{w} - Y||_{2}^{2}$?

 $||Xw - Y||_2^2$

Hint 2: Verify your matrix calculus is correct by ensuring the shapes of the matrices allow for valid matrix multiplication.

$$||X_{W}-Y||_{2}^{2} : X_{W}-Y \text{ has Shape mx1 m} [0] \text{ A single element is:}$$

$$||X_{W}-Y||_{2}^{2} : X_{W}-Y \text{ as a vector, call it } Y'$$

$$||Y||_{2}^{2} = \sqrt{Y_{V}}^{2} = \sqrt{\sum_{i=1}^{m} (Y_{i})^{2}}$$

$$\sum_{i=1}^{m} (V_i)^2 \leq \frac{\sum_{i=1}^{m} (X_i)^2}{\sum_{i=1}^{m} (X_i^T w - Y_i)^2}$$

$$||X_w - Y_i|^2 = \sum_{i=1}^{m} (X_i^T w - Y_i)^2$$

$$\sqrt{\|X_{W}-Y\|_{2}^{2}}$$
: $(X_{W}-Y)$ is a vector, let's Latt it V

=
 $\sqrt{\|V\|_{2}^{2}} = \sqrt{W}V^{T}V$

Take the station, apply Chain rule $(\sqrt{X}X^{T}X = 2X)$

= $\sqrt{W}V \cdot 2V$; Now let's bring back in $(X_{W}-Y)$

$$\sqrt{x} \times x - \sqrt{x} \times x - \sqrt{x}$$

$$\sqrt{x} \times x - \sqrt{x} \times x - \sqrt{x}$$

$$\sqrt{x} \times x - \sqrt{x} \times x - \sqrt{x}$$

$$\frac{1}{2} \frac{\lambda_{1}}{\lambda_{1}} = \frac{$$

 $\nabla_{w} ||\chi_{w} - \gamma||_{2}^{2} = 2 \times^{T} (\chi_{w} - \gamma)$

