
Section 01: Solutions

Section Plan (Autumn 25):

For today’s section handout we will start with question 2.1 and then move to question 1. Extra time can be spent
however the section lead desires; 2.4a and 2.2 are suggested.

Definitions

Norms
We haven’t covered norms yet but they are incredibly useful, and they show up quite often! We will cover them
later in more detail, but for now it is sufficient to get yourself familiar with definitions for some of the most widely
used norms! For any vector v that is n-dimensional, i.e. v ∈ Rn, we have the following

(a) One-norm (`1): ||v||1 =
∑n

i=1 |vi|

(b) Two-norm (`2): ||v||2 =
√
vT v =

√∑n
i=1 v

2
i

(c) ∞-norm: ||v||∞ = maxi |vi|

Symmetric Matrices and the Quadratic Form
Let us define a matrix A ∈ Rn×n.

(a) We have that the matrix A is symmetric iff A = AT

(b) The quadratic form is defined to be xTAx for any vector x ∈ Rn. The matrix A is said to be positive semi-
definite if xTAx ≥ 0

1. Probability Review: PDF, CDF and Expectation

The Cumulative Density Function (CDF) FX : R → [0, 1] of a random variable X is defined as P(X ≤ x). The Prob-
ability Density Function (PDF), fX : R → R≥0, of the same random variable is defined as fX(x) = d

dxFX(x).

Note that the CDF can be computed from the PDF, and vice versa; e.g. FX =
∫ x

−∞ f(x)dx.

We can use these functions to directly compute the expectation of random variables, since the expectation is defined
in terms of the PDF: E(X) =

∫∞
−∞ x · fX(x)dx.

These functions can also be used to compute the distribution of any one-to-one transformation g(·) of the random
variable: E(g(X)) =

∫∞
−∞ g(x) · fX(x)dx.

Note: this section focuses on the continuous case, but equivalent formulations hold in the discrete case by replacing
integration with summation.

(a) You’ve just started a new exercise regimen. You start on the 2nd floor of CSE1, and then make a random
choice:

• With probability p1 you run up 2 flights of stairs.

• With probability p2 you run up 1 flight of stairs.

• With probability p3 you walk down 1 flight of stairs.

Where p1 + p2 + p3 = 1.

You will do two iterations of your exercise scheme (with each draw being independent). Let X be the floor
you’re on at the end of your exercise routine. Recall you start on floor 2.
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(i) Let Y be the difference between your ending floor and your starting floor in one iteration. What is E[Y ]
(in terms of p1, p2, p3)?

Solution:

Recall for a random variable X,E[X] =
∑

i xi · pi.
So E[Y ] = 2 · p1 + 1 · p2 + (−1) · p3

(ii) What is E[X] (use your answer from the previous part)

Solution:

Since we start at floor 2, we can take 2 and add the difference (E[Y ]) twice to get our expected floor
at the end of the routine.
E[X] = 2 + E[Y ] + E[Y ] = 2 + 2E[Y ]

(iii) You change your scheme: instead of doing two independent iterations, you decide the second iteration
of your regimen will just use the same random choice as your first (in particular they are no longer
independent!). Does E[X] change? (Optional)

Solution:

No! We can say using the same choice as the first will effectively double Y , thus by linearity of
expectation, E[X] = 2 + E[2Y ] = 2 + 2E[Y ]

Fact 1. Let X(j) denote the jth order statistic in a sample of i.i.d. random variables; that is, the jth element when
the items are sorted in increasing order X(1) ≤ X(2) ≤ . . . ≤ X(n).

The PDF of X(j) is given by:

fX(j)
(x) =

n!

(n− j)!(j − 1)!
[F (x)]j−1[1− F (x)]n−jf(x). (1)

(b) When a sample of 2N + 1 i.i.d. random variables is observed, the (N + 1)st smallest is called the sample
median. If a sample of size 3 from a uniform distribution over [0, 1] is observed, find the probability that the
sample median is between 1

4 and 3
4 . Hint: use Fact 1.

Solution:

We will use Fact 1. To apply Fact 1, we can note that n = 3, j = 2 and

fX(x) =


0 if x < 0

1 if 0 ≤ x ≤ 1

0 if x ≥ 1

(2)

FX(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

(3)

We can use the PDF, which we compute via (2) and (3) to compute the probability that the median lies in

2



the specified range:

P
(1
4
≤ X(2) ≤

3

4

)
=

∫ 3
4

1
4

fX(2)
(x)dx (4)

= 6

∫ 3
4

1
4

(x)(1− x)dx Using Fact 1 with n = 3, j = 2 (5)

= 6
[x2

2
− x3

3

]∣∣∣∣∣
x= 3

4

x= 1
4

(6)

=
11

16
(7)

2. Linear Algebra Review

LetX ∈ Rm×n. X may not have full rank. We explore properties about the four fundamental subspaces ofX.

2.1. Summation form v.s. Matrix form

(a) Let w ∈ Rn and Y ∈ Rm. Let x>
i denote each row in X and yi in Y . Show ‖Xw − Y ‖22 =

∑m
i=1(x

>
i w − yi)

2.

Solution:

Note Xw − Y is a vector in Rn, and the i th row has the value (x>
i w − yi). Without loss of generality,

let P be vector of any length. By linear algebra, ‖P‖2 means
√∑

i P
2
i . Also note the identity PTP =

P · P =
∑

i Pi · Pi =
∑

i P
2
i . Therefore, ‖P‖2 =

√∑
i P

2
i =

√
PTP , and thus ‖P‖22 = PTP =

∑
i P

2
i .

Now substitute P = Xw − Y , and we naturally get ‖Xw − Y ‖22 =
∑m

i=1(x
>
i w − yi)

2.

(b) Let L(w) = ‖Xw − Y ‖22. What is ∇wL(w)? (Hint: You can use either summation or matrix form from first
sub-problem).

Solution:

Matrix:

∇wL(w) = ∇w‖Xw − Y ‖22
= ∇w(Xw − Y )T (Xw − Y )

= XT (Xw − Y ) +XT (Xw − Y )

= 2XT (Xw − Y )
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Summation: For an element wj .

∂L(w)

∂wj
=

∂

∂wj

m∑
i=1

(x>
i w − yi)

2 (1)

=
∂

∂wj

m∑
i=1

((
n∑

k=1

xikwk

)
− yi

)2

(2)

=

m∑
i=1

∂

∂wj

((
n∑

k=1

xikwk

)
− yi

)2

(3)

=

m∑
i=1

2

((
n∑

k=1

xikwk

)
− yi

)
∂

∂wj

n∑
k=1

xikwk [chain rule] (4)

=

m∑
i=1

2

((
n∑

k=1

xikwk

)
− yi

)
xij (5)

Note that on line 4, when evaluating ∂
∂wj

∑n
k=1 xikwk, the summation can be decomposed to

∂

∂wj

∑
k 6=j

xikwk

+ xijwj


The partial derivative of

∑
k 6=j xikwk will evaluate to 0, since it is not in terms of wj . The partial derivative

of xijwj will evaluate to xij .

For an element wj . So for whole vector w:

∇wL(w) =



∑m
i=1 2 ((

∑n
k=1 xikwk)− yi)xi1

...∑m
i=1 2 ((

∑n
k=1 xikwk)− yi)xij

...∑m
i=1 2 ((

∑n
k=1 xikwk)− yi)xin


= 2XT (Xw − Y )

2.2. Subspaces of X

What is the rowspace, columnspace, nullspace, and rank of X =

(
1 2 3
4 5 6.

)
?

Solution:

• Rowspace is the span (i.e., the set of all linear combinations) of the rows of X. Therefore, in this example,
it is the subspace of vectors of the form (1 · x+ 4 · y, 2 · x+ 5 · y, 3 · x+ 6 · y) for all x and y.

• Columnspace (a.k.a. Range(X)) is the span of the columns of X. In this example, it is the subspace of
vectors of the form (1 · x+ 2 · y + 3 · z, 4 · x+ 5 · y + 6 · z) for all x, y, and z.

• Nullspace (a.k.a. Null(X)) is the set of vectors v such that Xv = 0. In this example, the nullspace is the
subspace spanned by (1,−2, 1).

• The matrix X can be reduced to the form
(
1 0 −1
0 1 2

)
. This matrix has submatrix

(
1 0
0 1

)
, which has

rank 2. Observe that the third column,
(
−1
2

)
, is in the columnspace of this first submatrix.
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2.3. Connections between subspaces of X

Check the following facts.

(a) The rowspace of X is the columnspace of X>, and vice versa.

Solution:

The matrix X> is

1 4
2 5
3 6

. The rows of X are the columns of X>, and vice versa.

(b) The nullspace of X and the rowspace of X are orthogonal complements. This can be written in shorthand as
Null(X) = Range(X>)⊥. This is further equivalent to saying Range(X>) = Null(X)⊥.

Solution:

A vector v ∈ Null(X) if and only if Xv = 0, which is true if and only if for every row Xi of X, 〈Xi, v〉 = 0.
This is precisely the condition that v is perpendicular to each row of X, which is the stated claim.

(c) The nullspace of X> is orthogonal to the columnspace of X. This can be written in shorthand as Null(X>) =
Range(X)⊥.

Solution:

This is seen by applying the previous result to X>.

2.4. Linear algebra facts for linear regression

We saw in lecture on Linear Regression that the closed form expression for linear regression without an offset
involves the term (X>X)−1.

(a) Is it true that the matrix X>X is always symmetric and positive semidefinite?

Solution:

Yes. Symmetry can be checked by computing the transpose. For any vector u, we have u>X>Xu =
‖Xu‖22 ≥ 0.

(b) State and prove the connection between the nullspace ofX and the nullspace ofX>X. That is, your statement
should look like one of the following: Null(X) ⊆ Null(X>X), or Null(X) ⊇ Null(X>X) or Null(X) =
Null(X>X).

Solution:

We have, Null(X) = Null(X>X). Let v ∈ Null(X). Then, one can check that X>Xv = 0, leading to
v ∈ Null(X>X), which proves Null(X) ⊆ Null(X>X). For the other direction, let 0 6= v ∈ Null(X>X).
Then, 0 = v>X>Xv = ‖Xv‖22, which implies v ∈ Null(X). Therefore, Null(X>X) ⊆ Null(X), which
finishes the proof.

(c) Is it true that X>X is always invertible?

Solution:

No, this isn’t always the case. Since Null(X) = Null(X>X) (see the answer to the previous question), the
matrix X>X is not invertible if X has a non-empty nullspace.
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(d) Based on the above fact about the connection between the nullspaces of X and X>X and the expression for
linear regression without an offset (that we referred to two problems above), justify the use of “tall skinny”
data matrix X as opposed to a “short wide” matrix X.

Solution:

If X is “short and wide”, it has a non-empty nullspace. Therefore, X>X is not invertible.

(e) The columnspace and rowspace of X>X are the same, and are equal to the rowspace of X. (Hint: Use the
relationship between nullspace and rowspace.)

Solution:

X>X is symmetric, and from the previous parts, we have Row(X>X) = Col((X>X)>) = Col(X>X). By
previous parts again, we have: Row(X>X) = Null(X>X)⊥ = Null(X)⊥ = Row(X).
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