Bias-Variance

UNIVERSITY of WASHINGTON

Features Train MSE Test MSE

All 2640 3224

S5 and BMI 3004 3453
S5 3869 4227
BMI 3540 4277

S4 and S3 4251 5302
S4 4278 5409

S3 4607 5419
None 5524 6352

test MSE is the primary criteria for model selection

Using only 2 features (S5 and BMI), one can get very close to the prediction
performance of using all features

Combining S3 and S4 does not give any performance gain

demo3d_diabetes.ipynb

What does the bias-variance theory tell us?

Train error (random variable, randomness from &)
e UseD = {(x;y)}L, ~ Pxytofind W

~ 1 =
Train error: Ly in(Wg) = —— Z (yi—w Tx,')z

[)
| | (xjayi)eg
e recall the test error is an unbiased estimator of the true error

e True error (random variable, randomness from &)
. e ~T N2
o« Trueerror: Zy (W) = E(, yop, [y = W x)7]
e Test error (random variable, randomness from & and &)

e UseT = {(xl-,y,-)}?il ~ PX,Y

S 1 S
Test error: & (W) = —— Z (v, — wx,)?

y | 7|

e theory explains true error, and hence expected behavior of the (random)
test error

What does bias-variance theory tell us?

Train error is optimistically biased (i.e. smaller) because the trained

model is minimizing the train error

Test error is unbiased estimate of the true error, if test data is never
used in training a model or selecting the model complexity

Each line is an i.i.d. instance of & and I

N High Bias Low Bias
Low Variance High Variance

-

-

1.0

0.8

error

0.6
1

0.4

0.2

<4

0.0

—Test error

—Train error

I I I I I I I I

5 10 15 20 _25 30 35
model complexity

Train/test error vs. complexity

5 4

Error
00035 { o .
. -—&— train error
® &~ test error
0.0030 A
e
0.0025 A
0.0020 A
0.0015 A
0.0010 A @ N
- —— o
0.0005 - - T T T T T T
25 50 75 10.0 125 15.0 17.5 200

degree p of the polynomial regression

- Model complexity e.g., degree p of the polynomial y°»;
model, number of features used in diabetes example 1
» Related to the dimension of the model parameter

* Train error monotonically decreases with model

complexity

» Test error has a U shape

Y

0.00 1
-0.05 4
-0.10 4
-0.15 4

-0.20 1

y 0.10 1

0.05 1
0.00 1
-0.05 A
-0.10 A
-0.15

-0.20 1

-0.05 4
-0.10 4
-0.15 1

-0.20 1

-100 -075 -050 -025 000 025 050 075 100

degree 5

0.00

-100 -0.75 -050 -025 000 025 050 075 100

degree 20 overfits

-100 -0.75 -0.50 -025 000X 025 050 075 100

Typical notation:
X denotes a random variable
X denotes a deterministic instance

Statistical learning
Suppose data is generated from a statistical model (X, Y) ~ Py y
« and assume we know Py, (just for now to explain statistical learning)
learning aims to find a predictor # : R? - R that minimizes
« expected error Ey y). ij[(Y —n(X))?]

e think of random (X, Y) as a new sample you will encounter when you deployed
your learned model, and we care about its average performance

We assume the function #(x) could be anything
. it can take any value for each X = x

So the optimization can be done separately for each X = x

o Expyer JOY =11 = Eyop [Eyop, [(¥ = 1(x)*|X = x]|
= JEYNPYIX[(Y — ’7(75))2 | X = x] Py(x)dx

Or for discrete X, = Z Py(x) IEYNPYIX[(Y —n(x))?| X = x]

Where we used the chain rule: Exy[f(X,Y)] = [EX[Eyx[f(x, Y) | X = x]]

Statistical learning

e The optimal predictor sets its value for each X = x separately
. N(x) = argmin [EYNPYlX[(Y —a)’| X = x]
a€eR
« The optimal solution is 7(x) = |EYNPY|X[Y|X = x|,
which is the best prediction in £,-loss/Mean Squared Error

. Claim:Ey_p [Y|X=x] = argminE,_p [(Y—a)*|X = x]
Y|X acR Y|X

e Proof:

e Can’t implement optimal statistical estimator n(x) = E[Y | X = x]
« as we do not know Py in practice

 This is only for the purpose of conceptual understanding

Statistical Learning Ideally, we want to find:

P)(y(Y — y’X = gjo)

y=0" “y=1
n(xp) = E[Y | X = x;]

PXY(Y = gy|X = z,)

“,
““,
...

n(x) = E[Y|X =x]

Statistical Learning

Pyl =3,V =g Ideally, we want to find:
nz) =By x|[Y]X =]

But we do not know Py y

We only have samples.

nx) = Ey|x[Y|X = x]

Statistical Learning

Pyl =3,V =g Ideally, we want to find:
n(z) = By x|Y[X = z]

But we only have samples:

(xi,yz)ZZdPXY forizl,...,n

So we need to restrict our
predictor to a function class (e.g
linear, degree-p polynomial) to
avoid overfitting:

2) o

f = angain — 3 (@ — fl@)f

fern
=i

IEY|X[Y|X = x|

We care about how our predictor performs on future unseen data
True Error off Ex yl(Y — f(X))z]

Future prediction error [y [(Y — f(X))?] is random
because f is random (whose randomness comes from training data &)

Pyy(X =¥ =g

X

Each draw D = {(x;,y;)}I, results in different f

Notation:
| use predictor/model/estimate,

Bias-variance tradeoff interchangeably
Ideal predictor Learned predictor
n(z) = By x[Y]X = z] iy =argmin—— Y (- f)?
feF |D| D

* We are interested in the True Error of a (random) learned predictor:
Ex (Y — fo(X))’]

- But the analysis can be done for each X = x separately, so we analyze
the conditional true error:

[EY|X{(Y_f@(x))2 | X = x]
« And we care about the average conditional true error, averaged over training data:

Eg [Eyxl(Y = fo(0))*| X = x1]
written compactly as = E[(Y — f@(x))2]

Bias-variance tradeoff

Ideal predictor Learned predictor

nz) =By x|[Y|X = 1] fo = argmin 1 D, Gi—f®)y

feF || e D

« Average conditionaIA true error: A
Eg yl(Y = fo(0))°] = Eg y,[(Y — n(x) + n(x) — fo(x))’]

Bias-variance tradeoff

Ideal predictor Learned predictor
. - n 1
n(z) = By x[Y[X = | f., = arg min Y- f)?
e | (XY)ED

* Average conditionaIA true error: A
Eg vl (Y = fo(0))] = Eg y (Y = n(x) + n(x) — f5(x))*]

o 12| (= 100 + 20 = n(0)16) = Fo(0) + (1) = Fop)? |
= Ey,[(Y = n(0))*] + 2E gy, [(Y = () (%) = fo ()] + Eg[(n(x) — fo ()]

=0
(this follows from independence of & and (X, Y) and
Eyp[Y — 7)1 = E[Y|X = x] — n(x) = 0)

= Ey (Y =02+ Egl) — fo()*]

Irreducible error Average learning error
(a) Caused by stochastic Caused by
label noise in leX (a) either using too “simple” of a model or
=X

(b) cannot be reduced (b) not enough data to learn the model accurately

Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eol(n(x) — fo)?] = Egf (n() — Eglfo()] + Eglfo()] — fo®))]

Bias-variance tradeoff

Ideal predictor Learned predictor
- e A 1
77(:13) - IE‘Z’Y|X[Yv“X - 33] fo = arg;gg} D Z (yi_f(xi))2

(-xl',yi)e9

Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eol(n(x) — fo)?] = Egf (n() — Eglfo()] + Eglfo()] — fo®))]

Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eo[(15) — fo)] = Eg[(1) = Eglfo] + Eglfg (0] = o))]
= Eg| (100 = EglfoD? + 2019 = Eg [fo D Eg fo/)] - o)

Bias-variance tradeoff

Ideal predictor Learned predictor
— — — A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
ez | D P TeD

* Average learning error:

Eo[(15) — fo)] = Eg[(1) = Eglfo] + Eglfg (0] = o))]
= Eg| (100 = EglfoD? + 2019 = Eg [fo D Eg fo/)] - o)

+HEglfo] - fo)” |

Bias-variance tradeoff

Ideal predictor

n(z) = Ey x|Y|X = 1]

* Average learning error:

Eo[(10) = fo(0)] = Eg (1)
Eo | (10 = Egl o (1P + 2010) = Eg o 0D(Eg o ()] = fo(x)

+HEgl o)~ fo)”

Learned predictor

n 1
fo = argmin D> =)

fez |D| e D

— Eg)[fo(0)] 4 Egl fo(0)] = fo ())2]

(n(x) = Eolf])° + Eg

(El o] = o)’

Bias-variance tradeoff

Ideal predictor

n(z) = Ey x|Y|X = 1]

* Average learning error:

Eo[(10) = fo(0)] = Eg (1)
Eo | (10 = Egl o (1P + 2010) = Eg o 0D(Eg o ()] = fo(x)

+HEgl o)~ fo)”

Learned predictor

n 1
fo = argmin D> =)

fez |D| e D

— Eg)[fo(0)] 4 Egl fo(0)] = fo ())2]

(n(x) = Eolf])° + Eg

(El o] = o)’

biased squared

variance

Bias-variance tradeoff

« Average conditional true error:
Eg vl (Y = fo(0)’] = Eyp[(¥ = ()’]
irreducible error
+ (100 = Eglfo))” + Eg| (Eglfo(] - fo)’]

biased squared variance

06 —— bias?

Bias squared: _
measures how the B
predictor is mismatched with
the best predictor in
expectation

variance:

measures how the predictor
varies each time with a new
training datasets

0.0 0.2 04 0.6 0.8 10
complexity

Questions?

Test error vs Simple model: Complex model:

Model complexity is below

model complexity the complexity of 7(x)

y 015
0.15 1 010
0.05
0.10 1 000
0.05 4 -0.05
0.00 - o
-0.15
-0.05 4 —020
-0.10
015
-0.15
010
-0.20 A 005
-100 -075 -050 -025 000f| 025 050 075 100 vo0
. . -0.05
Optimal predictor n(x) ..
- - -0.15
Is degree-5 polynomial
Error
’ 015
00040) Test Error
S e
0.0035 - . 00s
Train Error
0.0030 4 -0.05
0.0025 - . o
-0.15
0.0020 - 020
»
0.0015 4 015
. “ 010
0.0010 : . . o
25 50 75 100 125 150 175 200 000

-0.05

degree p of the polynomial regression .

-0.15

-0.20 04

.
dem04_trad90ff.|pynb -100 -075 -050 —025 000 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100

error

Recap: Bias-variance tradeoff with simple model

X _
(Ccnceptual) bias variance tradeoff 01 n(.) p=4

—— bias?
\ . 0.10 1
—— variance

—— total
0.05 A

0.00 1

—-0.05 A

-0.10 A

. -0.15 1 Average predictor [Eg[fgz(x)]

CompleXIty —020 T T T T T T T T T
-1.00 -0.75 -050 -025 000 025 050 075 100

« When model complexity is low (lower than the optimal predictor 77(x))
A 2
. Bias? of our predictor,(n(x) — [Egz[f@(x)]) , is large

- Variance of our predictor, [E@[(E@[ﬁ@(.x,-)] —f@(x))z], is small

* If we have more samples, then
* Bias
* Variance
» Because Variance is already small, overall test error

error

Recap: Bias-variance tradeoff with simple model
7(x) p =20

(Conceptual) bias variance tradeoff

—— bias?
—— variance

complexity

0.15 7

0.10 -

— tofal 0.05 -
/ 0.00 4
—-0.05 A
—0.10 A
—-0.15 A

-0.20 -

-1.00 -0.75 —-950 -025 000 025 050 075 100

Average predictor Eg |]?9()(:)]

« When model complexity is high (higher than the optimal predictor 77(x))

. Bias of our predictor,(n(x) — [Eg[fg(x)])z, is small

. Variance of our predictor, [E@[(E@[ﬁ@(.x,')] —f@(x))z], is large

« If we have more samples, then
» Bias
» Variance

» Because Variance is dominating, overall test error

let us first fix sample size N=30, collect one dataset of size N i.i.d. from a
distribution, and fix one training set S,;, and test set S, via 80/20 split

then we run multiple validations and plot the computed MSEs for all values of p

that we are interested in
true model complexity

error N

10* 1

+——— Test error &

—

10] E teS

107! ;
1072 {

1073 4
<—Training error <

1074 train
10~ T T T T T T T T
0 10 15 20 * 25 30 35 40
%k ~ —
pE, 24— 1

Model complexity (= deg_ree of the polynomial)

. Given sample size N there is a threshold, p;‘\;, where training error is zero

* Training error is always monotonically non-increasing
* Test error has a trend of going down and then up, but fluctuates

* |et us now repeat the process changing the sample size to N=40 ,
and see how the curves change

true model complexity

€IrTOI7p2 : 7
| N iv\
10° .
? . I DTesterror £,
. \I
107 1 /
] ~ ’
107" 3 Iy
| !
1072 4 Id
10'3; .
N - o Training error £ ...
o \
1 - \'
1()—:I L) T L) L T - T L T
0 > 0 15 20, 25 430 35 40
P24 P32

Model complexity (= degree of the polynomial)
The threshold, p;’\j, moves right

Training error tends to increase, because more points need to fit
Test error tends to decrease, because Variance decreases

* et us now fix predictor model complexity p=30, collect multiple
datasets by starting with 3 samples and adding one sample at a time to
the training set, but keeping a large enough test set fixed

e then we plot the computed MSEs for all values of train sample size
Ntrain that we are interested in

error {
it
13 | s o=
. il
<
101 4 r~-’ LA
,- \ l~—Test error 4
107 j v !
. L.
/ o
10 - [|
i N
, A |
10* + ["‘ ‘r\l\
J v)
1021 / ‘.\ .
ol R “4—Training error Z'.;,
0 20 40 &0 80 100 .
N;k =p+1=31 train sample size Nirain

e There is a threshold, Nl;“, below which training error is zero (extreme overfit)

e Below this threshold, test error is meaningless, as we are overfitting and there are
multiple predictors with zero training error some of which have very large test error

e Test error tends to decrease
e Training error tends to increase lecture2_polynomialfit.ipynb

Bias-variance tradeoff for linear models

If Y, = X w* + ¢;and ¢; ~ N (0,6%)

y = Xw* +¢€
Wy = XIX) Xy =

n(x) = Ey|x[Y|X = x| =

. .
fo(X) =x"Wyg =

Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y =Xw*+e€
WME = X'X) X'y = XTX)"IXT(Xw* + ¢)
= w* + (XTX) ' X’e
nx) = EyxlY[X =x] = xTw*

f@(x) = xT Wy = xIw* + xI(XITX)" X e

+ Irreducible error: [Ey [(Y — n(x))?*| X =x] =

A 2
. Bias squared: (n(x) — Eglfoe>x)]) =
(is independent of the sample size!)

Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
Warg = w¥ + (XTX)"!1XTe

n(x) = x'

fo() = xTw* + xT(XTX)"'XTe

. Variance: [EQZ[(f@(x) — E@[f@()(:)])2] =

W>X<

Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
W =w* + XTX)"1XTe
n(x) = x'
forx) = xTw* + xT(XTX)"1XTe
. Variance: Eg, [(f5(0) — Eglfo)]1)] = Eolt”(XTX) X e X(X"X)x]

= 67 Eo[xT (XTX)"IXTX(XTX) " x]
= o> xTE,[(XTX) ']x

W>X<

- To analyze this, let's assume that X; ~ 4/(0,I) and number of samples, n, is large

1
enough such that X7 X = nI with high probability and E[(X?X)™!'] ~ —I, then

n

GZ.XTX

. Variance is , and decreases with increasing sample size n

n

Regularization

Recap: bias-variance tradeoff

« Consider 100 training examples and 100 test examples

i.i.d.drawn from degree-5 polynomial features

x; ~ Uniform[—1,1], y; ~ £, «(x;)) + €, €; ~ N (0,6%)

Fu@) = D% + wix, + wi () + wiFon) +wi () + wiFxn)

0.05
0.00
-0.05 -
y -0.10 -
-0.15 -
-0.20 -

-0.25 4

® train dataset

® test dataset

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

This is a linear model with features

h(xi) = (xl-, (xi)z, (xl-)3, (xl-)4, (xl_)S)

Recap: bias-variance tradeoff

With degree-3 polynomials, we underfit With degree-20 polynomials, we overfit
A \X A \X
Fin @ fi)
0.2 0.2
0.1 1 0.1 4
0.0 0.0 1
-0.1 -0.1
-0.2 -0.2
<4—Ground truth f(x)
-03 -03
—04]]] L] L]] L}] L] -04 L]] L]]] L]] LJ
-100 -0.75 -0.50 -0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 000 025 050 075 100
X X
current train error = 0.0036791644380554187 0.0005421686349568773
current test error = 0.0037962529988410953 0.14210029429557927

Sensitivity: how to detect overfitting

« For a linear model,
y =~ b + Wlxl + W2X2 + °e + ded
if | w;|is large then the prediction is sensitive to small changes in x;

- Large sensitivity leads to overfitting and poor generalization, and
equivalently models that overfit tend to have large weights

. Note that b is a constant and hence there is no sensitivity for the offset b

. In Ridge Regression, we use a regularizer ||w||% to measure and control
the sensitivity of the predictor

- And optimize for small loss and small sensitivity, by adding a regularizer in
the objective (assume no offset for now)

n
~ . 2
Wyridge — al'g mru%nz (yz — ZE;FUJ) T)‘HwH%
1=1

Ridge Regression

= (Original) Least squares objective: n

= Ridge Regression obJectlve .

2
wrzdge — arg mlnz — &y ”UJ) T)‘”w”%

— A

er\\ +...+E F A c 4

Minimizing the Ridge Regression Objective

n
o~ . 2
Wridge — Al mu%nz (yz — ZB?U)) +)\HUJH%
1=1

Shrinkage Properties

n

—~ . 2

Wridge — AI'g mul,nz (yz - CE‘;F”(U) +)\H’UJH%
1=1

= (XIX + X)Xy

e When A = 0, this gives the least squares model

e This defines a family of models hyper-parametrized by A

e Large A means more regularization and simpler model

e Small A means less regularization and more complex model

n

Ridge regression: minimize Z (wal- — yi)2 + /’t||w||§

L i=1
. 1 o Tpd 2
training MSE n;(y, X W) Ww;'s
i —
10 0251 area of living space
020 -
08 {
015 -
06 {
010 -
0- 0.05 -
0.00 -
02
~0.05 | ——”
3 2 4 0 1 2 3 4 3 2 a1 o0 1 2 3 a
log1o(N) logyo(A)

e Left plot: leftmost training error is with no regularization: 0.1093
e Left plot: rightmost training error is variance of the training data: 0.9991
e Right plot: called regularization path

Ridge regression: minimize Z (wal- — yl-)2 + /’t||w||§

0.130 -

0.125 1

0.120 -

test MSE

0.115 1

0.110 1

training MSE_~

30 25 <20 -15 -p 05

10%10()\)

 this gain in test MSE comes from
shrinking w’s to get a less sensitive
predictor
(which in turn reduces the variance)

0.25 -

0.20 -

0.15 -

0.10 1

0.05 -

0.00 -

-0.05 1

wi’s

Bias-Variance Properties

. Recall: g, = X' X+ 2D~ X"y

= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N(0,6°1)

» The true error at a sample with feature x is

T~ 2
ﬂzy’@trainpc[(y_x erdge) |x]

Bias-Variance Properties

. Recall: g, = X' X+ 2D~ X"y
= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y = Xw +¢, € ~ 4(0,6°])
» The true error at a sample with feature x is
[Ey,gtram| Ay —x a7 rldge)2 | x]
(v — EDy [xD)? [x] + Eg, [(ELy[x] = x Wiq00)° | 4]

ylx train
Irreducible Error Learning Error

Bias-Variance Properties

Recall: Wiigqe = X' X 4+ 4D~ X"y
= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N (0,6°T)
» The true error at a sample with feature x is
Eyo Ay —x TVAVrmlge)2 | x]
= E,,[(y —E[y|x])*|x] + Eg_ [

=E,,[(y —x Ty)? | x] + Ey [((xTw —x

train

([E[ylx] — X wrldge)zlx]

T 2
Wridge) | X]

Bias-Variance Properties

. Recall: g, = X' X+ 2D~ X"y

= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N(0,6°1)

» The true error at a sample with feature x is
Eyg (v —x TVA"ridge)2 | x]

= E,,[(y — Ely|x1)2[x] + Eg, _ [(Ely|x] — x40 | 4]

train
T

=E,,[(y— xTw)? | x] + [E@train[(xTw —X

A 2
Wridge) | X]

T~ T~ 2
[([E@train[x wridge |X] — X wridge) |X]

= 02 + (XTW — [EQZ [xTWridge |X])2 + [ESZ

train train

Irreduc. Error Bias-squared Variance

Bias-Variance Properties

n Reca”: wridge = (XTX + AI)_ley
= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N(0,6°1)

» The true error at a sample with feature x is

IEy’gtrampC[(y — xT A I'ldge)2 | x]
= EyudO = ELy)] + gy, [(ELy 3] = " iigpe)?]
- Ele[(y . W)2 | X] + |E‘g@tram[(x w—= xTWI’ldge)z |x]

T A

T~ 2
[([EQZ [x wridgelx] —X Wridge) | x]

Irreduc. Error Bias-squared Variance

= 62 + (x w — [E@ [x Wridge |X])2 -+ [E@

train train

train

Suppose XX = nl, then Wridge = XTX + D' XT(Xw + ¢€)

n 1
= w+
n+A4 n+ A

X’e

Bias-Variance Properties suppose X”X = n, then
1

N n
Wdoa = w =+

X7e
T

. Recall: g, = X' X+ 2D~ X"y
= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N(0,6°1)
» The true error at a sample with feature x is
Eyo Ay —x a7 I‘ldge)2 | x]
= E,, [y — Ely|x])*|x] + Eg,
=E,,[(y— xTwy? | x] + Eg [(xTw —x

train

[([E[y | X] - XT Arldge)z | X]

T 2
erdge) | X]

=0+ (x'w—Eg [X Wiigge [XD + Eg | [(Egy X Wrigge | X] = X Wiigge)* [2]
(verify at home) 2 2
2 T N2
=o0" + wix)” + 1x]13
(n + 2)2 (n+a2 7

Irreduc. Error Bias-squared Variance

Bias-Variance Properties

mn
: - , 2
= Ridge regressor: Wridge = arg m{;nz (yi — $;‘F’w) + AHUJH%

= True error i=1
E T 201 2 ’ T N2 o’n 2
y’gtrainlx[(y —X wridge) |X] =0+ (l’l+/l)2 (W X) + (I’l+/1)2”x“2
Bias-squared Variance
d=10, n=20, 6* = 3.0,||w||5 = 10
175 -
150 -
125 4
100 -
0.75 1
as A 20, 050 1 as A oo
0.25 1 — bas A
Wridge = Wis | e e | Mridge =0

0 2 &/16 8 10

What you need to know...

> Regularization

- Penalizes complex models towards preferred,
simpler models

> Ridge regression
- L, penalized least-squares regression

- Regularization parameter trades off model
complexity with training error

- Never regularize the offset!

Example: piecewise linear fit

e we fit a linear model:

fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions

h(x) =

l[a]t =

y(x)
hy(x)
h3(x)
hy(x)
h5(x)_

max{a,0}

X
[x+0.75]F

[x +0.2]F
[x — 0.4]F

hy(x)

| [x - 0.8]" _

-0.75

-0.75

-0.2

P X
0.4 0.8 > X
h3(x)
0.4 0.8 > X

Example: piecewise linear fit

e we fit a linear model:

fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions

h(x) =

[a]®

£ max{a,0)}

h (X)_
hy(x)
h3(x)
hy(x)

h5(x)_

X
[x+0.75]F

[x +0.2]"
[x —0.4]F

| [x - 0.8]F _

y=>b+h(x)'w

| | | |
-0.75 -02 04 0.8

the weights capture the change in the slopes

Example: piecewise linear fit

e we fit a linear model:
fx) = b+ wih(x) + wohy(x) + wihy(x) + wyhy(x) + wshs(x)
e with a specific choice of features using piecewise linear functions

y &
0.10 A ®

0.05 1

0.00 1

-0.05 -

-0.10 A

-0.15 A

-0.20 A

-1.00 -0.75 -0.50 —-025 000 025 050 075 100
X

Example: piecewise linear fit (ridge regression)

010 1

0.05 1

0.00 1

=0.05 1

=0.10 1

=0.15 1

-0204 @ . 10

100 -075 -050 025 000 025 050 075 100 -100 -0.75 -050 -025 000 025 050 075 100 100 075 —050 <025 000 035 050 075 100

A=1 A =0.005 A = 0.000001

We do not observe overfitting, as d=5 and n=100

Piecewise linear with w € RV and n=11 samples

0.040 4

0.035 1

0.030 1

0.025 4

0.020 1

0.015 4

0.010 4

0.005 +

0.000

Test MSE

Train MSE
v =

0.2 4

0.1

0.0 4

-0.1 4

-0.2 4

® train data
= ground truth
- predictor

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100

w;'s

201

15 A

1.0

0.5 A1

0.04

—-0.5 4

-1.0 4

—-15 -

—2.0 4

N A
'S

B \logli)(ﬂ) 2 \w(i)

® train data
= ground truth
- predictor

.

0.05 A

0.00 A

-0.05 A

-0.10 A

-0.15 A

-0.20 A

® train data
= ground truth
- predictor

l

N

-100 —0.75 050 -0.25 000 025 050 075 100

-100 —0.75 050 —0.25 0.00 025 050 075 100

Model selection
using Cross-validation

> Ridge regression:
How do we pick the regularization constant A...

> Polynomial features:
How do we pick the number of basis functions...

> We could use the test data, but...

Test MSE

Train MSE

logo(4)

> Ridge regression:
How do we pick the regularization constant A...

> Polynomial features:
How do we pick the number of basis functions...

> We could use the test data, but...

= Never ever ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever ever ever ever ever ever
ever ever ever ever ever train on the test data

= Use test data only for reporting the test error
(once in the end)

(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:

- & :training data

- D\ : training data with j-th data point (xj, yj) moved to validation set
> Learn model fg ; with 2\ j dataset

> The squared error on predicting y;: (yj —f@\j(xj))2

is an unbiased estimate of the true error
_ 2
errotyy(fon) = Egeyymr, [V = for [(0))7]
but, variance of (yj - fg\ j(xj))2 is too large

(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:

- 9 :training data

~ D\ : training data with j-th data point (xj, yj) moved to validation set
> Learn model f5 ; with 2\ j dataset
> The squared error on predicting y;: (yj —f@\j(xj))2

is an unbiased estimate of the true error

errory (fo ;) = [E(x,y)pr’y[(y —Jan\ j(x))z]
but variance of (yj - f@\ j(xj))2 is too large, so instead

> LOO cross validation: Average over all data points j:

- Train n times:
for each data point you leave out, learn a new classifier f@\ i

- Estimate the true error as: 1 n

errory;oo = ﬁ Z(yg — fD\j(ij))Q

Jj=1

LOO cross validation is (almost) unbiased estimate!

> When computing LOOCYV error, we only use n — ldata points to train
- So it’s not estimate of true error of learning with 7 data points

- Usually pessimistic — learning with less data typically gives worse answer.
(Leads to an over estimation of the error)

> LOO is almost unbiased! Use LOO error for model selection!!!
- E.g., picking A

0.040 A

0.035 A

0.030 A

0.025 A

0.020 A

0.015 A

Computational cost of LOO

> Suppose you have 100,000 data points

> say, you implemented a fast version of your learning
algorithm

- Learns in only 1 second
> Computing LOO will take about 1 day!!

>

>

Use k-fold cross validation

Randomly divide training data into k equal parts

- D,,...,Dy
For each i

D= Dy Dy D3 Dy Ds

Jo\o,

- Learn model fg\ g using data point not in &,

- Estimate error of fg 4 on validation set 2

errorp, =

1
D;|

Z (y; — fovo, (25))°

Train

Train

Validation

Train

Train

>

>

>

>

Use k-fold cross validation

Randomly divide training data into k equal parts

- Dy,....Dy 2= 9 9 Dy Dy Ds

Train Train Validation

For each i N2
- Learn model fg\ o using data point not in &,

- Estimate error of fg 4 on validation set 2

1
eIrorp, = W Z (yj - f’D\DZ- (%’))2
‘ (xjayj)epi
k-fold cross validation error is average over data splits:

1 &
errOI'k_fOld - ; 2 eI'I'OI‘@.
. . =1
k-fold cross validation properties:

~ Much faster to compute than LOO as k < n

n
_ More (pessimistically) biased — using much less data, only n — ;

- Usually, k=10

Train

Train

Recap

> @Given a dataset, begin by splitting into

TRAIN TEST

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose hyper-parameters such as A

TRAIN-1 VAL-1
TRAIN TRAIN-2 VAL-2 TRAIN-2

> Model assessment: Use TEST to assess the accuracy of the
model you output

= Never ever ever ever ever train or choose
parameters based on the test data

Model selection using cross validation

> For A € {0.001,0.01,0.1,1,10}
> For j € {1,...,k}
>
W) trin < argmin -) (v = wix)? + Allwll3

w
i€Train—j

/1 « arg mln—z Z (y; — w/1 Train—; l)z

j=1 ieVal—j

Example 1

> You wish to predict the stock price of zoom.us given
historical stock price data y;’s (for each i-th day) and

the historical news articles x;’s

> You use all daily stock price up to Jan 1, 2020 as TRAIN
and Jan 2, 2020 - April 13, 2020 as TEST

> What’s wrong with this procedure?

http://zoom.us

Example 2

> Given 10,000-dimensional data and n examples, we pick
a subset of 50 dimensions that have the highest
correlation with labels in the training set:

| 2?21 i jYil
\/Z?:l x?j

> After picking our 50 features, we then use CV with the
training set to train ridge regression with regularization A

> What’s wrong with this procedure?

50 indices j that have largest

Recap

> Learning is...
- Collect some data
> E.g., housing info and sale price
- Randomly split dataset into TRAIN, VAL, and TEST
> E.g., 80%, 10%, and 10%, respectively
- Choose a hypothesis class or model
> E.g., linear with non-linear transformations
- Choose a loss function
> E.g., least squares with ridge regression penalty on TRAIN
- Choose an optimization procedure

> E.g., set derivative to zero to obtain estimator, cross-
validation on VAL to pick hum. features and amount of
regularization

- Justifying the accuracy of the estimate
> E.qg., report TEST error

Simple variable selection:
LASSO for sparse regression

W

Sparsity WL =argmin Yy (y; — szw)2
=1

= Vector w is sparse, if many entries are zero

Sparsity WL =argmin Yy (y; — LI};-F’(U)2
1=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w

)

SparSity Wrg = arg minz (yi — zr

=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
floors

Flooring types
Parking type
Parking amount
Cooling

How do we find “best” subset of Heating

features useful in predicting the :xtirior materials
i : oof type

price among all possible Structure style

combinations?

w)”

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System

Finding best subset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error

> Problem?

Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as
iImportant

L ots of other variants, too.

Finding best subset: Reqgularize

Ridge regression makes coefficients small

n
~ . 2
Wyridge — al'g mu%nz (yz — x;rw) T)\H’UJH%
1=1

A

2+$+...+5 oY ~ /

Finding best subset: Reqgularize

Ridge regression makes coefficients small

n

~ . 2

Wridge — al'g mu%nz (yz - x?w) +)\HU)H%
1=1

0.25 -

0.20 -

0.15 -

0.10 -

0.05 -

000

o6 — 7

Thresholded Ridge Regression

n
~ . 2
Wridge — arg mul,nz (yz - sz’LU) T)\HwH%
1=1

Why don’t we just set small ridge coefficients to 07?

S S S N O .~ X, S X
& & ;&\\ o \0\)\\ & A %0} (b&% & &@*‘
O o LM S S <9 g N S
\066 R o W & & ¥ \Qeﬂ X S &
SN @'ﬂ %\ ©

Thresholded Ridge Regression

n
~ . 2
Wridge — arg mul)nz (yz - szw) T)‘HwH%
1=1

Consider two related features (bathrooms, showers)

S S . " S \ S 3 . S
00@ OO\&\ _\4&% " NI SIS & ¢ o 0,& (b\\g\% & &&0&\
S g N \ $© O ¢ e S 5
S N X SX b & & AN &
o %\0(8& %Qs& ﬂe &&60 X, & \Q X% N be
N ¢

Thresholded Ridge Regression

n
~ . 2
Wridge — al'g mul)nz (yz — szw) +)‘HwH%
1=1

What if we didn’t include showers? Weight on bathrooms increases!

&00& .&OQ@ \\4& &\'\ > &\00\ OQ&QJ %Q&\O ,&%0‘& v@‘b\'\ 6{&&00
N X SN > Q < S

Can another regularizer perform selection automatically?

Recall Ridge Regression

= Ridge Regressmn objective: 5
wmdge — arg mln Z o [E?’LU) T)‘HwH%

— A

4 § ..+— A\n/

d 1/p
oll, = (z w)
1=1

Ridge vs. Lasso Regression

= Ridge Regressmn objective:
T

2
Wridge = arg mlnz —xjw)” 4+ NJw||3
1=1

2+$+...+E) —~ /

= Lasso objective: n

Example: house price with 16 features

test error is red and train error is blue

10 | 10
08 08
CITObs 06
04 - 04 -
02 - 02 -
-3 2 0 1 2 3 4 -6 -5 -4 -3 -2 -1
0.4 1
0.25 1
0.20 - 03 -
0.15 1
’ 02 -
W; S o
0.05 - 01 -
0.00 1
0.0 1
0.05 -

Ridege regression LLasso regression

Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1. choose A based on cross validation error

2. keep only those features with non-zero (or not-too-small)
parameters in w at optimal A

3. retrain with the sparse modeland A = 0

Example: piecewise-linear fit

ho(z)
* We use Lasso on the piece-wise linear example p,(x)

Step 1: find optimal A*
minimize,, L (w) + A||w||,

=1
= [z +1.1-0.14]"

Step 3: retrain

minimize,, Z£(w)

015 e 015

L]

L J 4
010 " N 010
0.05 ® o 0.05

[]
0.00 000 o
-0.05 -0.05
-0.10 -0.10
-0.15 0151 o
0204 ® 0204 ®
-100 -0.75 -0.50 -025 000 025 050 075 100 -100 -0.75 -0.50 025 000 025 050 075 100 -100 -075 -050 —0.25 000 025 050 075 100 100 -075 -050 —025 000 025 050 075 100
18 18
164 16
o [wyl y
12 12
10 ‘ 10
L]
Step 2: select features .
06 06
04 04
02
02
" AN LA
00 25 50 75 100 125 150 175 20000 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

A=10"8 A=10""* A=2x10"*
* de-biasing (via re-training) is critical!

00 T u T T T u T
00 25 50 75 1000 125 150 175 200

A=0

but only use selected features

Penalized Least Squares
Ridge : 7(w) = [Jw|[3 ~ Lasso : r(w) = ||w]|;

W, = arg minz (yi — x;rw)Q + Ar(w)

w
1=1

Penalized Least Squares

Ridge : r(w) = |lwll; Lasso: r(w) = ||wl||,
W, = arg minz (yz = x;rw)Q + Ar(w)
i=1

For any 4 > 0O for which W, achieves the minimum, there exists a ¢ > 0 such that

W, = arg qujnz (yZ — x?w)z subject to r(w) < u
1=1

Why does Lasso give sparse solutions?

n
« . . T 2
minimize,, Z W' x;,—y,)
i=1

subject to |[w|l; < u

« the level set of a function £ (w,, w,) is defined

as the set of points (w;, w,) that have the same
function value

e the level set of a quadratic function is an oval

e the center of the oval is the least squares Wy
solution w,_, = Wy g

Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to ||w|; < u

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
Ll ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond Vﬁ‘;z
{(Wl,Wz)‘ (Wil + 1wy | <}

« when y is large enough such that [[Ww, - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| |||, < u} —>

Why does Lasso give sparse solutions?

n
« . . T 2
minimize,, Z W' x;,—y,)
i=1

subject to |[w|l; < u

As 1 decreases (which is equivalent to

increasing regularization) the feasible set
(blue diamond) shrinks

The optimal solution of the above
optimization is

feasible set: {w € R? | Wil Lu}—>

Why does Lasso give sparse solutions?

n
o e . T 2
minimize,, Z W' x;—y)
i=1

subject to |[w|l; < u

For small enough 1, the optimal solution
becomes sparse

This is because the L-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

feasible set: {w € R?| ||w||, < u} —>

Penalized Least Squares

Lasso regression finds sparse solutions, as L;-ball is “pointy”

Ridge regression finds dense solutions, as L,-ball is “smooth”

', _] } \:‘ /’,
\’\ //“ /
"

n n
C e . T 2 < v - T 2
minimize,, E (w X; — y,-) minimize,, Z,(W X —)’i)
i=1 i=1

subject to ||w|l, < u subject to ||w||§ < u

Questions?

