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PCA: Efficient computation 
and some cool applications



where is orthonormal:

PCA: a high-fidelity linear projection



PCA on MNIST

and SVD



SVD and PCA

and SVD



How do we compute the principal components?

1. Power iteration 
2. Solving for a singular value decomposition (SVD)



Singular Value Decomposition (SVD)



How do we compute the principal components?

1. Power iteration 
2. Solving for a singular value decomposition (SVD)



Power method - one vector at a time



Power method - one vector found iteratively

Iterate:



Power method - one vector found iteratively

Iterate:

To analyze write:



Power method - analysis

Iterate:

To analyze write:



Markov chains - PageRank

Google PageRank of page i:



Markov chains - PageRank

Google PageRank of pages given by:



Markov chains - PageRank

Google PageRank of pages given by:



Markov chains - PageRank

Google PageRank of pages given by:



Markov chains - PageRank

Google PageRank of pages given by:

Solve using power method: 



PCA and SVD take-aways

PCA finds a d-dimensional representation with: 
Highest variance in any d-dimensional space 
Lowest reconstruction error 
spanned by the top d eigenvectors of covariance matrix 

How to find the top d eigenvectors? 
SVD: (X - I 𝛍) := A = U S VT   

V are the eigenvectors of ATA 
U are the eigenvectors of AAT 

Power method 

This is one way to represent data in lower dimensions: there are others with other properties 
E.g., that approximately maintain pairwise distances



Miscellaneous fun stuff! 

AKA choose your own adventure



Graphical models! (CSE 515), 
taught by me this fall!

What’s next?

What if our data is not IID? 
If the shift is in response to our learning 

   Manipulating that change 

Theory + Practice

Theory Practice

Reinforcement Learning (CSE542) 

Be robust to those change 

 Robotics (CSE478, CSE 571, …)

If the shift is independent of our learning

Interactive learning (CSE541), Online learning

Adversarial robustness

Repeated retraining,

distributionally robust optimization, ….

http://courses.cs.washington.edu/courses/cse515/
http://courses.cs.washington.edu/courses/cse542/
https://courses.cs.washington.edu/courses/cse478/
https://courses.cs.washington.edu/courses/cse571/22sp/
https://courses.cs.washington.edu/courses/cse541/
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What’s next?

What if I care about understanding text? 

Theory + Practice

Theory Practice

Natural Language Processing (CSE447, 517)

Linguistics Large language models

What if I care about understanding images/video? 

Graphics (CSE457, CSE557)

Computer Vision (CSE455, CSE576)

https://courses.cs.washington.edu/courses/cse447/
http://courses.cs.washington.edu/courses/cse457/
https://courses.cs.washington.edu/courses/cse557/
https://courses.cs.washington.edu/courses/cse455/
http://courses.cs.washington.edu/courses/cse576/


What’s next?

What if I loved neural networks and I need mooooooaaaaar? 

Theory + Practice

Theory Practice

Deep Learning (CSE 490, CSE543)

Computer Vision (CSE455, CSE576)

Natural Language Processing (CSE447, 517)

https://courses.cs.washington.edu/courses/cse599g1/18au/
http://courses.cs.washington.edu/courses/cse543/
https://courses.cs.washington.edu/courses/cse455/
http://courses.cs.washington.edu/courses/cse576/
https://courses.cs.washington.edu/courses/cse447/


What’s next?

What if I loved proofs and talking about convergence and I need mooooooaaaaar? 

Theory + Practice

Theory Practice

EE 511,  STAT 527, STAT 535, STAT 538,  
STAT 539, CSE 541, CSE 515, Advanced Machine Learning, Optimization, … 

Graphical models! (CSE 515), taught by me this fall!

http://courses.cs.washington.edu/courses/cse515/


What’s next?

What if I want to know about practical advice for data collection/
data cleaning + preprocessing?

Theory + Practice

Theory Practice

CSE 547

Fairness in ML (taught intermittently)

What if I want to know about possible real-world impact of these 
design choices?

What if I want to know more about structured learning / 
origin stories of ML?

CSE 415, 473, 573, 574



What’s next?

What if I want to know about generating data?

Theory + Practice

Theory Practice

GANS

LLMS

What if I care about biology/health?

CSE427, 428, 487, 488, 527, 528, 529



Nonparametric models for 
classification



 
Nearest Neighbor Methods x1

x2

- Yet another non-linear model  
- Kernel method 
- Neural Network 
- Nearest Neighbor method 

- A model is called “parametric” if the number of parameters  
do not depend on the number of samples 

- A model is called “non-parametric” if the number of parameters  
increase with the number of samples



Recall Bayes optimal classifier

• Consider an example of binary classification on 1-dimensional 
• The problem is fully specified by the ground truths 

• Suppose for simplicity that 

• Bayes optimal classifier minimizes the conditional error  for every , 
which can be written explicitly as  

     
             

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2

P( ̂y ≠ y |x) x

̂y = + 1ifP( + 1 |x) > P( − 1 |x)
−1ifP( + 1 |x) < P( − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1



In practice we do not have P(x, y)

samples withy = + 1

samples withy = − 1

• How do we compare  and  from samples?P(y = + 1 |x) P(y = − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

• Bayes optimal classifier     
                                                              

̂y = + 1ifP( + 1 |x) > P( − 1 |x)
−1ifP( + 1 |x) < P( − 1 |x)

x

x



One way to approximate Bayes Classifier
= local statistics

• Denote the  as the number of samples within distance  from  with label , then 

      

as we increase  and decrease .  
• If we take  to be the distance to the -th neighbor from , then  

n+
r r x +1

n+
r

n
⟶ 2r × P(x, y = + 1)

n r
r k x

# of +1 samples
# of -1 samples

⟶
P(x, y = + 1)
P(x, y = − 1)

• Bayes optimal classifier 

     
               
 

decision is based on 

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

̂y = + 1ifP( + 1 |x) > P( − 1 |x)
−1ifP( + 1 |x) < P( − 1 |x)

P(x, y = + 1)
P(x, y = − 1)

k
k

̂y = + 1,if(#of +1 samples) > (#of -1 samples)
−1,if(#of +1 samples) < (#of -1 samples)

x

P (y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

x

x

• Decision is based on 
# of +1 samples
# of -1 samples



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



=15 Nearest Neighbor Boundaryk

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• Nearest neighbor gives non-linear decision boundaries 
• What happens if we use a small  or a large ?k k



k=1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• With a small , we tend to overfit.k



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures from Hastie et al

k

Model complexity highModel complexity low

• The error achieved by Bayes optimal classifier provides a 
lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

L1 norm (taxi-cab)

L-infinity (max) normMahalanobis norm: d(x, y) = (x − y)T M(x − y)

L2 norm : d(x, y) = ∥ x − y ∥2

Consider 2 dimensional example with 2 data points with labels green, red,  
and we show nearest neighbor decision boundaries for various choices of distancesk = 1

x1

x2

x1

x2

x1

x2

x1

x2



1 nearest neighbork =

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbork =

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbor guarantee - classification



1 nearest neighbor guarantee - classification

• Let  denote the nearest neighbor at a point  

• First note that as  
• Let denote the Bayes error rate 
• At a point ,  

• Case 1: nearest neighbor is , which happens with   
and the error rate is  

• Case 2: nearest neighbor is , which happens with   
and the error rate is  

• The average error of a 1-NN is 
          +   

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)



Curse of dimensionality Ex. 1

side length r

Ed
ge

 le
ng

th
 r

r = 0.3

How many samples do we need so that a nearest neighbor is within a cube of side length ?r



Curse of dimensionality Ex. 2

How many samples do we need so that a median Euclidean distance is within ?r

3 4 5



Nearest neighbor regression

• What is the optimal classifier that 

minimizes MSE ?  

                
            

• -nearest neighbor regressor is 

 

        

𝔼[( ̂y − y)2]
̂y = 𝔼[y |x]

k
̂

f(x) =
1
k ∑

j∈nearest neighbor
yj

=
∑n

i=1 yi × Ind(xiis aknearest neighbor)

∑n
i=1 Ind(xiis aknearest neighbor)

x

y



Nearest neighbor regression

In nearest neighbor methods, the 
“weight” changes abruptly

• -nearest neighbor regressor is k
̂

f(x0) =
∑n

i=1 yi × Ind(xiis aknearest neighbor)

∑n
i=1 Ind(xiis aknearest neighbor)

x

y



Nearest neighbor regression

• -nearest neighbor regressor is k
̂

f(x0) =
∑n

i=1 yi × Ind(xiis aknearest neighbor)

∑n
i=1 Ind(xiis aknearest neighbor)

x

y



Nearest neighbor regression

Why just average them?
• -nearest neighbor regressor is k

̂
f(x0) =

∑n
i=1 yi × Ind(xiis aknearest neighbor)

∑n
i=1 Ind(xiis aknearest neighbor)

x

y



Nearest neighbor regression

Local Linear Regression

• -nearest neighbor regressor is k
̂

f (x0) =
∑n

i=1 yi × Ind(xiis aknearest neighbor)

∑n
i=1 Ind(xiis aknearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement 
• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help) 
• You can use other forms of distance (not just Euclidean) 
• Smoothing and local linear regression can improve 

performance (at the cost of higher variance) 
• With a lot of data, “local methods” have strong, simple 

theoretical guarantees.  
• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?



Trees



Trees

Example: binary tree with splits along axes



Binary tree with splits along axes.

How do you build the tree / find the splits?

Regression Trees



> Start from empty decision tree
> Split on next best attribute (feature)
– Use, for example, information gain to select attribute
– Split on 

> Recurse
> Prune

Learning decision trees



Decision Trees

Trees are easy to interpret: 
- You can explain how the 
classifier came to the 
conclusion it did 

Trees are hard to interpret: 
- Tough to explain why the 
classifier came to the 
conclusion it did 

Small changes in 
data can result in 
large difference in 
trees 



Trees

• Trees 

• have low bias, high variance 

• deal with categorial variables 

well 

• intuitive, interpretable 

• good software exists 

• Some theoretical guarantees 



Random Forests



Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to 
construct a lot of “lightly correlated” 
trees and average them: 

“Bagging:” Bootstrap aggregating



Random Forests



Random Forest - Decision Boundary Example



The Yi’s are identically distributed but not independent

Variance of individual predictor
Assume bias = 0

Correlation between predictors

Random Forest



Random Forest

The power of weakly correlated predictors:

Bagging: Averaged trees trained 
on bootstrapped datasets that 
used all d variables

Random forest: Averaged trees 
trained on bootstrapped datasets 
that used m < d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation 
improves performance!



Random Forests

• Random Forests 

• have low bias, low variance 

• deal with categorial variables well 

• not that intuitive or interpretable 

• Notion of confidence estimates 

• good software exists 

• Some theoretical guarantees  



Boosting and Additive 
Models



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 

combined to create a strong learner?” Weak learner definition (informal): 

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

• 2001 Friedman: “Practical for arbitrary losses” 

• 2014 Tianqi Chen: “Scale it up!” XGBoost



Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  



Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

is in general computationally hard



Forward Stagewise Additive models

Examples:

Idea: greedily add one function at a time



Forward Stagewise Additive models

Examples:

Idea: greedily add one function at a time

AdaBoost: 



Forward Stagewise Additive models

Examples:

Idea: greedily add one function at a time

Boosted Regression Trees: 



Forward Stagewise Additive models

Examples:

Idea: greedily add one function at a time

Boosted Regression Trees: 

Efficient: No harder than learning regression trees!



Additive models

• Boosting is popular at parties: Invented by theorists, 

heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 

can also use trees! Boosting can scale. 

• Gradient boosting generalization with good software 

packages (e.g., XGBoost). Effective on Kaggle



Additive models

 

https://twitter.com/fchollet


Bagging versus Boosting

• Bagging averages many low-bias, lightly 

dependent classifiers to reduce the variance 

• Boosting learns linear combination of high-bias, 

highly dependent classifiers to reduce error



Last slide of the quarter!

🎉


