PCA: Efficient computation and some cool applications

UNIVERSITY of WASHINGTON

©Kevin Jamieson 2018

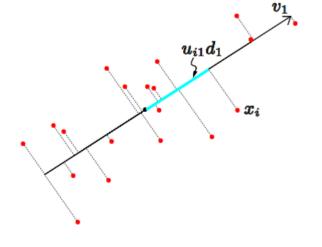
PCA: a high-fidelity linear projection

Given $x_i \in \mathbb{R}^d$ and some q < d consider

$$\min_{\mathbf{V}_q}\sum_{i=1}^N ||(x_i-ar{x})-\mathbf{V}_q\mathbf{V}_q^T(x_i-ar{x})||^2.$$

where $\mathbf{V}_q = [v_1, v_2, \dots, v_q]$ is orthonormal: $\mathbf{V}_q^T \mathbf{V}_q = I_q$

 \mathbf{V}_q are the first q eigenvectors of Σ \mathbf{V}_q are the first q principal components



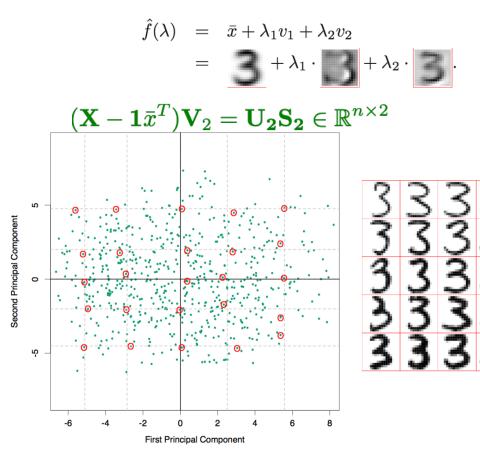
$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$

Principal Component Analysis (PCA) projects $(\mathbf{X} - \mathbf{1}\bar{x}^T)$ down onto \mathbf{V}_q $(\mathbf{X} - \mathbf{1}\bar{x}^T)\mathbf{V}_q = \mathbf{U}_q \operatorname{diag}(d_1, \dots, d_q)$ $\mathbf{U}_q^T \mathbf{U}_q = I_q$

PCA on MNIST

 \mathbf{V}_q are the first q eigenvectors of Σ and SVD $\mathbf{X} - \mathbf{1}ar{x}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T$

Handwritten 3's, 16x16 pixel image so that $x_i \in \mathbb{R}^{256}$



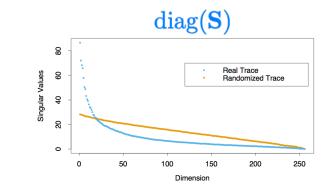
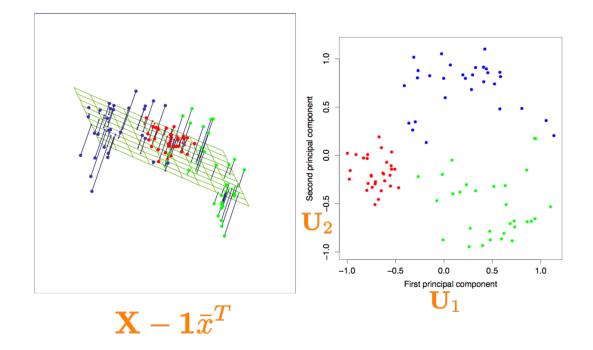


FIGURE 14.24. The 256 singular values for the digitized threes, compared to those for a randomized version of the data (each column of X was scrambled).

SVD and **PCA**

 \mathbf{V}_q are the first q eigenvectors of $\boldsymbol{\Sigma}$ and SVD $\mathbf{X} - \mathbf{1} ar{x}^T = \mathbf{U} \mathbf{S} \mathbf{V}^T$



How do we compute the principal components?

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^T\mathbf{U} = I$, $\mathbf{V}^T\mathbf{V} = I$.

$\mathbf{A}^T \mathbf{A} v_i =$

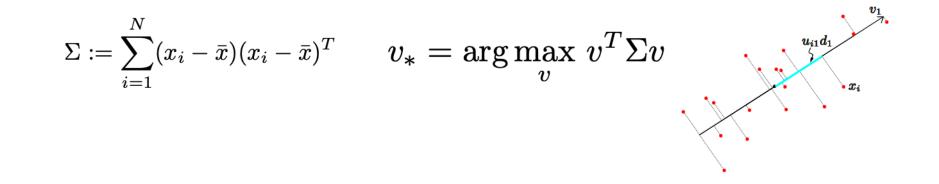
$$\mathbf{A}\mathbf{A}^T u_i =$$

How do we compute the principal components?

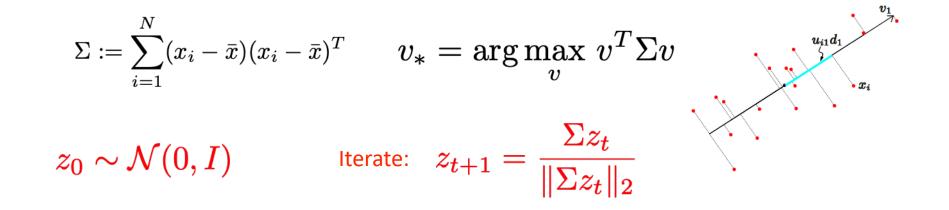
1. Power iteration

2. Solving for a singular value decomposition (SVD)

Power method - one vector at a time



Power method - one vector found iteratively



Power method - one vector found iteratively

$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T \qquad v_* = \arg \max_{v} v^T \Sigma v$$

$$z_0 \sim \mathcal{N}(0, I) \qquad \text{Iterate:} \quad z_{t+1} = \frac{\Sigma z_t}{\|\Sigma z_t\|_2}$$

To analyze write: $\Sigma = \mathbf{V} \mathbf{D} \mathbf{V}^T$ $z_t =: \mathbf{V} \alpha_t$

Power method - analysis

$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T \qquad v_* = \arg\max_v v^T \Sigma v$$

$$z_0 \sim \mathcal{N}(0, I) \qquad \text{Iterate:} \quad z_{t+1} = \frac{\Sigma z_t}{\|\Sigma z_t\|_2}$$

To analyze write:
$$\Sigma = \mathbf{V} \mathbf{D} \mathbf{V}^T$$
 $z_t =: \mathbf{V} \alpha_t$

$$\alpha_{t+1} = \mathbf{V}^T z_{t+1} = \frac{\mathbf{V}^T \Sigma z_t}{\|\Sigma z_t\|} = \frac{\mathbf{D}\alpha_t}{\|\mathbf{D}\alpha_t\|} = \frac{\mathbf{D}^2 \alpha_{t-1}}{\|\mathbf{D}^2 \alpha_{t-1}\|} = \frac{\mathbf{D}^t \alpha_0}{\|\mathbf{D}^t \alpha_0\|}$$

 $\mathbf{D}^{t} = (\mathbf{D}_{1,1})^{t} (\mathbf{D}/\mathbf{D}_{1,1})^{t} \rightarrow (\mathbf{D}_{1,1})^{t} \mathbf{e}_{1} \mathbf{e}_{1}^{T} \text{ since } \mathbf{D}_{i,i}/\mathbf{D}_{1,1} < 1$

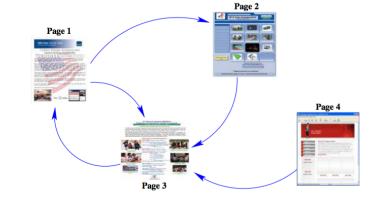
$$L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$$

Google PageRank of page i:

$$p_i = (1 - \lambda) + \lambda \sum_{j=1}^n \frac{L_{i,j}}{c_j} p_j$$

$$\mathbf{L} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

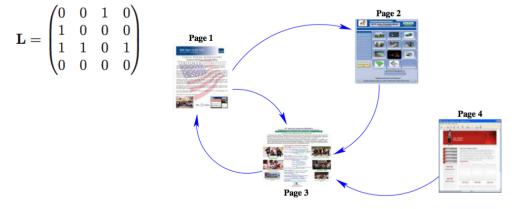
 $c_j = \sum_{k=1}^n L_{j,k}$



 $L_{i,j} = \mathbf{1}\{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$



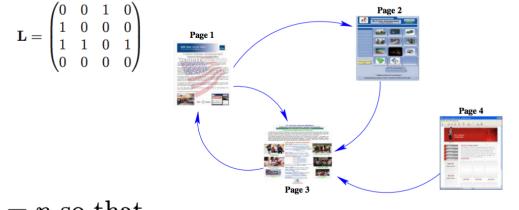
 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

$$\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$



 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

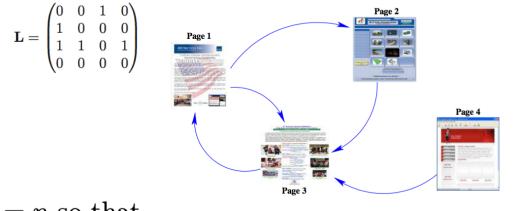
Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$

 \mathbf{p} is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue



 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

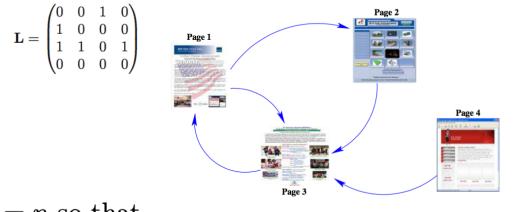
 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$

 \mathbf{p} is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue

Solve using power method:
$$\mathbf{p}_{k+1} = \frac{\mathbf{A}\mathbf{p}_k}{\mathbf{1}^T \mathbf{A}\mathbf{p}_k/n}$$
 $\mathbf{p}_0 \sim \mathrm{uniform}([0,1]^n)$



PCA and SVD take-aways

PCA finds a d-dimensional representation with: Highest variance in any d-dimensional space Lowest reconstruction error spanned by the top d eigenvectors of covariance matrix

How to find the top d eigenvectors? SVD: $(X - I \mu) := A = U S V^T$ **V are the eigenvectors of A^TA** U are the eigenvectors of AA^T Power method

This is one way to represent data in lower dimensions: there are others with other properties E.g., that approximately maintain pairwise distances

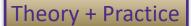
Miscellaneous fun stuff!

AKA choose your own adventure

Theory + Practice

What if our data is not IID?

What's next?



What if our data is not IID?

If the shift is in response to our learning

Manipulating that change

What's next?

Theory + Practice

What if our data is not IID?

If the shift is in response to our learning

Manipulating that change

Reinforcement Learning (CSE542)

What's next?

Theory + Practice

<u>.5</u>),

What if our data is not IID?

If the shift is in response to our learning

Manipulating that change

Reinforcement Learning (CSE542)

Robotics (<u>CSE478</u>, <u>CSE 571</u>, ...)

Be robust to those change

Interactive learning (<u>CSE541</u>), Online learnin

Adversarial robustness

If the shift is independent of our learning

Repeated retraining,

distributionally robust optimization,

Linguistics

Natural Language Processing (<u>CSE447</u>, 517)

Large language models

Practice

Theory + Practice

Theory

What if I care about understanding images/video?

Graphics (<u>CSE457</u>, <u>CSE557</u>)

Computer Vision (<u>CSE455</u>, <u>CSE576</u>)

What if I loved neural networks and I need moooooaaaaaar?

Deep Learning (<u>CSE 490</u>, <u>CSE543</u>)

Natural Language Processing (<u>CSE447</u>, 517)

Computer Vision (<u>CSE455</u>, <u>CSE576</u>)

What if I loved proofs and talking about convergence and I need moooooaaaaaar?

EE 511, STAT 527, STAT 535, STAT 538, STAT 539, CSE 541, CSE 515, Advanced Machine Learning, Optimization, ...

Graphical models! (<u>CSE 515</u>), taught by me this fall!

data cleaning + preprocessing?

CSE 547

What if I want to know about possible real-world impact of these design choices?

Fairness in ML (taught intermittently)

What if I want to know more about structured learning / origin stories of ML?

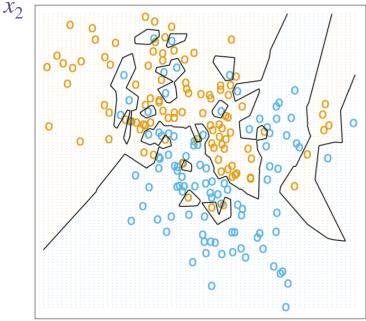
CSE 415, 473, 573, 574

What if I want to know about generating data?

What if I care about biology/health?

CSE427, 428, 487, 488, 527, 528, 529

Nonparametric models for classification



 x_1

Nearest Neighbor Methods

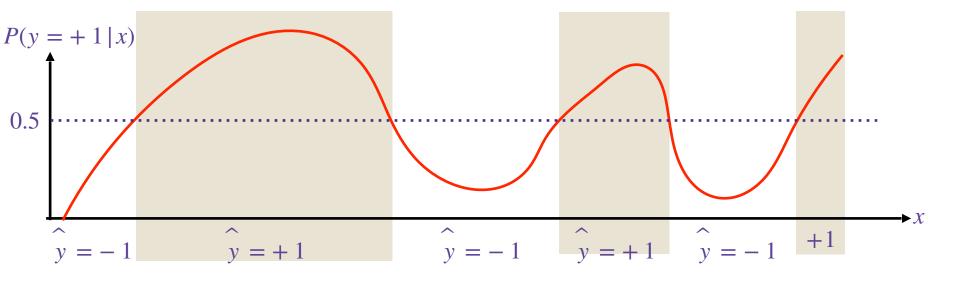
- Yet another non-linear model
 - Kernel method
 - Neural Network
 - Nearest Neighbor method
- A model is called "parametric" if the number of parameters do not depend on the number of samples
- A model is called "non-parametric" if the number of parameters increase with the number of samples

Recall Bayes optimal classifier

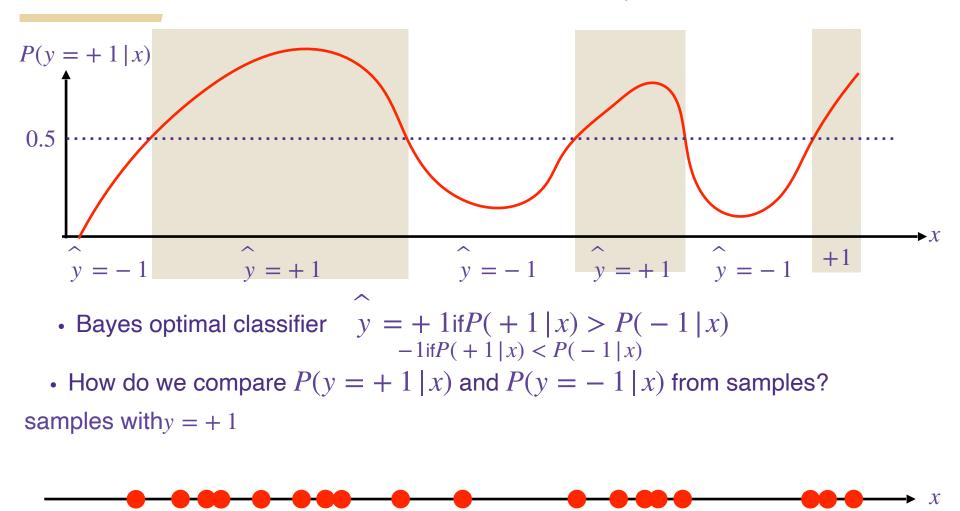
- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x, y)$
- Suppose for simplicity that $P_Y(y = +1) = P_Y(y = -1) = 1/2$
- Bayes optimal classifier minimizes the conditional error $P(y \neq y | x)$ for every x, which can be written explicitly as

$$y = + \operatorname{lif} P(+1 | x) > P(-1 | x)$$

-1if P(+1 | x) < P(-1 | x)



In practice we do not have P(x, y)



One way to approximate Bayes Classifier = local statistics Bayes optimal classifier y = +1ifP(+1|x) > P(-1|x)P(y = +1 | x)-1if P(+1|x) < P(-1|x)0.5 decision is based on $\frac{P(x, y = +1)}{P(x, y = -1)}$ $\hat{y} = +1$ +1 v = -1y = -1y = +1y = -1• k-nearest neighbors classifier considers the k-nearest neighbors and takes a majority vote y = +1,if(#of +1 samples) > (#of -1 samples) -1,if(#of +1 samples) < (#of -1 samples) # of +1 samples Decision is based on # of -1 samples

• Denote the n_r^+ as the number of samples within distance r from x with label +1, then

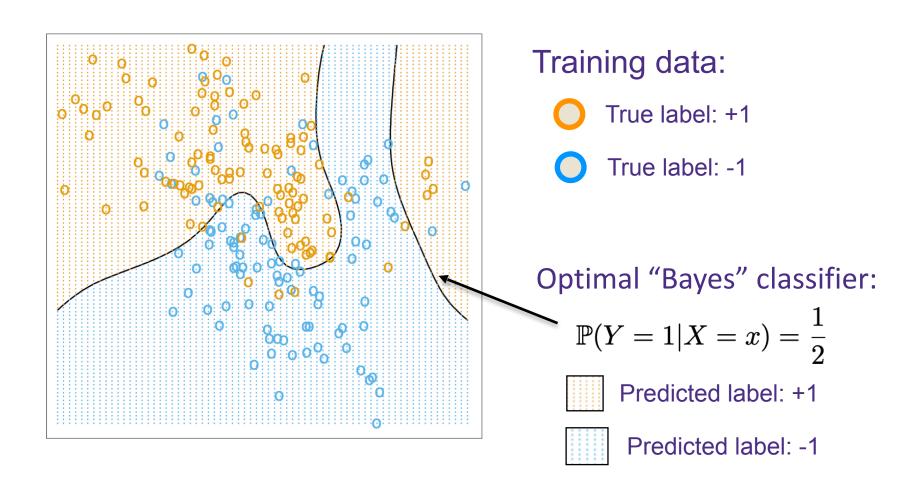
$$\frac{n_r^+}{n} \longrightarrow 2r \times P(x, y = +1)$$

as we increase *n* and decrease *r*.

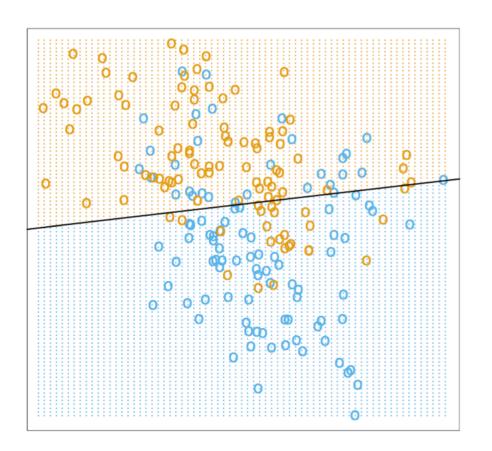
• If we take *r* to be the distance to the *k*-th neighbor from *x*, then

 $\frac{\text{\# of +1 samples}}{\text{\# of -1 samples}} \longrightarrow \frac{P(x, y = +1)}{P(x, y = -1)}$

Some data, Bayes Classifier



Linear Decision Boundary



Training data: True label: +1

True label: -1

Learned:

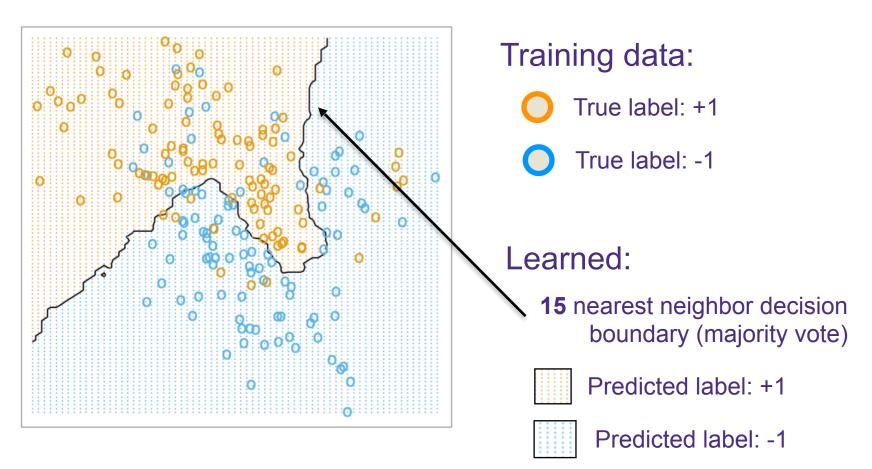
Linear Decision boundary

$$x^T w + b = 0$$

Predicted label: +1

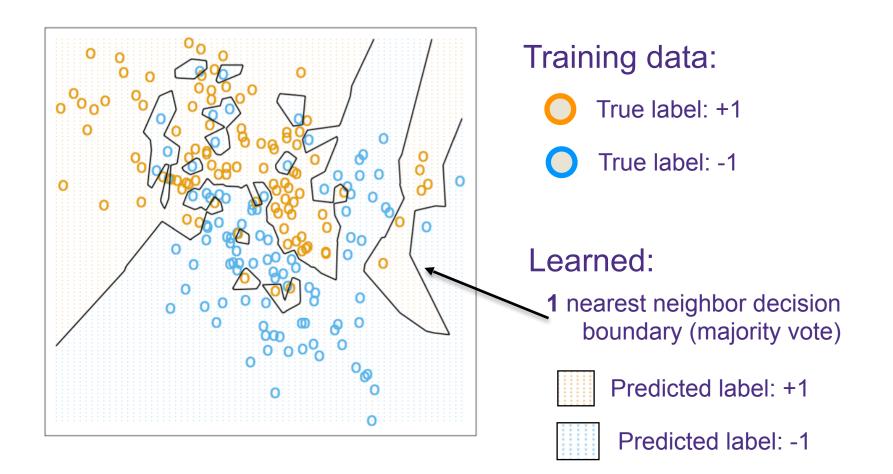
Predicted label: -1

k=15 Nearest Neighbor Boundary



- Nearest neighbor gives non-linear decision boundaries
- What happens if we use a small k or a large k?

k=1 Nearest Neighbor Boundary



• With a small *k*, we tend to overfit.

Figures from Hastie et al

k-Nearest Neighbor Error

Model complexity low

1 k 3 **Bias-Variance tradeoff** 151 101 69 21 11 5 45 31 7 0.30 Linear As k->infinity? **Bias**: 0.25 **Best possible** Variance: Test Error 0.20 As k->1? 0.15 **Bias**: 0.10 Train Test Variance: Bayes

k – Number of Nearest Neighbors

Figures from Hastie et al

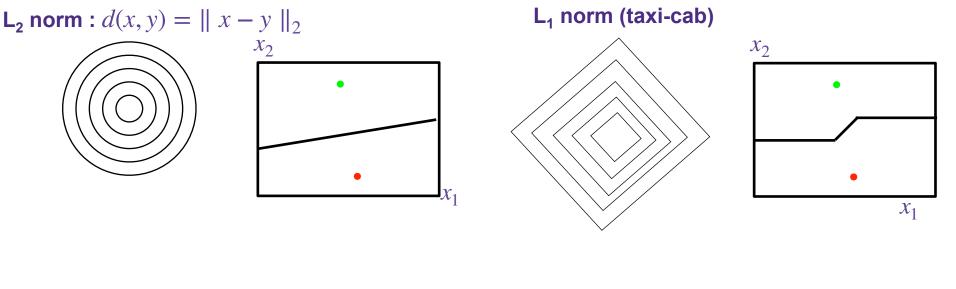
• The error achieved by Bayes optimal classifier provides a lower bound on what any estimator can achieve

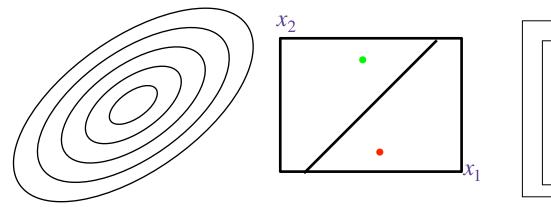
Model complexity high

Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,

and we show k = 1 nearest neighbor decision boundaries for various choices of distances





Mahalanobis norm: $d(x, y) = (x - y)^T M(x - y)$

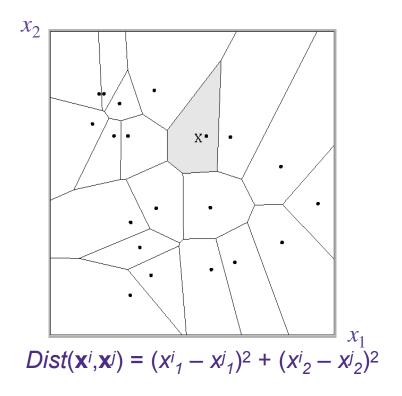
L-infinity (max) norm

 x_2

 X_1

One can draw the nearest-neighbor regions in input space.

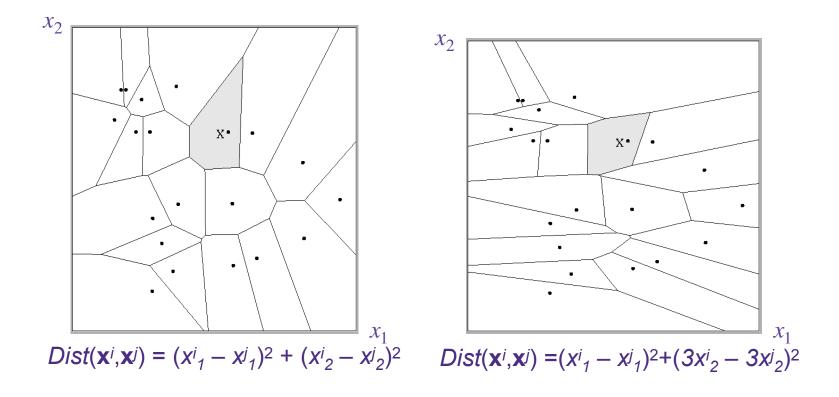
 x_2



*x*₁

k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.



The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

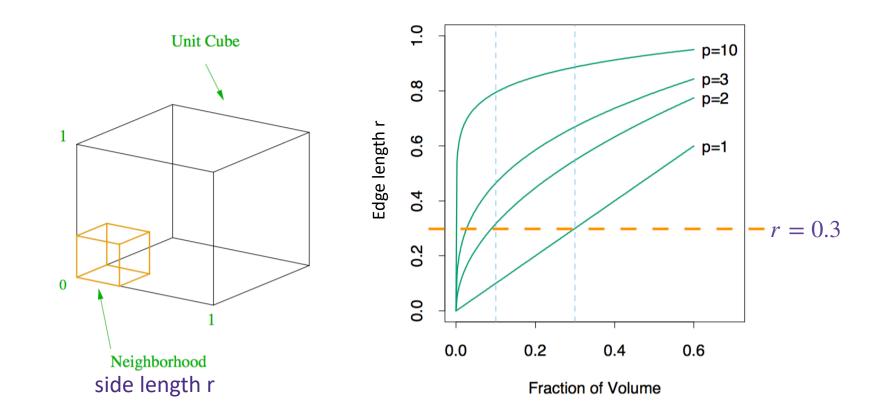
$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let *x_{NN}* denote the nearest neighbor at a point *x*
- First note that as $n \to \infty$, $P(y = +1 | x_{NN}) \to P(y = +1 | x)$
- Let $p^* = min\{P(y = +1 | x), P(y = -1 | x)\}$ denote the Bayes error rate
- At a point *x*,
 - Case 1: nearest neighbor is +1, which happens with P(y = +1 | x)and the error rate is P(y = -1 | x)
 - Case 2: nearest neighbor is +1, which happens with P(y = -1 | x)and the error rate is P(y = +1 | x)
- The average error of a 1-NN is

P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p*(1 - p*)

Curse of dimensionality Ex. 1

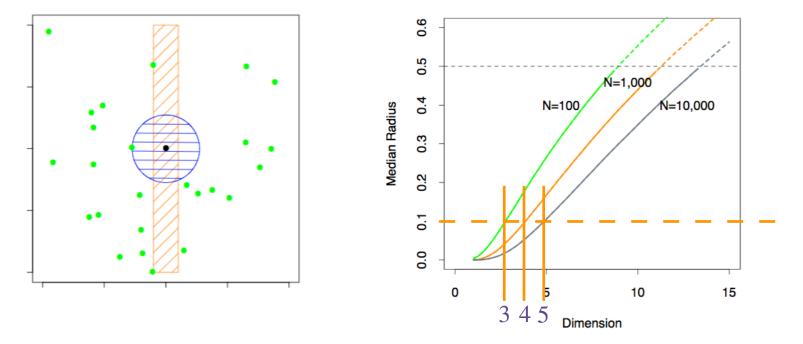


X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

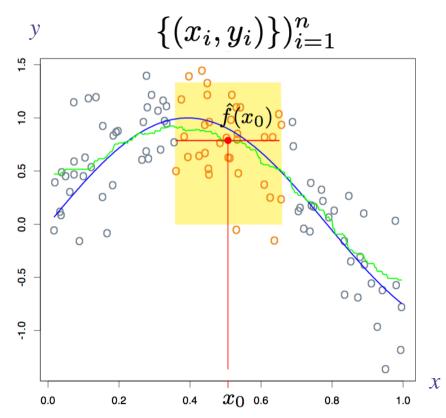
How many samples do we need so that a nearest neighbor is within a cube of side length r?

Curse of dimensionality Ex. 2

 ${X_i}_{i=1}^n$ are uniformly distributed over $[-.5, .5]^p$.

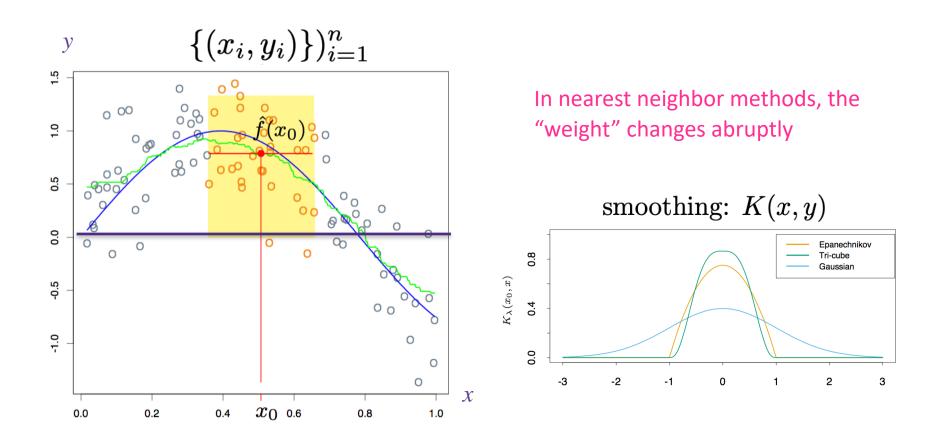


What is the median distance from a point at origin to its 1NN? How many samples do we need so that a median Euclidean distance is within r?



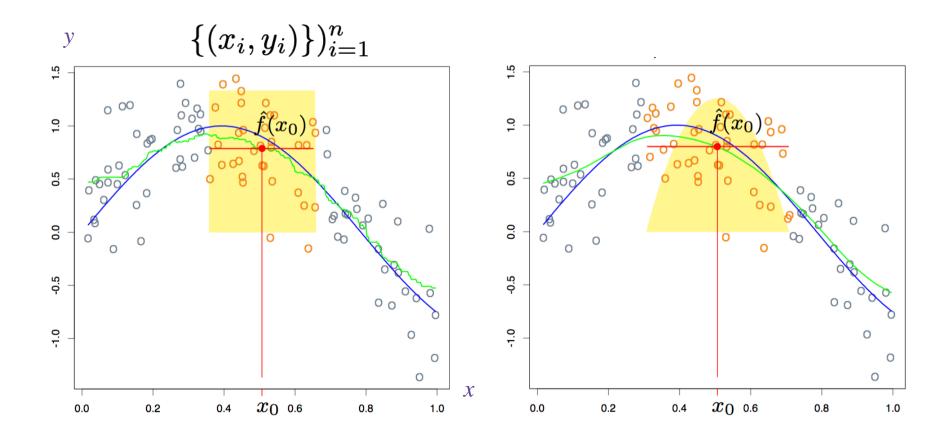
- What is the optimal classifier that minimizes MSE $\mathbb{E}[(y - y)^2]$? $y = \mathbb{E}[y | x]$
- k-nearest neighbor regressor is $f(x) = \frac{1}{k}$ y_j *j*∈nearest neighbor

 $= \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{is a} k \text{nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{is a} k \text{nearest neighbor})}$

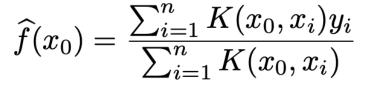


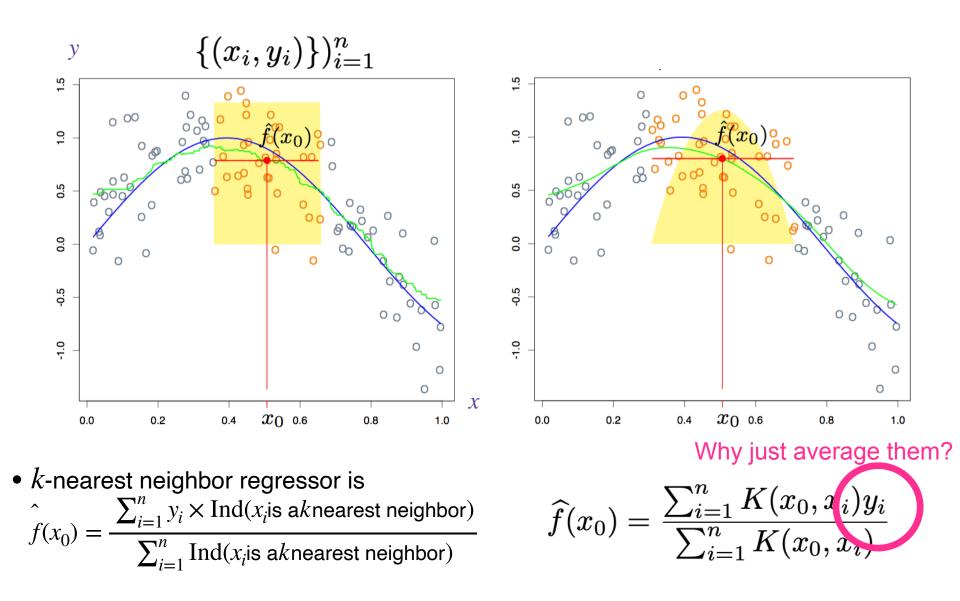
• k-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{is a}k \text{nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{is a}k \text{nearest neighbor})}$

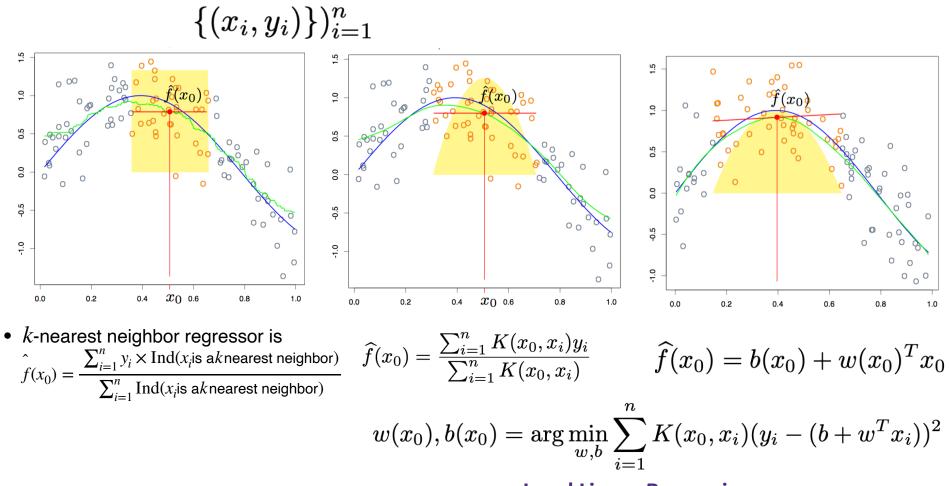
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$



• *k*-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{is a} k \text{nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{is a} k \text{nearest neighbor})}$







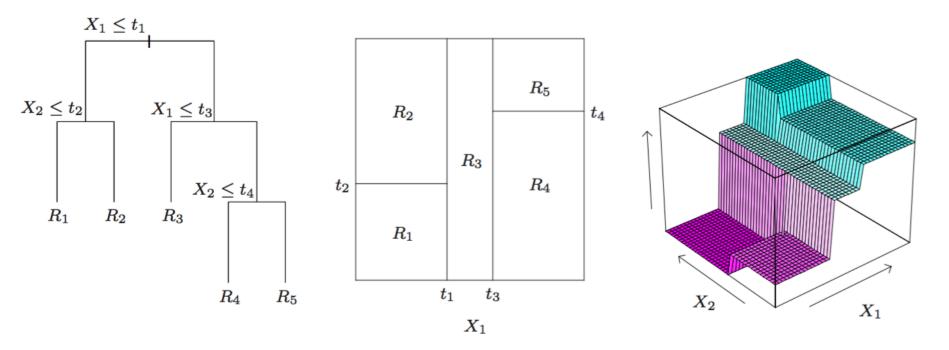
Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Trees

Example: binary tree with splits along axes



$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

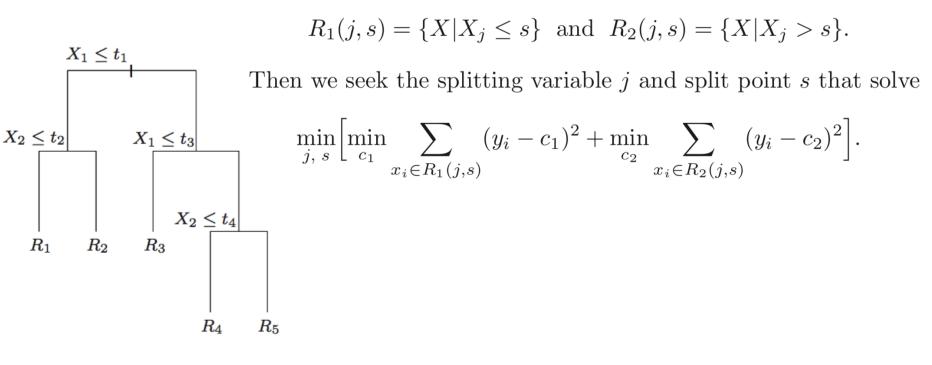
Regression Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Binary tree with splits along axes.

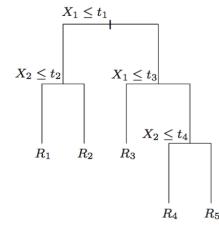
How do you build the tree / find the splits?

$$\hat{c}_m = \operatorname{ave}(y_i | x_i \in R_m).$$



Learning decision trees

- > Start from empty decision tree
- > Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on arg max $IG(X_i) = \arg \max_i H(Y) H(Y | X_i)$
- > Recurse
- > Prune



$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Decision Trees

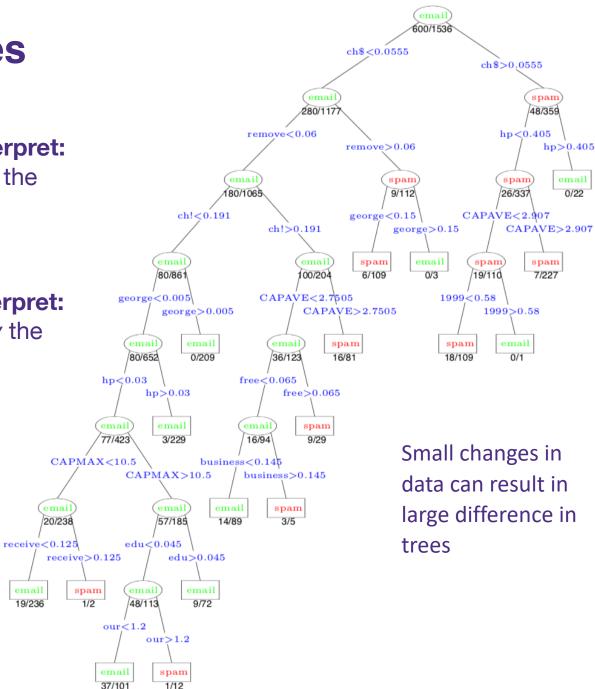
Trees are easy to interpret:

- You can explain how the classifier came to the conclusion it did

Trees are hard to interpret:

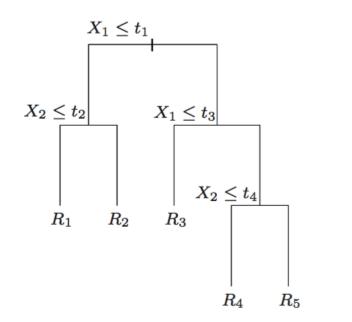
- Tough to explain why the classifier came to the conclusion it did

19/236



Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$
 • Trees



- have low bias, high variance
- deal with categorial variables

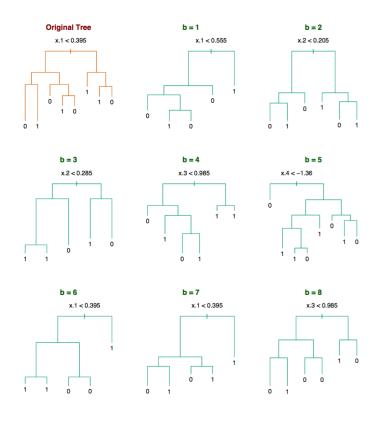
well

- intuitive, interpretable
- good software exists

Tree methods have low bias but high variance.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:

"Bagging:" Bootstrap aggregating



Algorithm 15.1 Random Forest for Regression or Classification.

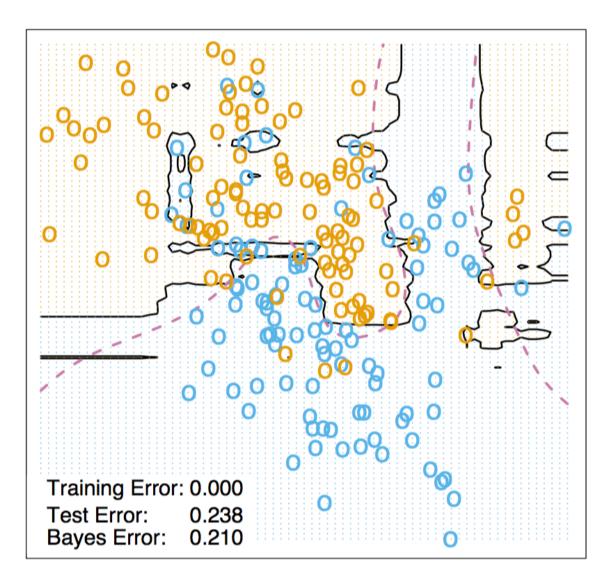
- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}^B_{rf}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Random Forest - Decision Boundary Example

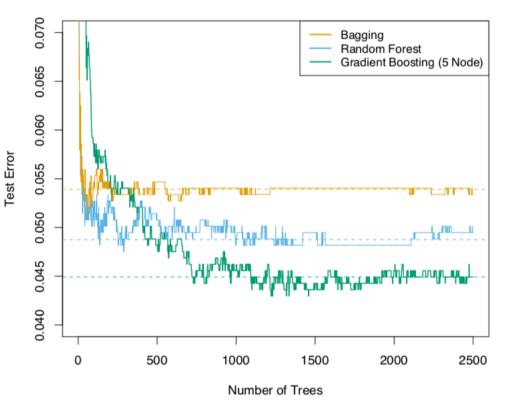


Given random variables Y_1, Y_2, \ldots, Y_B with $\mathbb{E}[Y_i] = y, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2$ σ^2 Variance of individual predictor Assume bias = 0 $\rho \sigma^2$ Correlation between predictors

The Yi's are identically distributed but not independent

$$\mathbb{E}[(\frac{1}{B}\sum_{i=1}^B Y_i - y)^2] =$$

The power of weakly correlated predictors:



Spam Data

Bagging: Averaged trees trained on bootstrapped datasets that used **all d variables**

Random forest: Averaged trees trained on bootstrapped datasets that used **m < d random variables**

Gradient boosting: ignore for now

Takeaway: reducing correlation improves performance!

- Random Forests
 - have low bias, low variance
 - deal with categorial variables well
 - not that intuitive or interpretable
 - Notion of confidence estimates
 - good software exists

Boosting and Additive Models

• 1988 Kearns and Valiant: "Can weak learners be

Weak learner definition (informal); combined to create a strong learner?"

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"

Additive models

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$
• Given:

$$\phi_t : \mathbb{R}^d \to \mathbb{R} \quad t = 1, \dots, p$$
• Generate random functions: $\min_w \sum_{i=1}^n \operatorname{Loss} \left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$
• Learn some weights: $\int_{i=1}^p \widehat{w}_t \phi_t(x)$

• Classify new data:

Additive models

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$
• Given:

$$\phi_t : \mathbb{R}^d \to \mathbb{R} \quad t = 1, \dots, p$$
• Generate random functions: $\min_w \sum_{i=1}^n \operatorname{Loss} \left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$
• Learn some weights:

$$\left(\sum_{t=1}^p \widehat{w}_t \phi_t(x)\right)$$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \widehat{w}_t

• Classify new data:

Sirv new data.

$$\widehat{w}, \widehat{\phi}_1, \dots, \widehat{\phi}_t = \arg\min_{w, \phi_1, \dots, \phi_p} \sum_{i=1}^n \operatorname{Loss}\left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$$

is in general computationally hard

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$egin{aligned} & (eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)). \end{aligned}$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \le \gamma_2\}$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$egin{aligned} & (eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)). \end{aligned}$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

AdaBoost: $b(x, \gamma)$: classifiers to $\{-1, 1\}$ $L(y, f(x)) = \exp(-yf(x))$

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \le \gamma_2\}$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$egin{aligned} & (eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)). \end{aligned}$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$L(y, f(x)) = (y - f(x))^2$$

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

 $b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$

 $b(x, \gamma)$: regression trees

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$egin{aligned} & (eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)). \end{aligned}$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees: $L(y, f(x)) = (y - f(x))^2$

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

= $(r_{im} - \beta b(x_i; \gamma))^2, \quad r_{im} = y_i - f_{m-1}(x_i)$

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

 $b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$

Efficient: No harder than learning regression trees!

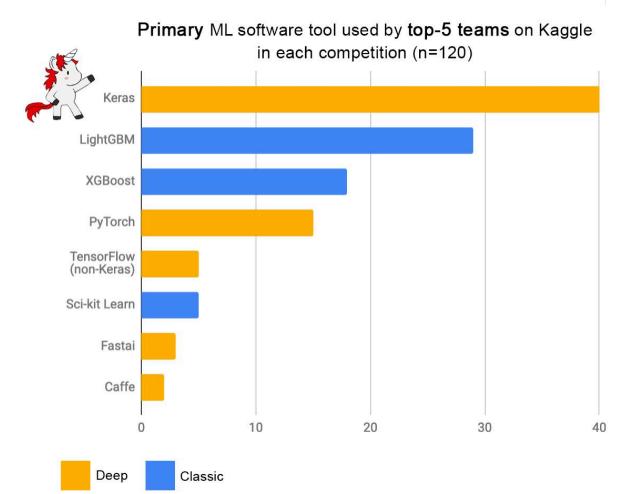
- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Gradient boosting generalization with good software packages (e.g., *XGBoost*). Effective on Kaggle

Additive models

 \sim

François Chollet 🤣 @fchollet · Apr 3, 2019

What machine learning tools do Kaggle champions use? We ran a survey among teams that ranked in the *top 5* of a competition since 2016.



• Bagging *averages* many **low-bias**, **lightly**

dependent classifiers to reduce the variance

• Boosting *learns* linear combination of high-bias,

highly dependent classifiers to reduce error

Last slide of the quarter!

