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PCA: a high-fidelity linear projection

n U1 o
Given z; € R? and some g < d consider u.-ldl/’/
1 e ) — T . 2 X xh"xi
gin 3 (a1 = 2) = VoV (@i - 2

where V, = [vy,vs,...,7,] isorthonormal:
T —
vIv, =1,

V, are the first q eigenvectors of X

Y= Z(x —Z)(z; — )T

V, are the first q principal components

Principal Component Analysis (PCA) projects (X — 1z%) down onto V|,
(X —1z27)V, = U,diag(ds,...,d;)  UgUg=1,



PCA on MNIST

V, are the first ¢ eigenvectors of ¥ andsvdD X — 127 = USV?

Handwritten 3’s, 16x16 pixel image so that x; € R?°6

FO) = T4 Mo+ Avy

= 3+)\1.+)\2.@.

(X —1z7)V, = UyS, € R™*2

diag(S)

FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).
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SVD and PCA

V, are the first ¢ eigenvectors of ¥ andsvdD X — 127 = USV?
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How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)



Singular Value Decomposition (SVD)

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USVT
where S € R™*" is diagonal with positive entries, UTU = I, VIV = T.

ATAv; =

AATy, =



How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)



Power method - one vector at a time

N
Y = Z(xi —2)(z; — 2)" Ve = argmax v S
i=1 .




Power method - one vector found iteratively

N
Y = Z(wi —2)(z; — 2)" Ve = argmax v S
i=1 .

Zzt
|22t ]|2

z0 N N(O, I) lterate: 2341 = |



Power method - one vector found iteratively

N - /
Si=Y (2 -2)(zi—2)7 vy = argmax v’ L Lo

Ezt
2224 |2

2o ~ N(0, 1) lterate: 2441 = |

To analyze write: I VDVT zt =: Vi



Power method - analysis

N AN
Li=) (zi—2)(z:i—2)7 v, = argmax v S “s/
i=1 v N Nz
>z
zZp ™~ N(O, I) lterate: 2341 = m
t

To analyze write: — VDVT 2t =. VOzt

a1 = VIiz _V'3% _ Do _ D?0-1 _ Dlag
1= VA T s T Dall T D] Dol

D! = (Dl,l)t(D/Dl,l)t — (Dl,l)teler{ since Di,i/Dl,l <1



Markov chains - PageRank

o= OO0
oo o+

o | [
L; ; = 1{page j points to page i} !

Google PageRank of page i:

piz(l—)\)+)\z c—ijpj Cj=ZLj,k‘
j=1 7



Markov chains - PageRank

O == O
o= oo
oo o -

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-X)1+)\LD.'p




Markov chains - PageRank

O == O
o= oo
oo o -
o= oo

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-X)1+)\LD.'p
Set arbitrary normalization: 17p = n so that
p=((1-A11"/n+ LD, ") p
=: Ap



Markov chains - PageRank

O == O
o= oo
oo o -

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-X)1+)\LD.'p

Set arbitrary normalization: 17p = n so that
p=((1-A11"/n+ LD, ") p
=: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue



Markov chains - PageRank

O == O
o= oo
oo o -

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-X)1+)\LD.'p

Set arbitrary normalization: 17p = n so that
p=((1-A11"/n+ LD, ") p
=: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue

| Aps . n
Solve using power method: Pk+1 = 1T Apr/n po ~ uniform([0, 1]")




PCA and SVD take-aways

PCA finds a d-dimensional representation with:
Highest variance in any d-dimensional space
Lowest reconstruction error
spanned by the top d eigenvectors of covariance matrix

How to find the top d eigenvectors?
SVD: (X-1p):=A=USVT
V are the eigenvectors of ATA
U are the eigenvectors of AAT
Power method

This is one way to represent data in lower dimensions: there are others with other properties
E.g., that approximately maintain pairwise distances



Miscellaneous fun stuff!

AKA choose your own adventure

W



What'’s next? [Theory + Practice
Practice

o What if our data is not IID?



http://courses.cs.washington.edu/courses/cse515/
http://courses.cs.washington.edu/courses/cse542/
https://courses.cs.washington.edu/courses/cse478/
https://courses.cs.washington.edu/courses/cse571/22sp/
https://courses.cs.washington.edu/courses/cse541/

What’s next?

o What if our data is not IID?
o If the shift is in response to our learning
o Manipulating that change

Practice



http://courses.cs.washington.edu/courses/cse515/
http://courses.cs.washington.edu/courses/cse542/
https://courses.cs.washington.edu/courses/cse478/
https://courses.cs.washington.edu/courses/cse571/22sp/
https://courses.cs.washington.edu/courses/cse541/

What’s next?

]
i 9 Practice
o What if our data is not IID? x

o If the shift is in response to our learning
o Manipulating that change



http://courses.cs.washington.edu/courses/cse515/
http://courses.cs.washington.edu/courses/cse542/
https://courses.cs.washington.edu/courses/cse478/
https://courses.cs.washington.edu/courses/cse571/22sp/
https://courses.cs.washington.edu/courses/cse541/

What’s next?

o What if our data is not IID?
o If the shift is in response to our learning
o Manipulating that change

Robotics (CSE478, CSE 571, ...)

o Be robust to those change

o If the shift is independent of our learning

|

distributionally robust optimization, ....

Practice



http://courses.cs.washington.edu/courses/cse515/
http://courses.cs.washington.edu/courses/cse542/
https://courses.cs.washington.edu/courses/cse478/
https://courses.cs.washington.edu/courses/cse571/22sp/
https://courses.cs.washington.edu/courses/cse541/

What’s next?

o What if | care about understanding text?

Practice

Natural Language Processing (CSE447, 517)

_ Large language models

o What if | care about understanding images/video?

Computer Vision (CSE455, CSE576)



https://courses.cs.washington.edu/courses/cse447/
http://courses.cs.washington.edu/courses/cse457/
https://courses.cs.washington.edu/courses/cse557/
https://courses.cs.washington.edu/courses/cse455/
http://courses.cs.washington.edu/courses/cse576/

What’s next? _

o What if | loved neural networks and | need mooooooaaaaar?

Deep Learning (CSE 490, CSE543)

Natural Language Processing (CSE447, 517)

Computer Vision (CSE455, CSE576) |

Practice



https://courses.cs.washington.edu/courses/cse599g1/18au/
http://courses.cs.washington.edu/courses/cse543/
https://courses.cs.washington.edu/courses/cse455/
http://courses.cs.washington.edu/courses/cse576/
https://courses.cs.washington.edu/courses/cse447/

What’s next? [Theory + Practice]
Practice

o What if | loved proofs and talking about convergence and | need mooooooaaaaar?

EE 511, STAT 527, STAT 535, STAT 538,
STAT 539, CSE 541, CSE 515, Advanced Machine Learning, Optimization, ...



http://courses.cs.washington.edu/courses/cse515/

What’s next? [Theory + Practice]

Practice

o What if | want to know about practical advice for data collection/
data cleaning + preprocessing?

CSE 547

o What if | want to know about possible real-world impact of these
design choices?

o What if | want to know more about structured learning /
origin stories of ML?




What’s next? [Theory + Practice]

Practice

o What if | want to know about generating data?

o What if | care about biology/health?

CSE427, 428,487,488, 527,528,529




Nonparametric models for
classification

W



Nearest Neighbor Methods

- Yet another non-linear model
- Kernel method
- Neural Network
- Nearest Neighbor method
- A model is called “parametric” if the number of parameters
do not depend on the number of samples
- A model is called “non-parametric” if the number of parameters
increase with the number of samples



Recall Bayes optimal classifier

- Consider an example of binary classification on 1-dimensional x € R
- The problem is fully specified by the ground truths Py y(x, y)
- Suppose for simplicity that Py(y =+ 1) = Py(y = —1) = 1/2
- Bayes optimal classifier minimizes the conditional error P(y # v |x) for every x,
wh/igh can be written explicitly as
y =+ lifP(+1|x) > P(—1]|x)
—1ifP(+ 1]|x) < P(—1]x)

P(y=+1]|x)
A

05 ...................................................................................................

> X




In practice we do not have P(x, y)

P(y =+1]x)
A

05 ...................................................................................................

—~ — —~ — —~ > X
y=-1 y=+1 y=-1 y=+1 y=-1 '
. Bayes optimal classifier y =+ LifP(+1|x) > P(—1]|x)
—1itP(+ 1|x) < P( = 1]x)
. How do we compare P(y = 4+ 1|x) and P(y = — 1 | x) from samples?
samples withy = + 1
—0-00—0—000—0—0 o—0-00 0 00—

samples withy = — 1

—08-@ @




One way to approximate Bayes Classifier

= local statistics + Bayes optimal classifier

y =4+ 1ifP(+1|x) > P(—1|x)
—1ifP(+1|x) < P(—1|x)

P(y =+1[x)
A

05 snnafonccnnnnnnnnnnnna\esnnnnnnnsafonnnnnatonnnsnnafunann

o Plx,y=+1)
. decision is based on
y=-1 Y=l y=-1 SR __; & Plx,y =—1)
—_——0-00—0—0-00—0——0 ] — o —
« k-nearest neighbors classifier
considers the k-nearest neighbors and
-080—-@ @ *—0—80-0—0—0—0-0-0-0-0—>

" takes a majority vote

N\

y = + L,if(#of +1 samples) > (#of -1 samples)
— 1,If(#of +1 samples) < (#of -1 samples)

# of +1 samples

. Decision is based on
# of -1 samples

o Denote the n' as the number of samples within distance r from x with label + 1, then
+

n
— — 2rxP(x,y=+1)
n

as we increase n and decrease 7.
e |f we take r to be the distance to the k-th neighbor from x, then
# of +1 samples Px,y=+1)

# of -1 samples , Px,y=-1)



Some data, Bayes Classifier

Training data:
O True label: +1

O True label: -1

Il(

Bayes” classifier:

1
PY =1|X =)=

Optima

Predicted label: +1

Predicted label: -1

Figures from Hastie et al.



Linear Decision Boundary

0:::9 0]
ig@ g e
OoocaO ‘0 0 8 o)
3] O (S) % 800
0 0g~a° 0

Figures from Hastie et al

Training data:

O True label: +1

O True label: -1

Learned:

Linear Decision boundary
Pw+b=0
Predicted label: +1

Predicted label: -1




k=15 Nearest Neighbor Boundary

Training data:

O True label: +1

O True label: -1

Learned:

15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e Nearest neighbor gives non-linear decision boundaries
e What happens if we use a small k£ or a large k?

Figures from Hastie et al



k=1 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Learned:

\1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e With a small k, we tend to overfit.

Figures from Hastie et al



k-Nearest Neighbor Error

Model complexity low

k — Number of Nearest Neighbors

Model complexity high

151 101 69 45 31 21 1 7 5 3 1 k . .
L ' * Bias-Variance tradeoff
§ - .\ /. Linear
‘ \ As k->infinity?
.
g e Bias:
5 \ Best possible : .
iog - Variance:
i \ .
vl.(_). | \./ \o\ AS k->1?
o o\. )
Bias:
§ -| = Train
Test : _
— BZ;es Variance:

Figures from Hastie et al

e The error achieved by Bayes optimal classifier provides a

lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,
and we show k = 1nearest neighbor decision boundaries for various choices of distances

Lynorm:d(x,y) = || x—=y |,
2 %)

s

@

Mahalanobis norm: d(x,y) = (x — y)TM(x —y)

1

L, norm (taxi-cab)

<

L-infinity (max) norm

2 %)




k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

X2

X1
Dist(xi,x)) = (xi, — Xi,)2 + (X, — XI,,)2



k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

X2

X X
Dist(xi,x/) = (X, — XI;)2 + (X, — Xi,)2  Dist(x/,x/) =(xi, — x,)2+(3xi, — 3%,)?

The relative scalings in the distance metric affect region shapes



1 nearest neighbor guarantee - classification

{(@s,9:) })ieq i € Rd, y; € {0,1} (x4, y:) s Pxy

Theorem|Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = z) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.




1 nearest neighbor guarantee - classification

tid

{(@s,9:) })ieq i € Rd, y; € {0,1} (xi,yi) ~ Pxy

Theorem|Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = z) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.

e Let x, denote the nearest neighbor at a point x
o First note thatasn — co, P(y =+ 1 |xyn) = P(y =+ 1|x)
o Letp* = min{P(y =+ 1|x), P(y = — 1| x)}denote the Bayes error rate
e At a point x,
e Case 1: nearest neighbor is 4+ 1, which happens with P(y = + 1| x)
and the errorrateis P(y = — 1| x)
e Case 2: nearest neighbor is + 1, which happens with P(y = — 1| x)
and the errorrateis P(y = + 1| x)

e The average error of a 1-NNis
Ply=+1|0)P(y=—-1[x)+P(y=—1|x) P(y =+ 1|x) =2p*(1 —p*)




Curse of dimensionality Ex. 1

it Cub o
Unit Cube - 510
\ Q i p=3
| P o=
1 -
<> e )
— E
& < |
= 0.3
, F =0
S > S -
0 ,
O o |
\ 1 o | | | |
Neighborhood 0.0 0.2 0.4 0.6
side Iength r Fraction of Volume

X is uniformly distributed over [0, 1]?. What is P(X € [0,7]P)?

How many samples do we need so that a nearest neighbor is within a cube of side length r?



Curse of dimensionality Ex. 2

{X;}_, are uniformly distributed over [—.5,.5]P.

0.6

0.4

|
Median Radius
0.3

0.2

0.1

0.0

10 15

5
3 4 5 Dimension

What is the median distance from a point at origin to its 1INN?

How many samples do we need so that a median Euclidean distance is within r?



Nearest neighbor regression

n « What is the optimal classifier that
y {(zi, i) })izq PAme Raeete
minimizes MSE E[(y — y)°]?

y = E[y]x]

1.0

0.5
1

o k-nearest neighbor regressor is

A

fx) = % D )

jenearest neighbor

0.0
|

-0.5

- | o >, i X Ind(xjis aknearest neighbor)

o —_—

o Z?zl Ind(x;is aknearest neighbor)




Nearest neighbor regression

y {(zs,95) })iz1

"0 In nearest neighbor methods, the
“weight” changes abruptly

1.0

0.5

smoothing: K(z,y)

0.0

Epanechnikov
Tri-cube
Gaussian

0.8

-0.5

K (zo,x)
0.4

-1.0
o

0.0

e k-nearest neighbor regressor is n
- " i | > >iz1 K (%o, i)y
Zl,:lyl- X Ind(x;is aknearest neighbor) f(wo) _ Zai=1 0sLi)Yi

Xp) = - i
100 2?21 Ind(x;is aknearest neighbor) Zi:l K(zo,z:)




Nearest neighbor regression

y {(zs,95) })iz1

1.0

0.5

0.0

-0.5

-1.0

(0] (0]
(0] (0]

| T | T T | T X T T \ T T T T

0.0 0.2 04 (O 06 08 1.0 0.0 0.2 04 IO 06 08 1.0
* k-nearest neighbor regressor is S K(z0,2:)y
A n . ) ~ . . .
Zi:l y; X Ind(xjis aknearest neighbor) f(ac 0) — L=l 0)¥4) 31

Xy) = - .
ftx0 Z?zl Ind(x;is aknearest neighbor) Z’i:l K(l‘o, :Ez)



Nearest neighbor regression

| T T T T T T X T T T T T T T
0.0 0.2 04 (O 06 08 1.0 0.0 02 04 IO 06 0.8 1.0

Why just average them?
e k-nearest neighbor regressor is N
) > y,x Ind(x;is aknearest neighbor) 7 . Zi:l K (mo, |
flxg) = == F(zo)

n
Z?zl Ind(x;is aknearest neighbor) Zizl K (3707




Nearest neighbor regression

{(zi, yi) })iza

]
-

15
15

1.0

Q
-

1.0

0.5

v
o

0.5

0.0
!
0.0
1

0.0

-0.5

-0.5

1.0
!
o

1.0

oio 072 014 1‘1:0 ois o{s 1To 0“0 012 °f4 -'}30 o.‘s oia 1f0 o[o 012 of4 o.‘s o,[a 110
* k-nearest neighbor regressor is N S K (o, 74)ys R -
A~ n . . _ 1=
Floxg) = ZizlinInd(inS aknearest neighbor)  f(zg) = Z?:l K(:I:o, CL’Z) f(xO) — b(LU()) 4 ’U)(xo) To

Z?zl Ind(x;is aknearest neighbor)
n
wlan). o) = agmip 3~ Ko, 23 — b+ u72,))
w,b i=1

Local Linear Regression



Nearest Neighbor Overview

« Verysimple to explain and implement

« No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

« You can use other forms of distance (not just Euclidean)

« Smoothing and local linear regression can improve
performance (at the cost of higher variance)

« With alot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer (curse of dimensionality).



Questions?



Trees




Trees

Example: binary tree with splits along axes




Regression Trees

M
flz) = Z cmI(z € Rm). Binary tree with splits along axes.
m=1

How do you build the tree / find the splits?

A

Cm = ave(y;|x; € Ry,).

Ri(j,s) = {X|X; <s} and Ra(j,s) = {X|X; > s}.

X1 <t
' Then we seek the splitting variable 7 and split point s that solve
Xa <t X, < t3 min [min Y (i—a)+min Y (yi— 82)2] .
Js S C1 €2
x,€R1(7,) x,€R2(7,s)




Learning decision trees

> Start from empty decision tree
> Split on next best attribute (feature)
- Use, for example, information gain to select attribute
- Spliton argmaxIG(X;) =argmaxH(Y) — H(Y | X;)
> Recurse Z ’
> Prune X<,

M
f(@)=> cmI(z € Rm).

W



(email)

Decision Trees // TN

ch$>0.0555

(“) (h] xxxxxx )

/80/117 /48/35
remove<0.06 hp<0.405

Trees are easy to interpret: / A / hp>0.405

- You can explain how the ) Copam) Copan) |
o aonos /9/112 /26/33 0/22
classifier came to the \ \ \

george<0.15 CAPAVE<2.907

COhC|USi0n |t d|d / (h'>() 191 / g(‘ur).',(‘\>().15 / (fAPAi/b»z.s)m

(email) ( ) |s1>=nn (spam) span
/80/86\ /1001203\' 6/109 /19/1 d\ 7/227
Trees are hard to interpret: gm)rgu<::(.'(¢l)(::“>(l.()(l5 (!}\l,}\\"lfff\zl;i\;:i>2.75()« 19980 l:)))(l 58
- Tough to explain why the o] | L
ClaSSiﬁer came tO the /80/652\ 0/209 /36/123\ 16/81 18/109 0/
. . . hp<0.03 free<0.065
conclusion it did l;>n froo >(,
| n (e ) spam
/ 771423 31229 / 16/94 9/29 .
(‘AI’MAX<1()X business<0. 1&( Small Changes In
CAPMAX>10.5 business>0.145

data can result in
/20/2314&& /s7/1aé\ 14/89 ]3/‘5“]‘ large difference in
receive<0.12 trees

2du<0.045
>() 125 lu)() 045

E |\-w=-~'l< >

19/236 12 /48/1 ﬂ\ 9/72

our<1.2
our>1.2

B

37/101 112



Trees

M . T
f@) =Y enl(z € Rm). rees
m=1

* have low bias, high variance

 deal with categorial variables

well

* intuitive, interpretable

« good software exists



Random Forests




Random Forests

Tree methods have low bias but high variance.

Original Tree

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

x

o N

A

o

]

@

- @
)

“Bagging:” Bootstrap aggregating

o
o x I
2o
A
o
© W
©
&

o
o
x
o - X
n 1
o
w ) 2
8
04'];

........




Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,i, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {7} }7.
To make a prediction at a new point z:
Regression: f2(z) = L S0, Ty().

Classification: Let Cy (z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}%.



Random Forest - Decision Boundary Example

i %
Training Error: 0.000 fo

Test Error: 0.238
Bayes Error:  0.210 0O




Random Forest

Given random variables Y7, Y5, ...,Yp with
E[Y;] =y, E[(Y; — y)°] = o2, E[(Y: — y)(Y; — y)] = po?

0O Variance of individual predictor

Assume bias =0

p0-2 Correlation between predictors

The Yi's are identically distributed but not independent

Bl(5 Y %~ 9)’) =



Random Forest

Test Error

0.040 0.045 0.050 0.055 0.060 0.065 0.070

The power of weakly correlated predictors:

Spam Data

Bagging
—— Random Forest

—— Gradient Boosting (5 Node)

lll( W i u - |

"Tl 11

i Lomdfu \

arTLEAT

II I L

| T T T T
1000 1500 2000

Number of Trees

2500

Bagging: Averaged trees trained
on bootstrapped datasets that
used all d variables

Random forest: Averaged trees
trained on bootstrapped datasets
that used m < d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation
improves performance!



Random Forests

« Random Forests

 have low bias, low variance

 deal with categorial variables well

* not that intuitive or interpretable

* Notion of confidence estimates

e good software exists



Boosting and Additive
Models




Boosting

« 1988 Kearns and Valiant: “Can weak learners be

MBS0 LHELE 4 €t rong learner?”
An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly

classifies h with error at most 1/2 —

* 1990 Robert Schapire: “Yup!”
* 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

« 2001 Friedman: “Practical for arbitrary losses”



Additive models

{(xivyi)}?zl T; € Rd,yz' S {—171}

« Given:
¢ :RESR t=1,....p

n P
+ Generate random function&s n:gnZ: Loss (y > wt¢t($i))

t=1

* Learn some Weightsf:(x) — s (2 Wit )

 Classify new data:



Additive models

| {@ny)ti @ e Ry, € {-1,1}
« Given:
b :RESR t=1,....p

n p
+ Generate random functior&s HE,HZ; Loss (y > wt¢t($i)>

t=1

. Learn some weightél:(m) = sign (; @t(bt(x))

An interpretation:
Each ¢.(x) is a classification rule that we are assigning some weight w;,

 Classify new data: i .
D, p1,..., 0 = arg cgminq5 ZLOSS (yi, Zwt@(wi))
TR =1 t=1

.....

Is in general computationally hard



Forward Stagewise Additive models

b(x,7) is a function with parameters v  Examples: b(z,v) = 1 1 _
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(.CU ’7) _ ’711{.’173 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,¥m) = arg I}}?Z L(yi, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fim(z) = fm-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time



Forward Stagewise Additive models

b(x,7) is a function with parameters v  Examples: b(z,v) = 1 1 _
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(.CU ’7) _ ’711{.’173 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute

N
(Bm,¥m) = arg I}}?Z L(yi, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fim(z) = fm-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time

AdaBoost: p(z,): classifiers to {—1,1}
L(y, f(z)) = exp(-yf(z))



Forward Stagewise Additive models

b(x,7) is a function with parameters v  Examples: b(z,v) = 1 1 _
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(a; 7) _ ’711{373 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(Brm»>¥m) = arg ’}}?Z L(yi, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fim(z) = fm-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time

Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(x,~y): regression trees



Forward Stagewise Additive models

b(x,y) is a function with parameters =y Examples: b(z,7) = : 1 -
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(.’L’, ,7) — 711{:1;3 < 72}
1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(Bms Ym) = argmin }  L(yi, fn—1(2:) + Bb(wi;7)).
=1
(b) Set fm(z) = fm—1(z) + Bmb(x;Ym).
|dea: greedily add one function at a time
Boosted Regression Trees: Ly, f(z)) = (y — f(:v))2
L(Yi, fm—1(z:) + Bb(zi57) = (Y — frm—1(2i) — :Bb(mi;7))2
= (Tz'm - ﬂb(-’fz‘;’)’))za Tim = Yi — fm-1()

Efficient. No harder than learning regression trees!



Additive models

* Boosting is popular at parties: Invented by theorists,

heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But

can also use trees! Boosting can scale.

« Gradient boosting generalization with good software

packages (e.g., XGBoost). Effective on Kaggle



Additive models

/4 , Francois Chollet & @fchollet - Apr 3, 2019 v

\ég What machine learning tools do Kaggle champions use? We ran a survey
among teams that ranked in the *top 5* of a competition since 2016.

Primary ML software tool used by top-5 teams on Kaggle
in each competition (n=120)

Keras

LightGBM
XGBoost

PyTorch

TensorFlow
(non-Keras)

Sci-kit Learn
Fastai
Caffe

0 10 20 30 40

. Deep . Classic


https://twitter.com/fchollet

Bagging versus Boosting

« Bagging averages many low-bias, lightly

dependent classifiers to reduce the variance

« Boosting learns linear combination of high-bias,

highly dependent classifiers to reduce error



Last slide of the quarter!




