PCA: Efficient computation and some cool applications

UNIVERSITY of WASHINGTON

©Kevin Jamieson 2018

PCA: a high-fidelity linear projection

Given $x_i \in \mathbb{R}^d$ and some q < d consider $u_{i1}d_1$ $\min_{\mathbf{V}_q} \sum_{i=1}^{n} ||(x_i - \bar{x}) - \mathbf{V}_q \mathbf{V}_q^T (x_i - \bar{x})||^2.$ The $\mathbf{V}_q = [v_1, v_2, \dots, v_q]$ is orthonormal: where Avenao $\mathbf{V}_{a}^{T}\mathbf{V}_{a}=I_{a}$ $\Sigma = \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$ \mathbf{V}_q are the first q eigenvectors of Σ \mathbf{V}_q are the first q principal components Principal Component Analysis (PCA) projects $(\mathbf{X} - \mathbf{1}\bar{x}^T)$ down onto \mathbf{V}_q $\mathbf{U}_{a}^{T}\mathbf{U}_{q}=I_{q}$ $(\mathbf{X} - \mathbf{1}\bar{x}^T)\mathbf{V}_q = \mathbf{U}_q \operatorname{diag}(d_1, \dots, d_q)$

PCA on MNIST

SVD and **PCA**

 \mathbf{V}_q are the first q eigenvectors of Σ and SVD $\mathbf{X} - \mathbf{1}\bar{x}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T$

How do we compute the principal components?

(.eig)

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Singular Value Decomposition (SVD)

 $MM = O(n^{\omega})$

How do we compute the principal components?

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Power method - one vector at a time

Power method - one vector found iteratively

Power method - analysis $\mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E}$

$$L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$$

Google PageRank of page i:

$$p_i = (1 - \lambda) + \lambda \sum_{j=1}^n \frac{L_{i,j}}{c_j} p_j$$

$$\mathbf{L} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $c_j = \sum_{k=1}^n L_{j,k}$

 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

$$\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L}\mathbf{D}_c^{-1}\mathbf{p}$$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$

 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L}\mathbf{D}_c^{-1}\mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$

 \mathbf{p} is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue

 $L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}$

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L}\mathbf{D}_c^{-1}\mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$\mathbf{p} = \left((1 - \lambda) \mathbf{1} \mathbf{1}^T / n + \lambda \mathbf{L} \mathbf{D}_c^{-1} \right) \mathbf{p}$$
$$=: \mathbf{A} \mathbf{p}$$

 \mathbf{p} is an eigenvector of \mathbf{A} with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue

Solve using power method:
$$\mathbf{p}_{k+1} = \frac{\mathbf{A}\mathbf{p}_k}{\mathbf{1}^T \mathbf{A}\mathbf{p}_k/n}$$
 $\mathbf{p}_0 \sim \text{uniform}([0,1]^n)$

PCA and SVD take-aways

E.g., that approximately maintain pairwise distances

Miscellaneous fun stuff!

Nonparametric models for classification

Nearest Neighbor Methods

- Yet another non-linear model
 - Kernel method
 - Neural Network
 - Nearest Neighbor method
- A model is called "parametric" if the number of parameters do not depend on the number of samples
- A model is called "non-parametric" if the number of parameters increase with the number of samples

Recall Bayes optimal classifier

- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x, y)$
- Suppose for simplicity that $P_Y(y = +1) = P_Y(y = -1) = 1/2$
- Bayes optimal classifier minimizes the conditional error $P(\hat{y} \neq y | x)$ for every x, which can be written explicitly as

$$\hat{y} = +1$$
 if $P(+1 | x) > P(-1 | x)$
-1 if $P(+1 | x) < P(-1 | x)$

In practice we do not have P(x, y)

• Bayes optimal classifier $\hat{y} = +1$ if P(+1 | x) > P(-1 | x) -1 if P(+1 | x) < P(-1 | x)

• How do we compare P(y = +1 | x) and P(y = -1 | x) from samples? samples with y = +1

• Denote the n_r^+ as the number of samples within distance r from x with label +1, then

$$\frac{n_r^+}{n} \longrightarrow 2r \times P(x, y = +1)$$

as we increase *n* and decrease *r*.

• If we take *r* to be the distance to the *k*-th neighbor from *x*, then

 $\frac{\text{\# of +1 samples}}{\text{\# of -1 samples}} \longrightarrow \frac{P(x, y = +1)}{P(x, y = -1)}$

Some data, Bayes Classifier

Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:

Linear Decision boundary

$$x^T w + b = 0$$

Predicted label: +1

Predicted label: -1

k=15 Nearest Neighbor Boundary

- Nearest neighbor gives non-linear decision boundaries
- What happens if we use a small k or a large k?

k=1 Nearest Neighbor Boundary

• With a small k, we tend to overfit.

Figures from Hastie et al

k-Nearest Neighbor Error

Model complexity low

1 k 3 **Bias-Variance tradeoff** 151 101 69 45 31 21 11 5 7 0.30 Linear As k->infinity? **Bias**: 0.25 Best possible Test Error Variance: 0.20 As k->1? 0.15 **Bias**: 0.10 Train Test Variance: Bayes

k - Number of Nearest Neighbors

Figures from Hastie et al

• The error achieved by Bayes optimal classifier provides a lower bound on what any estimator can achieve

Model complexity high

Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,

and we show k = 1 nearest neighbor decision boundaries for various choices of distances

Mahalanobis norm: $d(x, y) = (x - y)^T M (x - y)$

L-infinity (max) norm

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let *x_{NN}* denote the nearest neighbor at a point *x*
- First note that as $n \to \infty$, $P(y = +1 | x_{NN}) \to P(y = +1 | x)$
- Let $p^* = \min\{P(y = +1 | x), P(y = -1 | x)\}$ denote the Bayes error rate
- At a point *x*,
 - Case 1: nearest neighbor is +1, which happens with P(y = +1 | x)and the error rate is P(y = -1 | x)
 - Case 2: nearest neighbor is +1, which happens with P(y = -1 | x)and the error rate is P(y = +1 | x)
- The average error of a 1-NN is

 $P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p^*(1 - p^*)$

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

How many samples do we need so that a nearest neighbor is within a cube of side length r?

Curse of dimensionality Ex. 2

 ${X_i}_{i=1}^n$ are uniformly distributed over $[-.5, .5]^p$.

What is the median distance from a point at origin to its 1NN? How many samples do we need so that a median Euclidean distance is within r?

Nearest neighbor regression

- What is the optimal classifier that minimizes MSE $\mathbb{E}[(\hat{y} - y)^2]$? $\hat{y} = \mathbb{E}[y | x]$
- *k*-nearest neighbor regressor is $\hat{f}(x) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$

 $= \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

Nearest neighbor regression

• *k*-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

Nearest neighbor regression

- *k*-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \text{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$
- $\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$

Nearest neighbor regression

Nearest neighbor regression

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Trees

Example: binary tree with splits along axes

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Regression Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Binary tree with splits along axes.

How do you build the tree / find the splits?

$$\hat{c}_m = \operatorname{ave}(y_i | x_i \in R_m).$$

 R_4

 R_5

 $X_2 \leq t_2$

 R_1

 R_2

$$R_{1}(j,s) = \{X | X_{j} \leq s\} \text{ and } R_{2}(j,s) = \{X | X_{j} > s\}.$$

$$X_{1} \leq t_{1}$$
Then we seek the splitting variable j and split point s that solve
$$\underset{j, s}{\min} \left[\underset{c_{1}}{\min} \sum_{x_{i} \in R_{1}(j,s)} (y_{i} - c_{1})^{2} + \underset{c_{2}}{\min} \sum_{x_{i} \in R_{2}(j,s)} (y_{i} - c_{2})^{2} \right].$$

$$R_{2} \quad R_{3}$$

Learning decision trees

- > Start from empty decision tree
- > Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on $\arg \max_i IG(X_i) = \arg \max_i H(Y) H(Y \mid X_i)$
- > Recurse

> Prune

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Decision Trees

Trees are easy to interpret:

- You can explain how the classifier came to the conclusion it did

Trees are hard to interpret:

- Tough to explain why the classifier came to the conclusion it did

 \mathbf{email}

19/236

Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

• Trees

- have low bias, high variance
- deal with categorial variables well
- intuitive, interpretable
- good software exists
- Some theoretical guarantees

Tree methods have low bias but high variance.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:

"Bagging:" Bootstrap aggregating

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority$ vote $\{\hat{C}_b(x)\}^B_1$.

Random Forest - Decision Boundary Example

Given random variables Y_1, Y_2, \ldots, Y_B with $\mathbb{E}[Y_i] = y, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2$ Assume bias = 0 $\rho \sigma^2$ Variance of individual predictor $\rho \sigma^2$ Correlation between predictors

The Yi's are identically distributed but not independent

$$\mathbb{E}\left[\left(\frac{1}{B}\sum_{i=1}^{B}Y_{i}-y\right)^{2}\right] =$$

The power of weakly correlated predictors:

Spam Data

Bagging: Averaged trees trained on bootstrapped datasets that used **all d variables**

Random forest: Averaged trees trained on bootstrapped datasets that used **m < d random variables**

Gradient boosting: ignore for now

Takeaway: reducing correlation improves performance!

- Random Forests
 - have low bias, low variance
 - deal with categorial variables well
 - not that intuitive or interpretable
 - Notion of confidence estimates
 - good software exists
 - Some theoretical guarantees
 - works well with default hyperparameters

Boosting and Additive Models

 1988 Kearns and Valiant: "Can weak learners be combined to create a strong learner?"

Weak learner definition (informal):

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"
- 2014 Tianqi Chen: "Scale it up!" XGBoost

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$
- Classify new data: $f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$

• Classify new data:
$$f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \widehat{w}_t

$$\widehat{w}, \widehat{\phi}_1, \dots, \widehat{\phi}_t = \arg\min_{w, \phi_1, \dots, \phi_p} \sum_{i=1}^n \operatorname{Loss}\left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$$

is in general computationally hard

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

AdaBoost: $b(x, \gamma)$: classifiers to $\{-1, 1\}$ $L(y, f(x)) = \exp(-yf(x))$

Examples:
$$b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$L(y, f(x)) = (y - f(x))^2$$

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

 $b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 < \gamma_2 \}$

 $b(x, \gamma)$: regression trees

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma} \sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees: $L(y, f(x)) = (y - f(x))^2$

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

= $(r_{im} - \beta b(x_i; \gamma))^2, \quad r_{im} = y_i - f_{m-1}(x_i)$

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

 $b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$

Efficient: No harder than learning regression trees!

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Gradient boosting generalization with good software packages (e.g., *XGBoost*). Effective on Kaggle

Additive models

 \sim

François Chollet 🤣 @fchollet · Apr 3, 2019

What machine learning tools do Kaggle champions use? We ran a survey among teams that ranked in the *top 5* of a competition since 2016.

- Bagging averages many low-bias, lightly dependent classifiers to reduce the variance
- Boosting *learns* linear combination of high-bias, highly dependent classifiers to reduce error

Last slide of the quarter!

