PCA: Efficient computation and some cool applications

UNIVERSITY of WASHINGTON

©Kevin Jamieson 2018

PCA: a high-fidelity linear projection

Given $x_i \in \mathbb{R}^d$ and some $q < d$ consider

$$
\min_{\mathbf{V}_q} \sum_{i=1}^N ||(x_i - \bar{x}) - \mathbf{V}_q \mathbf{V}_q^T (x_i - \bar{x})||^2.
$$
\nwhere
$$
\mathbf{V}_q = [v_1, v_2, \dots, v_q]
$$
 is orthonormal:

 V_q are the first *q* eigenvectors of Σ V*^q* are the first q *principal components*

Principal Component Analysis (PCA) projects $(\mathbf{X} - \mathbf{1}\bar{x}^T)$ down onto \mathbf{V}_q

$$
(\mathbf{X} - \mathbf{1}\bar{x}^T)\mathbf{V}_q = \mathbf{U}_q \text{diag}(d_1, \dots, d_q)
$$

PCA on MNIST

SVD and PCA

 \mathbf{V}_q are the first q eigenvectors of Σ and *SVD* $\mathbf{X} - \mathbf{1} \bar{x}^T = \mathbf{U} \mathbf{S} \mathbf{V}^T$

How do we compute the principal components?

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Singular Value Decomposition (SVD)

 $MM = O(n^{\omega})$

How do we compute the principal components?

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Power method - one vector at a time

Power method - one vector found iteratively

Power method - analysis $\left(\begin{array}{ccc} 2 & 2 \end{array}\right)$

$$
\begin{aligned}\n\textcircled{1:} & \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T \qquad v_* = \arg \max_{v} v^T \Sigma v \\
\textcircled{2:} & \sqrt{0, I} \qquad \text{Iterate:} \qquad \boxed{z_{t+1} = \frac{\Sigma z_t}{\|\Sigma z_t\|_2}} \qquad \text{Lip} \\
\text{To analyze write:} & \boxed{\sum_{\alpha_{t+1}} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{
$$

$$
L_{i,j} = \mathbf{1} \{ \text{page } j \text{ points to page } i \}
$$

Google PageRank of page i:

$$
p_i = (1 - \lambda) + \lambda \sum_{j=1}^{n} \frac{L_{i,j}}{c_j} p_j
$$

n

 $L_{j,k}$

k=1

 $c_j = \sum$

 $L_{i,j} = 1$ {page *j* points to page *i*}

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

 $L_{i,j} = 1$ *{*page *j* points to page *i*}

Google PageRank of pages given by:

$$
\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}
$$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$
\mathbf{p} = ((1 - \lambda)\mathbf{1}\mathbf{1}^T/n + \lambda \mathbf{L}\mathbf{D}_c^{-1})\mathbf{p}
$$

$$
=: \mathbf{A}\mathbf{p}
$$

 $L_{i,j} = 1$ *{*page *j* points to page *i}*

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$
\mathbf{p} = ((1 - \lambda)\mathbf{1}\mathbf{1}^T/n + \lambda \mathbf{L}\mathbf{D}_c^{-1})\mathbf{p}
$$

$$
=: \mathbf{A}\mathbf{p}
$$

p is an eigenvector of A with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue

 $L_{i,j} = 1$ *{*page *j* points to page *i}*

Google PageRank of pages given by:

 $\mathbf{p} = (1 - \lambda)\mathbf{1} + \lambda \mathbf{L} \mathbf{D}_c^{-1} \mathbf{p}$

Set arbitrary normalization: $\mathbf{1}^T \mathbf{p} = n$ so that

$$
\mathbf{p} = ((1 - \lambda)\mathbf{1}\mathbf{1}^T/n + \lambda \mathbf{L}\mathbf{D}_c^{-1})\mathbf{p}
$$

$$
=: \mathbf{A}\mathbf{p}
$$

p is an eigenvector of A with eigenvalue 1! And by the properties stochastic matrices, it corresponds to the *largest* eigenvalue

Solve using power method:
$$
\mathbf{p}_{k+1} = \frac{\mathbf{A}\mathbf{p}_k}{\mathbf{1}^T\mathbf{A}\mathbf{p}_k/n} \qquad \mathbf{p}_0 \sim \text{uniform}([0,1]^n)
$$

PCA and SVD take-aways

E.g., that approximately maintain pairwise distances

Miscellaneous fun stuff!

Nonparametric models for classification

Nearest Neighbor Methods *^x*¹

- Yet another non-linear model
	- Kernel method
	- Neural Network
	- Nearest Neighbor method
- A model is called "parametric" if the number of parameters do not depend on the number of samples
- A model is called "non-parametric" if the number of parameters increase with the number of samples

Recall Bayes optimal classifier

- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x, y)$
- Suppose for simplicity that $P_Y(y = +1) = P_Y(y = -1) = 1/2$
- Bayes optimal classifier minimizes the conditional error $P(\hat{y} \neq y | x)$ for every x, which can be written explicitly as

$$
\hat{y} = +1 \text{ if } P(+1 \mid x) > P(-1 \mid x)
$$

-1 if $P(+1 \mid x) < P(-1 \mid x)$

In practice we do not have $P(x, y)$

• Bayes optimal classifier $\hat{y} = +1$ if $P(+1 | x) > P(-1 | x)$ -1 if $P(+1 | x) < P(-1 | x)$

samples with $y = +1$ • How do we compare $P(y = +1 | x)$ and $P(y = -1 | x)$ from samples?

One way to approximate Bayes Classifier = local statistics • Bayes optimal classifier decision is based on $\ddot{\textbf{\textit{x}}}$ *k*-nearest neighbors classifier considers the k -nearest neighbors and takes a majority vote $\hat{y} = +1$ if $P(+1 | x) > P(-1 | x)$ -1 if $P(+1 | x) < P(-1 | x)$ $P(x, y = +1)$ $P(x, y = -1)$ $\hat{y} = +1$, if (# of +1 samples) > (# of -1 samples) -1 , if (# of +1 samples) < (# of -1 samples) *x* $P(y = +1|x)$ 0.5 $\hat{y} = -1$ $\hat{y} = +1$ $\hat{y} = -1$ $\hat{y} = +1$ $\hat{y} = -1$ $+1$ *x* Decision is based on # of +1 samples # of -1 samples

• Denote the n_r^+ as the number of samples within distance r from x with label $+1$, then

$$
\frac{n_r^+}{n} \longrightarrow 2r \times P(x, y = +1)
$$

as we increase n and decrease r .

• If we take r to be the distance to the k -th neighbor from x , then

of +1 samples # of -1 samples \longrightarrow $P(x, y = +1)$ $\rightarrow P(x, y = -1)$

Some data, Bayes Classifier

Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:

Linear Decision boundary

$$
x^T w + b = 0
$$

Predicted label: +1

Predicted label: -1

*k***=15 Nearest Neighbor Boundary**

- Nearest neighbor gives non-linear decision boundaries
- What happens if we use a small *k* or a large *k*?

k=1 Nearest Neighbor Boundary

• With a small *k*, we tend to overfit.

Figures from Hastie et al

k-Nearest Neighbor Error

Model complexity low Model complexity high

k 151 101 3 Bias-Variance tradeoff 69 45 31 21 11 0.30 Linear As k->infinity? 0.25 Bias: Best possible **Test Error** Variance: 0.20 As k->1? 0.15 Bias: 0.10 Train Test Variance: **Bayes**

k - Number of Nearest Neighbors

Figures from Hastie et al

• The error achieved by Bayes optimal classifier provides a lower bound on what any estimator can achieve

Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,

and we show $k = 1$ nearest neighbor decision boundaries for various choices of distances

Mahalanobis norm: $d(x, y) = (x - y)^T M (x - y)$ **L**-infinity *(max)* norm

*x*1

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$
\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}
$$

Theorem [Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and $P(Y =$ $1|X = x$ is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

$$
\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}
$$

Theorem [Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and $P(Y =$ $1|X = x$ is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let x_{NN} denote the nearest neighbor at a point x
- First note that as $n \to \infty$, $P(y = +1 | x_{NN}) \to P(y = +1 | x)$
- Let $p^* = \min\{P(y = +1 | x), P(y = -1 | x)\}$ denote the Bayes error rate
- At a point x ,
	- Case 1: nearest neighbor is $+1$, which happens with $P(y = +1 | x)$ and the error rate is $P(y = -1 | x)$
	- Case 2: nearest neighbor is $+1$, which happens with $P(y = -1 | x)$ and the error rate is $P(y = + 1 | x)$
- The average error of a 1-NN is

 $P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p^*(1 - p^*)$

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0, 1]^p$. What is $\mathbb{P}(X \in [0, r]^p)$?

How many samples do we need so that a nearest neighbor is within a cube of side length *r*?

Curse of dimensionality Ex. 2

 ${X_i}_{i=1}^n$ are uniformly distributed over $[-.5, .5]^p$.

What is the median distance from a point at origin to its 1NN? How many samples do we need so that a median Euclidean distance is within *r*?

- What is the optimal classifier that minimizes MSE $\mathbb{E}[(\hat{y} - y)^2]$? $\hat{y} = \mathbb{E}[y|x]$
- \cdot *k*-nearest neighbor regressor is $\hat{f}(x) =$ 1 \overline{k} \overline{k} \overline{k} *j*∈nearest neighbor y_j

=

 $\sum_{i=1}^{n} y_i \times \text{Ind}(x_i)$ is a *k* nearest neighbor) $\sum_{i=1}^{n} \text{Ind}(x_i)$ is a *k* nearest neighbor)

• *k*-nearest neighbor regressor is $\hat{f}(x_0) =$ $\sum_{i=1}^{n} y_i \times \text{Ind}(x_i)$ is a *k* nearest neighbor) $\sum_{i=1}^{n}$ Ind(x_i is a k nearest neighbor)

$$
\hat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}
$$

- *k*-nearest neighbor regressor is $\hat{f}(x_0) =$ $\sum_{i=1}^{n} y_i \times \text{Ind}(x_i)$ is a *k* nearest neighbor) $\sum_{i=1}^{n}$ Ind(x_i is a k nearest neighbor)
- $f(x_0) =$ $\sum_{i=1}^{n}$ $\overline{\sum}$ $\sum_{i=1}^n K(x_0, x_i) y_i$ $\frac{n}{i=1} K(x_0, x_i)$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

the control of the control of the control of the control of the

Trees

Example: binary tree with splits along axes

$$
f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).
$$

Regression Trees

$$
f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).
$$

Binary tree with splits along axes.

How do you build the tree / find the splits?

$$
\hat{c}_m = \mathrm{ave}(y_i | x_i \in R_m).
$$

Learning decision trees

- > **Start from empty decision tree**
- > **Split on next best attribute (feature)**
	- **Use, for example, information gain to select attribute**
	- **Split on** arg max $IG(X_i)$ = arg max $H(Y) H(Y | X_i)$
- > **Recurse**

> **Prune**

$$
f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).
$$

Decision Trees

Trees are easy to interpret:

- You can explain *how* the classifier came to the conclusion it did

Trees are hard to interpret:

- Tough to explain *why* the classifier came to the conclusion it did

email

19/236

Trees

$$
f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).
$$

• Trees

- **• have low bias, high variance**
- deal with categorial variables well
- intuitive, interpretable
- good software exists
- Some theoretical guarantees

Tree methods have **low bias** but **high variance**.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For $b=1$ to B:
	- (a) Draw a bootstrap sample \mathbb{Z}^* of size N from the training data.
	- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
		- i. Select m variables at random from the p variables.
		- ii. Pick the best variable/split-point among the m .
		- iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x .

Regression:
$$
\hat{f}_{\text{rf}}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)
$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\text{rf}}^B(x) = \text{majority}$ vote $\{\hat{C}_b(x)\}_{1}^B$.

Random Forest - Decision Boundary Example

Given random variables Y_1, Y_2, \ldots, Y_B with $\mathbb{E}[Y_i] = y, \, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \, \mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2$ σ^2 Variance of individual predictor **Assume bias = 0** $\rho \sigma^2$ Correlation between predictors

The Yi's are identically distributed but **not** independent

$$
\mathbb{E}[(\frac{1}{B}\sum_{i=1}^{B}Y_i - y)^2] =
$$

The power of weakly correlated predictors:

Spam Data

Bagging: Averaged trees trained on bootstrapped datasets that used **all d variables**

Random forest: Averaged trees trained on bootstrapped datasets that used **m < d random variables**

Gradient boosting: ignore for now

Takeaway: reducing correlation improves performance!

- Random Forests
	- **• have low bias, low variance**
	- deal with categorial variables well
	- not that intuitive or interpretable
	- Notion of confidence estimates
	- good software exists
	- Some theoretical guarantees
	- **• works well with default hyperparameters**

Boosting and Additive Models

• 1988 Kearns and Valiant: "Can **weak learners** be combined to create a **strong learner?**"

Weak learner definition (informal):

An algorithm *A* is a *weak learner* for a hypothesis class *H* that maps *X* to $\{-1, 1\}$ if for all input distributions over *X* and $h \in \mathcal{H}$, we have that *A* correctly classifies *h* with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"
- 2014 Tianqi Chen: "Scale it up!" XGBoost

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n$ $x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \ldots, p$
- Learn some weights: $\widehat{w} = \arg\min_w$ \sum *n i*=1 Loss $\int y_i$, \sum *p t*=1 $w_t \phi_t(x_i)$!
- Classify new data: $f(x) = \text{sign}\left(\sum_{i=1}^{p} x_i\right)$ *t*=1 $\widehat{w}_t \phi_t(x)$!

Additive models

- Given: $\{(x_i, y_i)\}_{i=1}^n$ $x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate random functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \ldots, p$
- Learn some weights: $\widehat{w} = \arg\min_w$ \sum *n i*=1 Loss $\int y_i$, \sum *p t*=1 $w_t \phi_t(x_i)$!

• Classify new data:
$$
f(x) = sign \left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x) \right)
$$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \hat{w}_t

$$
\widehat{w}, \widehat{\phi}_1, \dots, \widehat{\phi}_t = \arg \min_{w, \phi_1, \dots, \phi_p} \sum_{i=1}^n \text{Loss} \left(y_i, \sum_{t=1}^p w_t \phi_t(x_i) \right)
$$

is in general computationally hard

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For $m = 1$ to M:
	- (a) Compute

$$
(\beta_m,\gamma_m)=\arg\min_{\beta,\gamma}\sum_{i=1}^NL(y_i,f_{m-1}(x_i)+\beta b(x_i;\gamma)).
$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Examples:
$$
b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}
$$

$$
b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \leq \gamma_2\}
$$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For $m = 1$ to M:
	- (a) Compute

$$
(\beta_m,\gamma_m)=\arg\min_{\beta,\gamma}\sum_{i=1}^NL(y_i,f_{m-1}(x_i)+\beta b(x_i;\gamma)).
$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \leq \gamma_2\}$

 $1 + e^{-\gamma^T x}$

Examples: $b(x, \gamma) = \frac{1}{1 + \gamma}$

AdaBoost: $b(x, \gamma)$: classifiers to $\{-1, 1\}$ $L(y, f(x)) = \exp(-y f(x))$

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For $m = 1$ to M:
	- (a) Compute

$$
(\beta_m,\gamma_m)=\arg\min_{\beta,\gamma}\sum_{i=1}^NL(y_i,f_{m-1}(x_i)+\beta b(x_i;\gamma)).
$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees:

$$
L(y, f(x)) = (y - f(x))^2
$$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \leq \gamma_2\}$

 $1 + e^{-\gamma^T x}$

Examples: $b(x, \gamma) = \frac{1}{1 + \gamma}$

 $b(x, \gamma)$: regression trees

 $b(x, \gamma)$ is a function with parameters γ

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For $m = 1$ to M:
	- (a) Compute

$$
(\beta_m,\gamma_m)=\arg\min_{\beta,\gamma}\sum_{i=1}^NL(y_i,f_{m-1}(x_i)+\beta b(x_i;\gamma)).
$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees: $L(y, f(x)) = (y - f(x))^2$

$$
L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2
$$

= $(r_{im} - \beta b(x_i; \gamma))^2$, $r_{im} = y_i - f_{m-1}(x_i)$

 $b(x, \gamma) = \gamma_1 \mathbf{1} \{x_3 \leq \gamma_2\}$

 $1 + e^{-\gamma^T x}$

Examples: $b(x, \gamma) = \frac{1}{1 + \gamma}$

Efficient: No harder than learning regression trees!

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Gradient boosting generalization with good software packages (e.g., *XGBoost)*. Effective on Kaggle

Additive models

 \checkmark

François Chollet & @fchollet · Apr 3, 2019

What machine learning tools do Kaggle champions use? We ran a survey among teams that ranked in the *top 5* of a competition since 2016.

- Bagging *averages* many **low-bias**, **lightly dependent** classifiers to reduce the variance
- Boosting *learns* linear combination of **high-bias**, **highly dependent** classifiers to reduce error

Last slide of the quarter!

