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PCA: a high-fidelity linear projection

. Y1 »
Given z; € R? and some ¢ < d consider uﬂdl//
mmz |(zi — &) — VoVE(z; — 7)| )2 o
7 éWA
where V, = |v1,vs,...,v,] Iisorthonormal:
— — Viv,=1,

V, are the first g eigenvectors of X

V, are the first q principal components

Principal Component Analysis (PCA) projects ') down onfo V,
(X — 127V, = U,diag(ds, . .., d,) Uiy, =1, -




PCA on MNIST

V,, are the first ¢ eigenvectors of ¥ andsvo X — 121 = USV?'

Handwritten $’s, 16x16 pixel image so that x; € ]@

diag(S)

Real Trace
Randomized Trace

Singular Values

\

FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).
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SVD and PCA

V,, are the first ¢ eigenvectors of ¥ andsvo X — 121 = USV?'

e
§ w
c o
g
£
8
2
23 )
S // & %
‘ A o .
c
<}
3
(2]
S
Uy
o' =
! T T T T T
-1.0 -0.5 0.0 0.5 1.0
First principal component
U,

X —1z7



How do we compute the principal components?

\J
1. Power iteration ( ' Q\a 3

2. Solving for a singular value decomposition (SVD)
——



Singular Value Decomposition (SVD) i = 0"

Theorem (SVD): Le@ R™X™ with rank@}g mi ,n}. The
where S € R"*" is diagonal with positive entries I, VIV =1
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How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)



Power method - one vector at a time

N .
@ S (@i @)@ —2)7T v, = argmax vl Yo
=1 v .‘.. : - 4




Power method - one vector found iteratively
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To analyze write: — VDVT 2t —: Vat




Power method - analysisg é @ Cé ZOS
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Markov chains - PageRank

0010
) ) ) L— 1 0 00
L;; = 1{page j points to page i} (1) (1) 8 (1)
Google PageRank of page i:
- L, -
pi=1—=XN+A) L, ;=S Ly
; j k=1



Markov chains - PageRank

o == O
o - OO0
oo O

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-\1+)LD.'p




Markov chains - PageRank

o == O
o= oo
o OO

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-\1+)LD.'p

Set arbitrary normalization: 17 p = n so that
p=(1-MN11"/n+ALD.")p
—: Ap



Markov chains - PageRank

o == O
o= oo
o OO

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-\1+)LD.'p

Set arbitrary normalization: 17 p = n so that
p=(1-MN11"/n+ALD.")p
—: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue



Markov chains - PageRank

o == O
o= oo
o OO

L; ; = 1{page j points to page i} b= (

Google PageRank of pages given by:

p=(1-\1+)LD.'p

Set arbitrary normalization: 17 p = n so that
p=(1-MN11"/n+ALD.")p
—: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue

. Apx .
Solve using power method: Pr+1 = 17 Apy/n po ~ uniform(|[0, 1]™)




PCA and SVD take-aways

'F{‘ o*"\«é é’.\MU/\f;‘O//\

PCA finds a)zgaimensional representation with: 'YE‘&,
Highest variance in any @-dimensional space

Lowest reconstruction error W{.MA ?(OJQA—C_A AO~ A

spanned by the topd eigenvectors of covariance matrix

How to find the top @ eigenvectors?
i
SVD: (X- 1) :=A=USVT 1
UV
V are the elgenvectors of ATA
U are the elgenvectors of AAT

P hod -
ower met (0 \7 me ,\/‘éc—‘-o-{ k(“’ ) - C‘(,V\fl\f/fp\ @ﬁ\/

This is one way to represent data in lower dimensions: there are others with other properties
E.g., that approximately maintain pairwise distances




Miscellaneous fun stuff!

W



Nonparametric models for
classification

W



Nearest Neighbor Methods

- Yet another non-linear model
- Kernel method
- Neural Network
- Nearest Neighbor method
- A model is called “parametric” if the number of parameters
do not depend on the number of samples
- A model is called “non-parametric” if the number of parameters
increase with the number of samples



Recall Bayes optimal classifier

. Consider an example of binary classification on 1-dimensional x € R
. The problem is fully specified by the ground truths Py y(x, y)
. Suppose for simplicity that Py(y =+ 1) = Py(y =—1) = 1/2

. Bayes optimal classifier minimizes the conditional error P(y # y|x) for every x,

which can be written explicitly as
=+ 1ifP(H+1|x)> P(—1]x)
—1ifP(+1]|x) < P(—1|x)

P(y =+ 1]|x)
A

05 ...................................................................................................

» X




In practice we do not have P(x, y)

P(y =+ 1]x)
A

05 ...................................................................................................

> X
- Bayes optimal classifier $ =+ 1itP(+1]|x) > P(—1]|x)
—1ifP(+1]x) < P(—1|x)
- How do we compare P(y = + 1 |x) and P(y = — 1| x) from samples?
samples withy = + 1
0000 0000 ¢ o—0 800 00—

samples withy = — 1

—080-@ ® o000 @00 0000



One way to approximate Bayes Classifier

— |Oca| StatiStics - Bayes optimal classifier
y=4+1ifPH1]|x)>P(—1]|x)

—1if P(+1|x) < P(—1|x)

P(y =+11x)

o Plx,y=+1)
decision is based on P "
y=-1 y=+1 y=-1 y=+1 y=—-1 +1 > (X,y—— )
—_ - == e : .
— . k-nearest neighbors classifier
considers the k-nearest neighbors and
-89 ® —0—00-0—0———0—0-0-0-0-0—» » tgkes a majority vote

y=+1, if (#of +1 samples) > (# of -1 samples)
—1, if (#of +1 samples) < (# of -1 samples)

# of +1 samples

. Decision is based on
# of -1 samples

o Denote the n' as the number of samples within distance r from x with label + 1, then

+

n,

> 2r X P(x,y =+ 1)
n

as we increase n and decrease r.
e |f we take r to be the distance to the k-th neighbor from x, then
# of +1 samples Px,y=4+1)

# of -1 samples ’ Px,y=-1)



Some data, Bayes Classifier

Training data:
O True label: +1

O True label: -1

|ll

Bayes” classifier:

1

Optima

Predicted label: +1

Predicted label: -1

Figures from Hastie et al.



Linear Decision Boundary

oilg 0 Training data:
%0 % 0849° () True label: +1

& 0 O True label: -1
0 ~

T om0 o Learned:

Figures from Hastie et al

Linear Decision boundary
fw+b=0

G Predicted label: +1

Predicted label: -1



k=15 Nearest Neighbor Boundary

Training data:

O True label: +1

O True label: -1

Learned:

15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e Nearest neighbor gives non-linear decision boundaries
e What happens if we use a small k or a large k?

Figures from Hastie et al



k=1 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Learned:

1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e With a small k, we tend to overfit.

Figures from Hastie et al



k-Nearest Neighbor Error

Model complexity low

k — Number of Nearest Neighbors

Model complexity high

151 101 69 45 31 21 1 7 5 3 1 kK o .
o T s s ' * Bias-Variance tradeoff
§ - .\ /. Linear
‘ \ As k->infinity?
o
8 - Y Bias:
5 \ Best possible : .
E% o | — Variance:
i e \ .
o v/ \.\ As k->1?
o o\. .
Bias:
o
s | — Train
Test . _
— Biies Variance:

Figures from Hastie et al

e The error achieved by Bayes optimal classifier provides a

lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,
and we show k = Inearest neighbor decision boundaries for various choices of distances

L, norm : d(x,y) = |[|x — ||, L, norm (taxi-cab)
Xy X5
X =
Xy .
A

Mahalanobis norm: d(x,y) = (x — y)! M (x —y) L-infinity (max) norm



k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

2%

X A
Dist(x/,x)) = (XI; — X/;)? + (X, — XI,)?  Dist(xi,x/) =(xi, — xi,)2+(3x, — 3xi,,)2

The relative scalings in the distance metric affect region shapes



1 nearest neighbor guarantee - classification

11d

(s, yi) })iz1 Ti € Rd, y; € {0,1} (i, yi) ~ Pxy

Theorem|Cover, Hart, 1967] If Py is supported everywhere in R? and P(Y =
1| X = z) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.




1 nearest neighbor guarantee - classification

11d

(s, yi) })iz1 z; €RY g €{0,1} (i, yi) ~ Pxy

Theorem|Cover, Hart, 1967] If Py is supported everywhere in R? and P(Y =
1| X = z) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.

e Let xy, denote the nearest neighbor at a point x
o First note thatasn — o0, P(y =+ 1 |xyny) = P(y =+ 1|x)
o Let p* = min{P(y =+ 1|x), P(y = — 1| x)}denote the Bayes error rate
e At a point x,
e Case 1: nearest neighbor is 4+ 1, which happens with P(y = + 1| x)
and the errorrateis P(y = — 1 | x)
e Case 2: nearest neighbor is +1, which happens with P(y = — 1| x)
and the error rateis P(y = + 1 | x)

e The average error of a 1-NN is
Ply=+1|x)P(y=—-1[x)+P(y=—1[x) P(y =+ 1]|x) =2p*(1 - p*)




Curse of dimensionality Ex. 1

Unit Cub 2 A
nit Cube - 010
o0 p=3
Al o -
1 <
<> ED g ] p=1
\ 2
o <
T o
L r=0.3
= | = =
0
‘ I o |
1 o : r | |
‘Ncighborhood 0.0 0.2 0.4 0.6
side length r Fraction of Volume

X is uniformly distributed over [0, 1]?. What is P(X € [0, r]P)?

How many samples do we need so that a nearest neighbor is within a cube of side length r?



Curse of dimensionality Ex. 2

{ X}, are uniformly distributed over [—.5, .5]P.

0.6

Median Radius
0.3 04

0.2

0.1

0.0

0 5 10 15

3 4 5 Dimension

What is the median distance from a point at origin to its 1INN?

How many samples do we need so that a median Euclidean distance is within r?



Nearest neighbor regression

{(@s,945)})

n
1=1

- What is the optimal classifier that

minimizes MSE E[($ — y)?]?
y=Ely|«]

. k-nearest neighbor regressor is

fx) =% » y,

jenearest neighbor

Z;;l y; X Ind(x; is a k nearest neighbor)

2?21 Ind(x; is a k nearest neighbor)



Nearest neighbor regression

1.0

0.5

0.0

-0.5

-1.0

Ui, i) }) iz

0 l
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&O o oY ( \
3 0 8 |o
0] 0 (o]
0
o]
I | I | I I |
0.0 0.2 0.4 () 06 0.8 1.0

. k-nearest neighbor regressor is

f (xg) =

K (zo, )

Z?zl y; X Ind(x; is a k nearest neighbor)

2?21 Ind(x; is a k nearest neighbor)

In nearest neighbor methods, the
“weight” changes abruptly

0.8

0.4

0.0

smoothing: K(z,y)

Epanechnikov

T L Z?:l K(x()axi)yi

flao) = Z?:l K(zo, ;)



Nearest neighbor regression

Y {(zi,9i) })iza

1.0

T T T T T T T X T T

0.0 0.2 0.4 mo 0.6 0.8 1.0 0.0 0.2
. k-nearest neighbor regressor is
n . .
R Y v: X Ind(x; is a k nearest neighbor) o
—171 i —
Flxg) = = f (o)

Z?zl Ind(x; is a k nearest neighbor)




Nearest neighbor regression

I I I I I I | x I I [ | | | |
0.0 0.2 04 XI(Q 06 0.8 1.0 0.0 0.2 04 XI(Q 06 0.8 1.0

Why just average them?
. k-nearest neighbor regressor is

) = Z;lyl- X Ind(x; is a k nearest neighbor) ~ B Z?:l K(ajo, |
o) =

f(zo) =

2?21 Ind(x; is a k nearest neighbor) Z?:l K(:IZO,




Nearest neighbor regression

{(@s,946) })izq
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k-nearest neighbor regressor is 5

n . . -~ 1 K(70, 7)Y ~
R . y; X Ind(x; is a k nearest neighbor) — &=l ’ _ T
Fr) = Zl—ln’ - _ /(o) S K(x0, ;) f(xo) = b(x0) + w(x0)” o

Zizl Ind(x; is a k nearest neighbor)

mn
. T 2
w(xg),b(xg) = arg min K(xg,x;)(y; — (b+w" x;))
w7 .
1 =1

Local Linear Regression



Nearest Neighbor Overview

« Verysimple to explain and implement

 No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

« You can use other forms of distance (not just Euclidean)

« Smoothing and local linear regression can improve
performance (at the cost of higher variance)

« With a lot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer (curse of dimensionality).



Questions?



Trees




Trees

Example: binary tree with splits along axes




Regression Trees

M
f(z) = Z cmI(z € Rn). Binary tree with splits along axes.
m=1

How do you build the tree / find the splits?
Cm = ave(y;|x; € Ry,).

Ri(j,s) = {X|X; < s} and Ra(j,s) = {X|X; > s}.

X1<th
' Then we seek the splitting variable 57 and split point s that solve
Xa < t2 X, <t3 min [min Z (y; — ¢1)? + min Z (y; — 02)2} :
7, S C1 Co
r, €Rq (j,s) IBiERQ(j,S)




Learning decision trees

> Start from empty decision tree
> Split on next best attribute (feature)
- Use, for example, information gain to select attribute
- Spliton argmaxIG(X;) = argmax H(Y) — H(Y | X;)
> Recurse Z Z
> Prune X<t

M
f(@) =) eml(z € Rm).

W



Decision Trees /\
/ N

) (s

spam)
80/11 /48/35
remove<0. ()( hp<0.405

Trees are easy to interpret: / R /
- You can explain how the D Copam) Copam) | il
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Trees

M
fl@)= ) cmI(z € Rm)
m=1
X1<th
X2 <t2 X < ts

* Trees
 have low bias, high variance

 deal with categorial variables
well

* intuitive, interpretable
« good software exists

« Some theoretical guarantees



Random Forests




Random Forests

Tree methods have low bias but high variance.

Original Tree
x.1<0.395

One way to reduce variance is to
construct a lot of “lightly correlated” W} 1

trees and average them:

“Bagging:” Bootstrap aggregating

b=1
x.1<0.555

0




Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n.,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {7} }%.
To make a prediction at a new point z:
Regression: f2(z) = % Zle Ty(x).

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}L.



Random Forest - Decision Boundary Example

.. %
Training Error: 0.000 0

Test Error: 0.238
Bayes Error:  0.210 (0




Random Forest

Given random variables Y7, Y5, ..., Yp with
E[Yi] =y, E[(Y: — y)?] = 0%, E[(Yi — y)(Y; — y)] = po?
0'2 Variance of individual predictor

Assume bias=0

,00-2 Correlation between predictors

The Yi's are identically distributed but not independent

Bl(5 > Yi- )] =



Random Forest

Test Error

0.040 0.045 0.050 0.055 0.060 0.065 0.070

The power of weakly correlated predictors:

Spam Data

Bagging
—— Random Forest

—— Gradient Boosting (5 Node)

1 J )
L ‘.” lIIJ i ) | 1 1§ u -

| l‘H‘Ilhl

T e 71

| 1 | 1 |
1000 1500 2000

Number of Trees

2500

Bagging: Averaged trees trained
on bootstrapped datasets that
used all d variables

Random forest: Averaged trees
trained on bootstrapped datasets
that used m < d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation
improves performance!



Random Forests

« Random Forests
 have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
* Notion of confidence estimates
« good software exists
« Some theoretical guarantees

 works well with default hyperparameters



Boosting and Additive
Models




Boosting

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1,1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 — v

* 1990 Robert Schapire: “Yup!”
* 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tianqgi Chen: “Scale it up!” XGBoost



Additive models

e Given: {(zsyi)}liz1 z; e Ry, € {—-1,1}
« Generate random functions: ¢,:R* >R t=1,.

 Learn some weights: & = argmmZLOSS (yZ,Zwtgbt z; )
1=1

 Classify new data: /f(z) =sign (Zwtqbt )



Additive models

Given: {(zi,vi)}iz1 x; e Ry € {—1,1}

Generate random functions: ¢, : R - R t=1,.

Learn some weights: & = arg mmZLoss (yZ,Zwtqbt z; )
1=1

Classify new data: f(z) = sign (Z Wi (x )

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

n p
@, b1, ..., ¢ = arg qum Z Loss (yz-, Zwtgbt(azz)>
oo t=1

..... p B
1=

Is in general computationally hard



Forward Stagewise Additive models

b(z,~) is a function with parameters ~ Examples: b(z,~) = . ! -
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iL’ ’)/) — ')/11{553 < 72}

1. Initialize fo(x) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = arg IEEIZL(%, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm—1(2) + Bmb(z; Ym).

|dea: greedily add one function at a time



Forward Stagewise Additive models

b(z,~) is a function with parameters ~ Examples: b(z,~) = . ! -
+e 77
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iL’ ’)/) — ')/11{553 < 72}

1. Initialize fo(x) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = arg IEEIZL(%, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm—1(2) + Bmb(z; Ym).

|dea: greedily add one function at a time

AdaBoost: p(x,v): classifiers to {—1,1}
L(y, f(x)) = exp(=yf(z))



Forward Stagewise Additive models

b(z,~) is a function with parameters ~ Examples: b(z,~) = ! -
1l+e 7
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iIZ ’)/) — ')/11{553 < 72}

1. Initialize fo(x) = 0.
2. Form =1 to M:

(a) Compute
N
(BmsYm) = arg IEEIZL(%, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(x) = fim—1(x) + Bmb(x; Ym)-

|dea: greedily add one function at a time

Boosted Regression Trees:  L(y, f(z)) = (y — f(z))?

b(z,): regression trees



Forward Stagewise Additive models

b(z,~) is a function with parameters ~ Examples: b(z,~) = . 1 _
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(x, fy) =" ]_{333 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(Bm» ¥m) = arg min ; L(yi, fm—1(z:) + Bb(z4;7))-

(b) Set fm () = fm—1(2) + Bmb(2; Ym).

|dea: greedily add one function at a time

Boosted Regression Trees: Ly, f(z)) = (y — f(2))?
L(yi, frn—1(z:) + Bb(zi;7)) = (yi — fm—1(2:) — Bb(zi;7))’
- (Tz'm - ﬂb(:cz-;'y))z, Tim = Yi — fm-1(%:)

Efficient: No harder than learning regression trees!



Additive models

* Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

» Gradient boosting generalization with good software
packages (e.g., XGBoost). Effective on Kaggle



Additive models

Francois Chollet & @fchollet - Apr 3, 2019 v

What machine learning tools do Kaggle champions use? We ran a survey
among teams that ranked in the *top 5* of a competition since 2016.

Primary ML software tool used by top-5 teams on Kaggle
in each competition (n=120)

Keras

LightGBM

XGBoost

PyTorch

TensorFlow
(non-Keras)

Sci-kit Learn

Fastai

Caffe

0 10 20 30 40

. Deep . Classic


https://twitter.com/fchollet

Bagging versus Boosting

* Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

* Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error



Last slide of the quarter!




