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PCA: Efficient computation 
and some cool applications

 



where is orthonormal:

Given xi 2 Rd and some q < d consider

Vq are the first q eigenvectors of ⌃

Vq = [v1, v2, . . . , vq]

VT
q Vq = Iq

UT
q Uq = Iq

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T
Vq are the first q principal components

Principal Component Analysis (PCA) projects (X� 1x̄T ) down onto Vq

(X� 1x̄T )Vq = Uqdiag(d1, . . . , dq)

PCA: a high-fidelity linear projection
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PCA on MNIST

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

Handwritten 3’s, 16x16 pixel image so that xi 2 R256

(X� 1x̄T )V2 = U2S2 2 Rn⇥2

diag(S)
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SVD and PCA

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

X� 1x̄T
U1

U2



How do we compute the principal components?

1. Power iteration 
2. Solving for a singular value decomposition (SVD)
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Singular Value Decomposition (SVD)

Theorem (SVD): LetA 2 Rm⇥n with rank r  min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =
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How do we compute the principal components?

1. Power iteration 
2. Solving for a singular value decomposition (SVD)
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Power method - one vector at a time

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃vO



Power method - one vector found iteratively

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v

zt+1 =
⌃zt

k⌃ztk2
z0 ⇠ N (0, I) Iterate:

⌃ = VDVT zt =: V↵tTo analyze write:

O 8



Power method - analysis

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v

zt+1 =
⌃zt

k⌃ztk2
z0 ⇠ N (0, I) Iterate:

⌃ = VDVT zt =: V↵tTo analyze write:

↵t+1 = VT zt+1 =
VT⌃zt
k⌃ztk

=
D↵t

kD↵tk
=

D2↵t�1

kD2↵t�1k
=

Dt↵0

kDt↵0k

Dt = (D1,1)
t(D/D1,1)

t ! (D1,1)
te1e

T
1 since Di,i/D1,1 < 1
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Markov chains - PageRank

pi = (1� �) + �
nX

j=1

Li,j

cj
pj

Google PageRank of page i:

cj =
nX

k=1

Lj,k

Li,j = 1{page j points to page i}



Markov chains - PageRank

Google PageRank of pages given by:

p = (1� �)1+ �LD�1
c p

Li,j = 1{page j points to page i}



Markov chains - PageRank

Google PageRank of pages given by:

p = (1� �)1+ �LD�1
c p

Set arbitrary normalization: 1Tp = n so that

p =
�
(1� �)11T /n+ �LD�1

c

�
p

=: Ap

Li,j = 1{page j points to page i}



Markov chains - PageRank

Google PageRank of pages given by:

p = (1� �)1+ �LD�1
c p

Set arbitrary normalization: 1Tp = n so that

p =
�
(1� �)11T /n+ �LD�1

c

�
p

=: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue

Li,j = 1{page j points to page i}



Markov chains - PageRank

Google PageRank of pages given by:

p = (1� �)1+ �LD�1
c p

Set arbitrary normalization: 1Tp = n so that

p =
�
(1� �)11T /n+ �LD�1

c

�
p

=: Ap

p is an eigenvector of A with eigenvalue 1! And by the properties
stochastic matrices, it corresponds to the largest eigenvalue

pk+1 =
Apk

1TApk/n
p0 ⇠ uniform([0, 1]n)

Li,j = 1{page j points to page i}

Solve using power method: 



PCA and SVD take-aways

PCA finds a d-dimensional representation with: 
Highest variance in any d-dimensional space 
Lowest reconstruction error 
spanned by the top d eigenvectors of covariance matrix 

How to find the top d eigenvectors? 
SVD: (X - I !) := A = U S VT   

V are the eigenvectors of ATA 
U are the eigenvectors of AAT 

Power method 

This is one way to represent data in lower dimensions: there are others with other properties 
E.g., that approximately maintain pairwise distances
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Miscellaneous fun stuff!



Nonparametric models for 
classification 



 
Nearest Neighbor Methods x1

x2

- Yet another non-linear model  
- Kernel method 
- Neural Network 
- Nearest Neighbor method 

- A model is called “parametric” if the number of parameters  
do not depend on the number of samples 

- A model is called “non-parametric” if the number of parameters  
increase with the number of samples



Recall Bayes optimal classifier

• Consider an example of binary classification on 1-dimensional 

• The problem is fully specified by the ground truths 

• Suppose for simplicity that 

• Bayes optimal classifier minimizes the conditional error  for every , 
which can be written explicitly as  
     
             

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2
P( ̂y ≠ y |x) x

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1



In practice we do not have P(x, y)

samples with y = + 1

samples with y = − 1

• How do we compare  and  from samples?P(y = + 1 |x) P(y = − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

• Bayes optimal classifier     
                                                              

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

x



One way to approximate Bayes Classifier
= local statistics

• Denote the  as the number of samples within distance  from  with label , then 

      

as we increase  and decrease .  
• If we take  to be the distance to the -th neighbor from , then  

n+
r r x +1

n+
r

n
⟶ 2r × P(x, y = + 1)

n r
r k x

# of +1 samples
# of -1 samples

⟶ P(x, y = + 1)
P(x, y = − 1)

• Bayes optimal classifier 
     
               
 

decision is based on 

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

P(x, y = + 1)
P(x, y = − 1)

k
k

̂y = + 1,  if  (# of +1 samples) > (# of -1 samples)
−1,  if  (# of +1 samples) < (# of -1 samples)

x

P (y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

x

x

• Decision is based on 
# of +1 samples

# of -1 samples



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



=15 Nearest Neighbor Boundaryk

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• Nearest neighbor gives non-linear decision boundaries 
• What happens if we use a small  or a large ?k k



k=1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• With a small , we tend to overfit.k



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures from Hastie et al

k

Model complexity highModel complexity low

• The error achieved by Bayes optimal classifier provides a 
lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

L1 norm (taxi-cab)

L-infinity (max) normMahalanobis norm: d(x, y) = (x − y)T M (x − y)

L2 norm : d(x, y) = ∥x − y∥2

Consider 2 dimensional example with 2 data points with labels green, red,  
and we show nearest neighbor decision boundaries for various choices of distancesk = 1

x1

x2

x1

x2

x1

x2

x1

x2



1 nearest neighbork =

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

• Let  denote the nearest neighbor at a point  
• First note that as  
• Let denote the Bayes error rate 
• At a point ,  

• Case 1: nearest neighbor is , which happens with   
and the error rate is  

• Case 2: nearest neighbor is , which happens with   
and the error rate is  

• The average error of a 1-NN is 
          +   

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)



Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
ge

 le
ng

th
 r

r = 0.3

How many samples do we need so that a nearest neighbor is within a cube of side length ?r



Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within ?r

3 4 5



Nearest neighbor regression

{(xi, yi)})ni=1
• What is the optimal classifier that 

minimizes MSE ?  
                
            

• -nearest neighbor regressor is 

 

        

+[( ̂y − y)2]
̂y = +[y |x]

k
̂f(x) = 1

k ∑
j∈nearest neighbor

yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)
x

y



Nearest neighbor regression

{(xi, yi)})ni=1

In nearest neighbor methods, the 
“weight” changes abruptly

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) =
∑n

i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

• -nearest neighbor regressor is k
̂f (x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)
∑n

i=1 Ind(xi is a k nearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement 
• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help) 
• You can use other forms of distance (not just Euclidean) 
• Smoothing and local linear regression can improve 

performance (at the cost of higher variance) 
• With a lot of data, “local methods” have strong, simple 

theoretical guarantees.  
• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?



Trees



Trees

Example: binary tree with splits along axes



Binary tree with splits along axes.

How do you build the tree / find the splits?

Regression Trees



> Start from empty decision tree
> Split on next best attribute (feature) 
– Use, for example, information gain to select attribute
– Split on 

> Recurse
> Prune

Learning decision trees



Decision Trees

Trees are easy to interpret: 
- You can explain how the 
classifier came to the 
conclusion it did 

Trees are hard to interpret: 
- Tough to explain why the 
classifier came to the 
conclusion it did 

Small changes in 
data can result in 
large difference in 
trees 



Trees

• Trees 

• have low bias, high variance 
• deal with categorial variables 

well 

• intuitive, interpretable 

• good software exists 

• Some theoretical guarantees 



Random Forests



Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to 
construct a lot of “lightly correlated” 
trees and average them: 

“Bagging:” Bootstrap aggregating



Random Forests



Random Forest - Decision Boundary Example



E[( 1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with
E[Yi] = y, E[(Yi � y)2] = �2, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

Variance of individual predictor�2

Assume bias = 0
Correlation between predictors⇢�2

Random Forest



Random Forest

The power of weakly correlated predictors:

Bagging: Averaged trees trained 
on bootstrapped datasets that 
used all d variables

Random forest: Averaged trees 
trained on bootstrapped datasets 
that used m < d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation 
improves performance!



Random Forests

• Random Forests 

• have low bias, low variance 
• deal with categorial variables well 

• not that intuitive or interpretable 

• Notion of confidence estimates 

• good software exists 

• Some theoretical guarantees  

• works well with default hyperparameters



Boosting and Additive 
Models



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

• 2001 Friedman: “Practical for arbitrary losses” 

• 2014 Tianqi Chen: “Scale it up!” XGBoost



Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

bw = argmin
w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!



Additive models

• Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . , b�t = arg min
w,�1,...,�p

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

AdaBoost: b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!



Additive models

• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 
can also use trees! Boosting can scale. 

• Gradient boosting generalization with good software 
packages (e.g., XGBoost). Effective on Kaggle 



Additive models

https://twitter.com/fchollet


Bagging versus Boosting

• Bagging averages many low-bias, lightly 
dependent classifiers to reduce the variance 

• Boosting learns linear combination of high-bias, 
highly dependent classifiers to reduce error



Last slide of the quarter!

! 


