Use k-fold cross validation

> Randomly divide training data into k equal parts

>
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Use k-fold cross validation

Randomly divide training data into k equal parts

- Dy,...,Dy 2= 9, 2, Dy Dy Ds

Train Validation

For each | f9\93

Train

Train

- Learn model fg o using data point not in &,

- Estimate error of fg\ g on validation set 2

1
€Irorp, = W Z (yj — fD\Di (%’))2
k-fold cross validation error is average over data splits:

1 &
errork_fold — ; 2 61'1'01'9,
. . =1
k-fold cross validation properties:

- Much faster to compute than LOO as k < n

n
_ More (pessimistically) biased — using much less data, only n — Z

- Usually, k=10



Recap

> Given a dataset, begin by splitting into

LA TEST

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose hyper-parameters such as A

TRAIN-1 VAL-1

TRAIN TRAIN-2 VAL-2 TRAIN-2

> Model assessment: Use TEST to assess the accuracy of the
model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Model selection using cross validation

>~ For A € {0.001,0.01,0.1,1,10}
> For j € {1,...,k}
>

W) trainy < argmin D (= wx)? + Alwll3
i€Train—j

/1 « arg mln—z Z v, — W, Train— X;)?

j=1 ieVal—j



Example 1

> You wish to predict the stock price of zoom.us given
historical stock price data y;’s (for each i-th day) and

the historical news articles Xx;’s

> You use all daily stock price up to Jan 1, 2020 as TRAIN
and Jan 2, 2020 - April 13, 2020 as TEST

> What’s wrong with this procedure?
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http://zoom.us

Example 2

> @Given 10,000-dimensional data and n examples, we pick
a subset of 50 dimensions that have the highest
correlation with labels in the training set:

mn
| D i1 @i Vil
50 indices j that have largest

— — \/Z?ﬂ 5’7@23

> After picking our 50 features, we then use CV with the
training set to train ridge regression with regularization A

> What’s wrong with this procedure?




Recap

> Learning is...
- Collect some data
> E.g., housing info and sale price
- Randomly split dataset into/ TRAIN, VAL,Jand TEST
> E.g., 80%, 10%, and 10%, respectively
- Choose a hypothesis class or model
> E.g., linear with non-linear transformations
- Choose a loss function
> E.g., least squares with ridge regression penalty on TRAIN
- Choose an optimization procedure

> E.g., set derivative to zero to obtain estimator, cross-
validation on VAL to pick nhum. features and amount of
regularization

- Justifying the accuracy of the estimate
> E.qg., report TEST error



Simple variable selection:
LASSO for sparse regression

W



Sparsity -

=1
Vector w is sparse, if many entries are zero



SparSIty Wrs = arg minz (yi — x?w)2
=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction wlxis expensive:

- If wis sparse, prediction computation only depends on number of non-zeros in w




SparSity Wrg = arg mini (yi — r]w

1=1
= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant features to make a
prediction?

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sgft
Unfinished sgft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

How do we find “best” subset of Heating
features useful in predicting the Extefrior materials

" : oof type
price among all possible Structure style
combinations?

)2

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System



Finding best subset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that minimizes
validation error ?w\m e

> Problem? e ow &\\
¢ o X
Cow ¥ V\



Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as
important

L ots of other variants, too.



Finding best subset: Regularize

Ridge regression makes coefficients small

n

~ . 2

Wridge — aI'g mu%nz (yz - :U;,Fw) + )\||w||§
1=1

\ A— \




Finding best subset: Regularize

Ridge regression makes coefficients small

n

AN ] 2

Wridge — aAl'g mu%nz (yz — CE;FUJ) + )\kug
1=1
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Thresholded Ridge Regression

n

~ . 2

Wridge — al'g mfu%nz (yz — szw) T )\||’UJH§
1=1

Why don’t we just set small ridge coefficients to 07
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Thresholded Ridge Regression

n

~ . 2

Wridge — al'g mfu%nz (yz — szw) T )\||’UJH§
1=1

Consider two related features (bathrooms, showers)
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Thresholded Ridge Regression

/&J\ridge — arg mﬂ%nz (yz — :Csz)Q + )\||UJ©

1=1

What if we didn’t include showers? Weight on bathrooms increases!
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Can another regularizer perform selection automatically?



Recall Ridge Regression

= Ridge Regressmn objective:
Wridge = g mm Z — :CTw + AHw[@

1=1
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Ridge vs. Lasso Regression

= Ridge Regressmn objective:

Wridge = argmmz —:U;-Fw)Z + w3
i—1 (/\/\/\_/ A
’ +§ + ... + "———_ +)\\~/
6 d -

= Lasso objective:

2
Wigsso — aIr'g mlnz Yi — CB?”LU) T )\Hle
i=1 oo~~~V
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Example: house price with 16 features

test error is red- nd train error is blue
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Lasso regression naturally gives sparse features

* feature selection with Lasso regression

1.
2.

choose A based on cross validation error

keep only those features with non-zero (or not-too-small)
parameters in w at optimal A

retrain with the sparse modeland A = 0

J
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Example: piecewise-linear fit G{l

ho(z) = 1
* We use Lasso on the piece-wise linear example 1, (z) = [z + 1.1 —0.14]*

Step 1: find optimal A* Step 3: retrai
minimize,, L w) + A||w||, minimize /% (w)
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* de-biasing (via re-training) is criticall but only use selected features




Penalized Least Squares

e Regularized optimization: /\w‘v\\%b\
(\ W, = arg mmz — z] w) gt Ar(w) VZ @U
0N }

Ridge : r(w) = HwH2 @5‘”

\(QPA K\Uv
Lasso : r(w) = HwH/O 9"%«\\ s

e Forany A* > 0 for which w, chleves the minimum, there exists a u™* > 0 such that

the solution of the constrained optimization, W .» 1S the same as the solution of the

regularized optimization, WM
P <
\\
subject to (r(w E
</

i=1 N\ NA—"~

(W We= argrmn Z (; — x! w)?
e so there are pairs of (4, i) whose optimal solution W . are the same

for the regularizes optimization and constrained optimization



Why does Lasso give sparse solutions?

05
Nl
Co. - T ) \/Q 0»"\ %U\
minimize,, 2 wlx, —y)* <)
i=1
subject to |[w|[; < u
e the level set of a function £ (w,, w,) is defined
as the set of points (w;, w,) that have the same
function value
e the level set of a quadratic function is an oval
e the center of the oval is the least squares "
. VaN A 2
solution w, _, = Wi g 4
1-D example with quadratic loss
ZL(wy)
1 @
| | g
a b Wi
Level set of £ (w,) at value 1 s [a,b]




Why does Lasso give sparse solutions?

n
minimize , Z wlx, —y.,)?

i=1

subject to |[w|[; < u

e as we decrease u from infinity, the feasible set
becomes smaller

* the shape of the feasible set is what is known as
L, ball, which is a high dimensional diamond

e |n 2-dimensions, it is a diamond
{(Wl’Wz)‘ |wi |+ [w;] Sﬂ}

« when s large enough such that ||w - |l; < g,

then the optimal solution does not change as the
feasible set includes the un-regularized optimal
solution

feasible set: {w € R?| ||w|, < u} —>
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Why does Lasso give sparse solutions?

n
minimize 2 wlx, —y,)?

=1 & \@3& \\Q/\(’

whject to Il < ;& gty

N
C7
e As u decreases (which is equivalent to v

increasing regularization A) the feasible
set (blue diamond) shrinks

* The optimal solution of the above e @

optimization is ? @ P

feasible set: {w € R? | ||w|; < u} —>




Why does Lasso give sparse solutions?

n
minimize 2 wlx, —y,)?

i=1

subject to |[w|[; < u

e For small enough u, the optimal solution (\WQ& W“gyb A>

becomes sparse

e This is because the L,-ball is
“pointy”,i.e., has sharp edges aligned e
with the axes

feasible set: {w € R? | ||w|, < u} —




Penalized Least Squares

e Lasso regression finds sparse solutions, as L;-ball is “pointy”

» Ridge regression finds dense solutions, as L,-ball is “smooth”

n n
minimize Z (w Txl- — yi)2 minimize,, Z (w Txi — yi)2
i=1 i=1

subject to ||w|; < u subject to ||w]l5 < u



Ridge vs. Lasso

- Ridge
 Very fast:
« Closed form solution if used with linear models

» Even with non-linear and complex loss, optimization is
fast for squared ¢, regularization (to be taught later)

Gives regularized parameters that avoid overfitting

- Lasso
- Slower than Ridge:
* No closed form!
- A non-smooth optimization which is slower
(to be taught later)
- Gives sparse parameters



Questions?



