Use k-fold cross validation

- Randomly divide training data into *k* equal parts
 - D_1, \dots, D_k

 $\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2 \mathcal{D}_3 \mathcal{D}_4 \mathcal{D}_5$

- > For each i
 - Learn model $f_{\mathfrak{D}\setminus \mathfrak{D}_i}$ using data point not in \mathfrak{D}_i

- Estimate error of
$$f_{\mathcal{D}\backslash\mathcal{D}_i}$$
 on validation set \mathcal{D}_i :
$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j,y_j)\in\mathcal{D}_i} (y_j - f_{\mathcal{D}\backslash\mathcal{D}_i}(x_j))^2$$

Use k-fold cross validation

- > Randomly divide training data into *k* equal parts
 - $-D_1,...,D_k$

$$\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2 \mathcal{D}_3 \mathcal{D}_4 \mathcal{D}_5$$
 $f_{\mathcal{D} \setminus \mathcal{D}_3}$ Train Train Validation Train Train

- > For each i
 - Learn model $f_{\mathcal{D}\backslash\mathcal{D}_i}$ using data point not in \mathcal{D}_i
 - Estimate error of $f_{\mathcal{D}\setminus\mathcal{D}_i}$ on validation set \mathcal{D}_i :

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

> k-fold cross validation error is average over data splits:

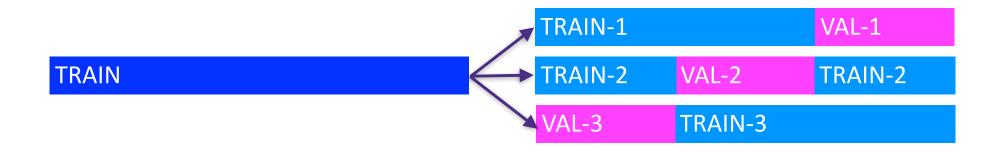
$$\operatorname{error}_{k-\operatorname{fold}} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{error}_{\mathcal{D}_i}$$

- > k-fold cross validation properties:
 - Much faster to compute than LOO as $k \ll n$
 - More (pessimistically) biased using much less data, only $n \frac{n}{k}$
 - Usually, k = 10

Recap

> Given a dataset, begin by splitting into

> Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose hyper-parameters such as λ



- Model assessment: Use TEST to assess the accuracy of the model you output
 - Never ever ever ever train or choose parameters based on the test data

Model selection using cross validation

> For
$$\lambda \in \{0.001, 0.01, 0.1, 1, 10\}$$

> For $j \in \{1, ..., k\}$
> $\hat{w}_{\lambda, \text{Train}-j} \leftarrow \arg\min_{w} \sum_{i \in \text{Train}-j} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$
> $\hat{\lambda} \leftarrow \arg\min_{\lambda} \frac{1}{k} \sum_{j=1}^{k} \sum_{i \in \text{Val}-j} (y_i - \hat{w}_{\lambda, \text{Train}-j}^T x_i)^2$

Example 1

- > You wish to predict the stock price of <u>zoom.us</u> given historical stock price data y_i 's (for each i-th day) and the historical news articles x_i 's
- > You use all daily stock price up to Jan 1, 2020 as TRAIN and Jan 2, 2020 April 13, 2020 as TEST
- > What's wrong with this procedure?

Training + test are not identically distributed!

Example 2

> Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

50 indices j that have largest

$$\frac{\left|\sum_{i=1}^{n} x_{i,j} y_{i}\right|}{\sqrt{\sum_{i=1}^{n} x_{i,j}^{2}}}$$

- > After picking our 50 features, we then use CV with the training set to train ridge regression with regularization \(\lambda \)
- > What's wrong with this procedure?

Recap

- > Learning is...
 - Collect some data
 - > E.g., housing info and sale price
 - Randomly split dataset into TRAIN, VAL, and TEST
 - > E.g., 80%, 10%, and 10%, respectively
 - Choose a hypothesis class or model
 - > E.g., linear with non-linear transformations
 - Choose a loss function
 - > E.g., least squares with ridge regression penalty on TRAIN
 - Choose an optimization procedure
 - > E.g., set derivative to zero to obtain estimator, crossvalidation on VAL to pick num. features and amount of regularization
 - Justifying the accuracy of the estimate
 - > E.g., report TEST error

Simple variable selection: LASSO for sparse regression

Sparsity

$$\widehat{w}_{LS} = rg \min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w
ight)^2$$
 y entries are zero

Vector w is sparse, if many entries are zero

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(w) = 100 Billion, each prediction $w^T x$ is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros in w

$$\widehat{y}_i = \widehat{w}_{LS}^{\top} x_i = \sum_{j=1}^d x_i [j] \widehat{w}_{LS}[j]$$

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant features to make a prediction?

 How do we find "best" subset of features useful in predicting the price among all possible combinations? Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type

Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

Finding best subset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that minimizes Computationally prohibitive validation error

> Problem?

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

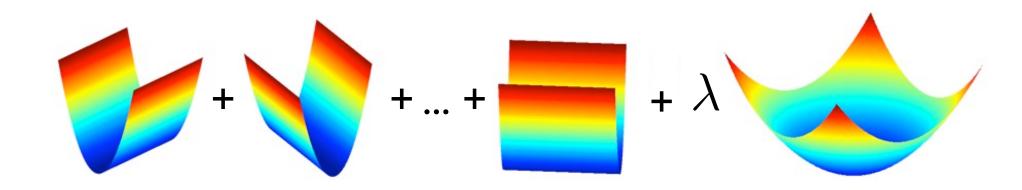
In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Finding best subset: Regularize

Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

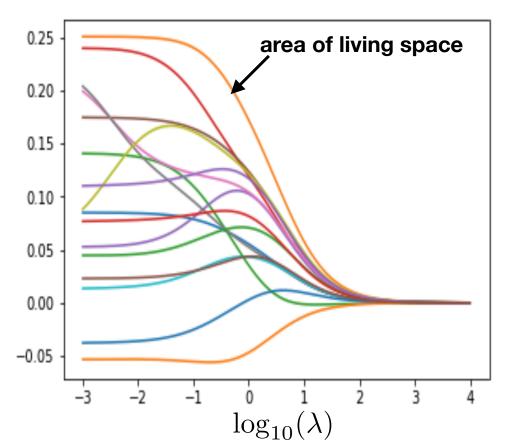


Finding best subset: Regularize

Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

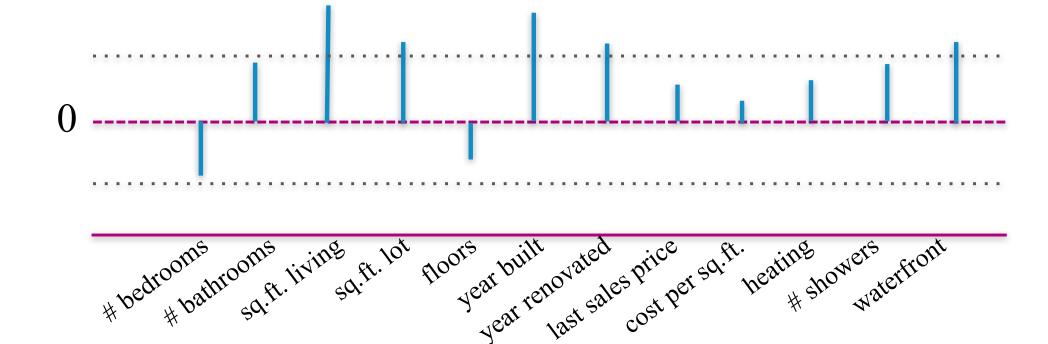
$$w_i$$
's



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

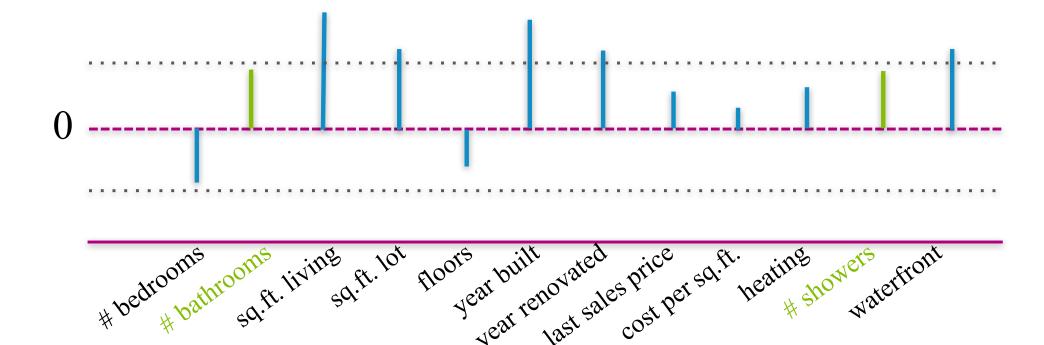
Why don't we just set **small** ridge coefficients to 0?



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

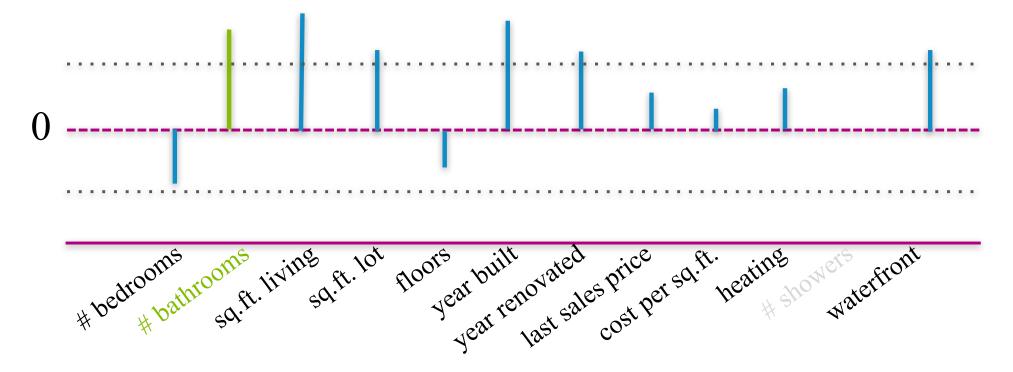
Consider two related features (bathrooms, showers)



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

What if we didn't include showers? Weight on bathrooms increases!



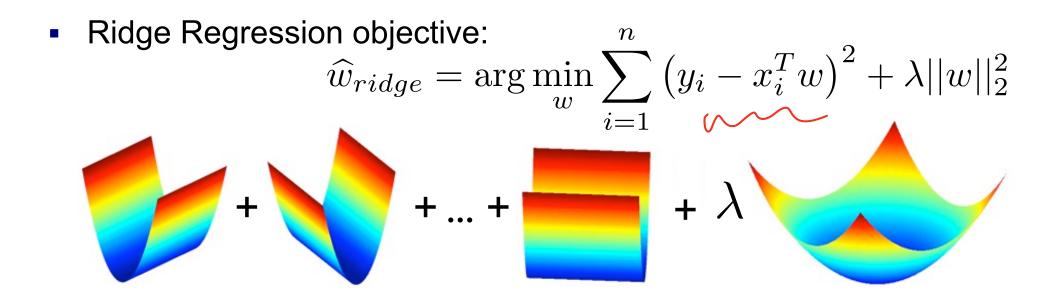
Can another regularizer perform selection automatically?

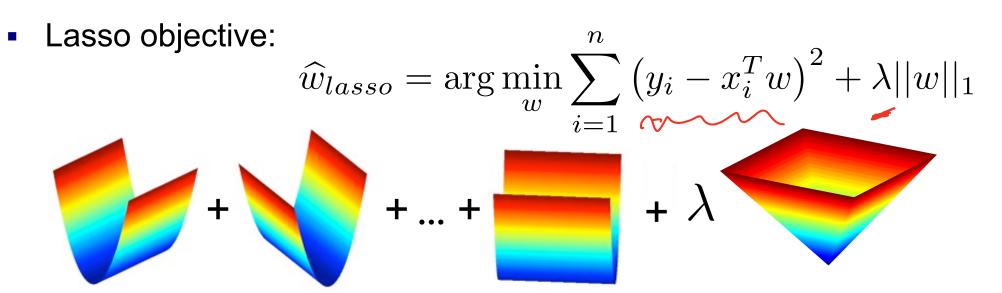
Recall Ridge Regression

- Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_2^2$ $+ \dots + \dots + \lambda$

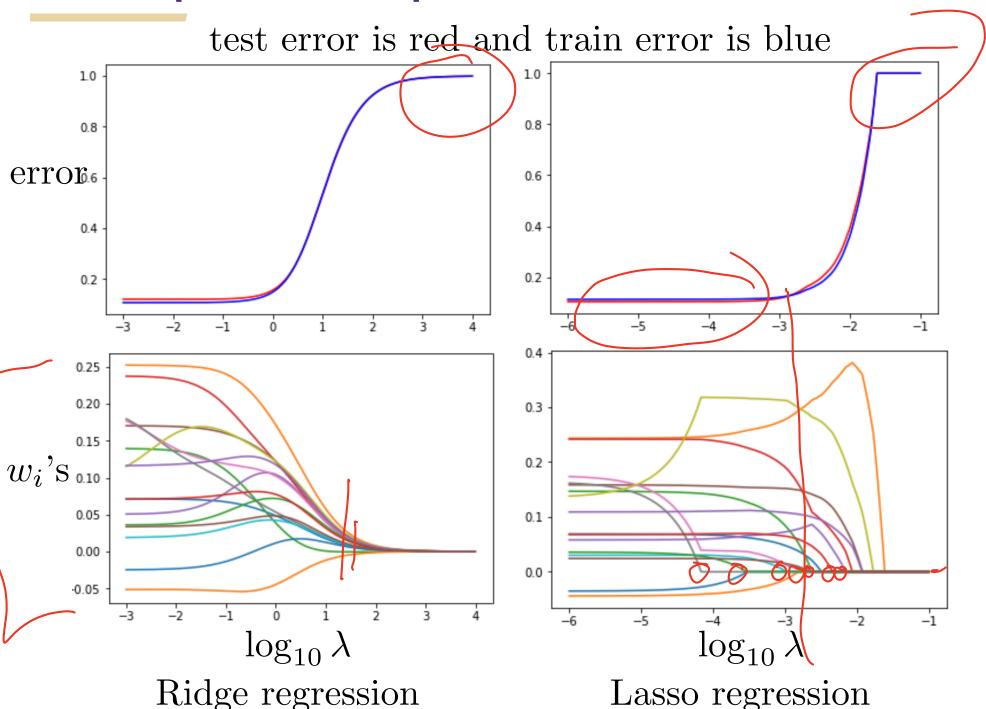
$$||w||_p = \left(\sum_{i=1}^d |w|^p\right)^{1/p}$$

Ridge vs. Lasso Regression





Example: house price with 16 features



Lasso regression naturally gives sparse features

- feature selection with Lasso regression
 - 1. choose λ based on cross validation error
 - 2. keep only those features with non-zero (or not-too-small) parameters in w at optimal λ
 - 3. **retrain** with the sparse model and $\lambda = 0$

only on feature?

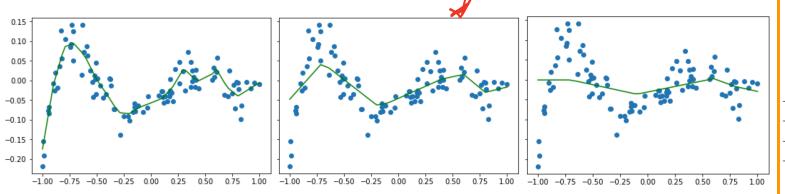
Example: piecewise-linear fit

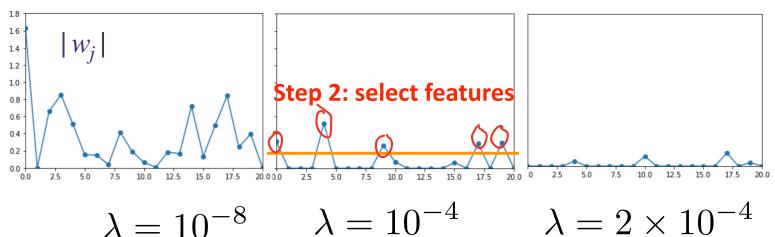
We use Lasso on the piece-wise linear example

$$h_0(x) = 1$$
 $h_i(x) = [x + 1.1 - 0.1i]^+$

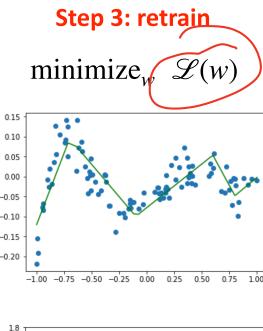
Step 1: find optimal λ^*

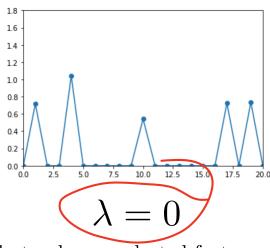
minimize_w $\mathcal{L}(w) + \lambda ||w||_1$





de-biasing (via re-training) is critical!





but only use selected features

Penalized Least Squares

Regularized optimization:

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \underline{\lambda r(w)}$$

Ridge: $r(w) = ||w||_2^2$

Lasso : $r(w) = ||w||_1$

108 timention

subject to r(w)

• For any $\lambda^* \geq 0$ for which \hat{w}_r achieves the minimum, there exists a $\mu^* \geq 0$ such that the solution of the constrained optimization, \widehat{w}_c , is the same as the solution of the regularized optimization, \widehat{w}_r , where

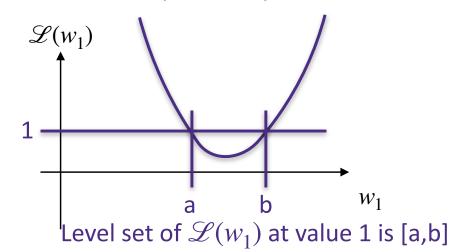
$$\widehat{w}_C = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

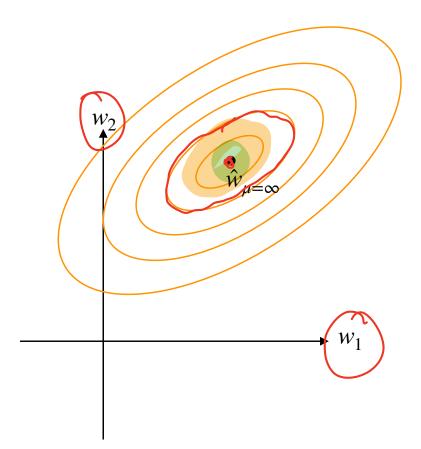
• so there are pairs of (λ,μ) whose optimal solution \widehat{w}_r are the same for the regularizes optimization and constrained optimization

minimize_w
$$\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$
 where $\sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$ subject to $||w||_{1} \leq \mu$

- the **level set** of a function $\mathcal{L}(w_1,w_2)$ is defined as the set of points (w_1,w_2) that have the same function value
- the level set of a quadratic function is an oval
- the center of the oval is the least squares solution $\hat{w}_{u=\infty} = \hat{w}_{\mathrm{LS}}$

1-D example with quadratic loss

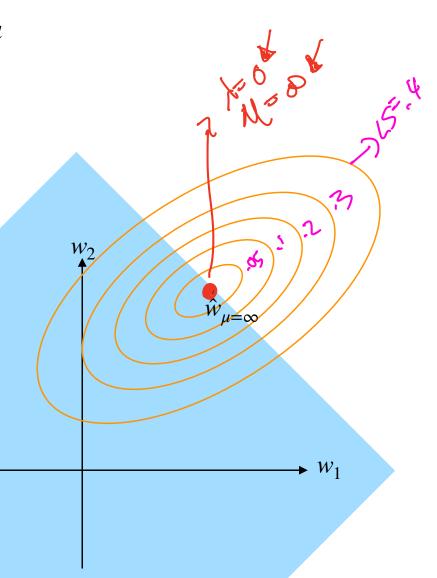




$$\min_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_1 \le \mu$

- as we decrease μ from infinity, the feasible set becomes smaller
- the shape of the **feasible set** is what is known as L_1 ball, which is a high dimensional diamond
- In 2-dimensions, it is a diamond $\left\{(w_1,w_2)\,\middle|\, |w_1|+|w_2|\leq \mu\right\}$
- when μ is large enough such that $\|\hat{w}_{\mu=\infty}\|_1 < \mu$, then the optimal solution does not change as the feasible set includes the un-regularized optimal solution



feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

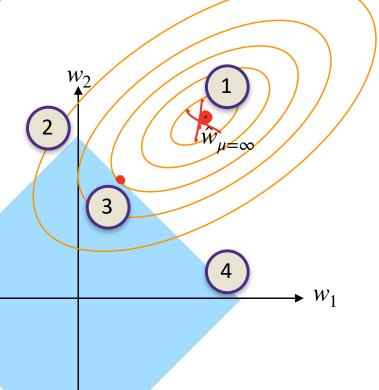
$$\text{minimize}_{w} \quad \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_1 \le \mu$

• As μ decreases (which is equivalent to increasing regularization λ) the feasible set (blue diamond) shrinks

The optimal solution of the above optimization is ?

Graffet Strailer de



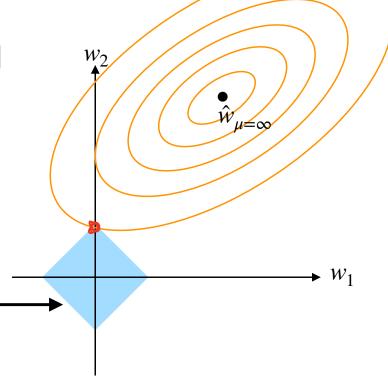
feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

$$\text{minimize}_{w} \quad \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_1 \le \mu$

• For small enough μ , the optimal solution (longe enough λ) becomes **sparse**

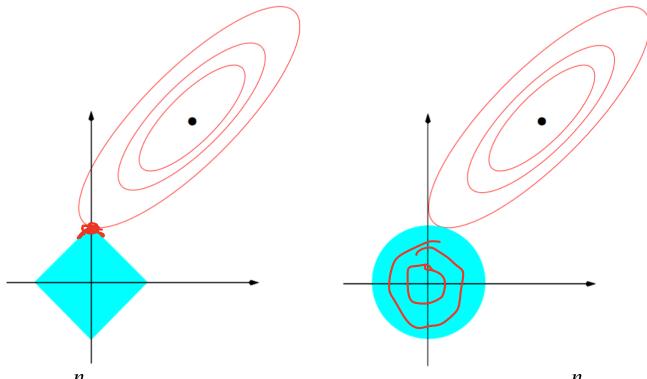
• This is because the L_1 -ball is "pointy",i.e., has sharp edges aligned with the axes



feasible set: $\{w \in \mathbb{R}^2 \mid ||w||_1 \le \mu\}$

Penalized Least Squares

- Lasso regression finds sparse solutions, as L_1 -ball is "pointy"
- Ridge regression finds dense solutions, as L_2 -ball is "smooth"



 $\min_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$

subject to $||w||_1 \le \mu$

$$\operatorname{minimize}_{w} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

subject to $||w||_2^2 \le \mu$

Ridge vs. Lasso

Ridge

- Very fast:
 - Closed form solution if used with linear models
 - Even with non-linear and complex loss, optimization is fast for squared \mathcal{C}_2 regularization (to be taught later)
- Gives regularized parameters that avoid overfitting

Lasso

- Slower than Ridge:
 - No closed form!
 - A non-smooth optimization which is slower
 - (to be taught later)
- Gives sparse parameters

Questions?