Bias-Variance

UNIVERSITY of WASHINGTON

- **• test MSE is the primary criteria for model selection**
- Using only 2 features (S5 and BMI), one can get very close to the prediction performance of using all features
- Combining S3 and S4 does not give any performance gain

demo3_diabetes.ipynb

What does the bias-variance theory tell us?

• **Train error** (random variable, randomness from \mathcal{D})

\n- Use
$$
\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n \sim P_{X,Y}
$$
 to find \widehat{w}
\n- Train error: $\mathcal{L}_{\text{train}}(\widehat{w}_{LS}) = \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{w}^T x_i)^2$
\n

- recall the **test error** is an unbiased estimator of the **true error**
- True error (random variable, randomness from \mathcal{D})
	- True error: $\mathscr{L}_{true}(\widehat{w}) = \mathbb{E}_{(x,y)\sim P_{X,Y}}[(y \widehat{w}^T x)^2]$ ̂
- Test error (random variable, randomness from $\mathscr D$ and $\mathscr T)$

\n- Use
$$
\mathcal{T} = \{(x_i, y_i)\}_{i=1}^m \sim P_{X,Y}
$$
\n- Test error: $\mathcal{L}_{\text{test}}(\widehat{w}) = \frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{w}^T x_i)^2$
\n

• theory explains **true error**, and hence expected behavior of the (random) **test error**

What does bias-variance theory tell us?

- Train error is optimistically biased (i.e. smaller) because the trained model is minimizing the train error
- Test error is unbiased estimate of the true error, if test data is never used in training a model or selecting the model complexity
- Each line is an i.i.d. instance of $\mathscr D$ and $\mathscr T$

 -0.75 -0.50 -0.25 0.00 χ 0.25 -1.00 0.50 0.75 1.00

Statistical learning

Typical notation: X denotes a random variable \overline{x} denotes a deterministic instance

- Suppose data is generated from a statistical model $(X, Y) \sim P_{X, Y}$
	- and assume we know $P_{X,Y}$ (just for now to explain statistical learning)
- **learning** aims to find a predictor $\eta : \mathbb{R}^d \to \mathbb{R}$ that minimizes
	- \bullet expected error $\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y \eta(X))^2]$
	- think of random (X, Y) as a new sample you will encounter when you deployed your learned model, and we care about its average performance
- We assume the function $\eta(x)$ could be anything
	- it can take any value for each $X = x$
- So the optimization can be done separately for each $X = x$

•
$$
\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2] = \mathbb{E}_{X\sim P_X}[\mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2|X=x]]
$$

\n=
$$
\int \mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2|X=x] P_X(x) dx
$$

\nOr for discrete X,
$$
= \sum_{X} P_X(x) \mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2|X=x]
$$

\nWhere we used the chain rule:
$$
\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_{X}[\mathbb{E}_{Y|X}[f(x,Y)|X=x]]
$$

Statistical learning

•

• The optimal predictor sets its value for each $X = x$ separately

$$
\eta(x) = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}}[(Y - a)^2 | X = x]
$$

• The optimal solution is $\eta(x) = \mathbb{E}_{Y \sim P_{Y|X}}[Y | X = x],$ which is the best prediction in \mathscr{C}_2 -loss/Mean Squared Error $X(X)$ min

• Claim:
$$
\mathbb{E}_{Y \sim P_{Y|X}}[Y|X = x] = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}}[(Y - a)^2|X = x]
$$

• Proof: argnin $E Y - 24 + a^2 / y = x$ $\frac{a_{m}}{c}$ (ELYelksx) - ZHlayIxx) + ELa⁷(X=x) (LofExp) ar E BIN Bo Zay ta V_{α} \sum_{if} $\text{if}}$ \sum_{if} $\text{if}}$ \sum_{if} $\text{if}}$ \sum_{if} $\text{if}}$ \sum_{if} $\text{if}}$ \sum_{if} $\sum_{\$ (2σ) = O R solve

 $\mathcal{M}(\kappa)$ - γ) [k

I

• Can't implement optimal statistical estimator $\eta(x) = \mathbb{E}[Y | X = x]$ $a = \frac{2R[Y=y|X=z]}{2}$

- as we do not know $P_{X,Y}$ in practice
- This is only for the purpose of conceptual understanding

Statistical Learning

x \rightarrow $P_{XY}(X = x, Y = y)$ Ideally, we want to find: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$ $\overline{\eta(x)} = \mathbb{E}_{Y|X}[Y|X=x]$ But we do not know $P_{X,Y}$ We only have samples.

Statistical Learning

x y $P_{XY}(X=x, Y=y)$ *f* ^b= arg min *^f*2*^F* 1 $\overline{}$ *i*=1

Ideally, we want to find: $\eta(x) = \mathbb{E}_{Y|X}[Y|X=x]$ $\frac{1}{\sqrt{2}}$

 $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for $i = 1, \ldots, n$ But we only have samples:

So we need to restrict our predictor to a function class (e.g., linear, degree- p polynomial) to avoid overfitting:

$$
\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
$$

$$
\mathbb{E}_{Y|X}[Y|X=x]
$$

We care about how our predictor performs on future unseen data True Error of \hat{f} : $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$

Future prediction error $\mathbb{E}_{X,Y}[(Y - \hat{f}(X))^2]$ is random because \widehat{f} is random (whose randomness comes from training data \mathscr{D}) ̂

 $P_{XY}(X = x, Y = y)$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \hat{f}

Notation: I use predictor/model/estimate, interchangeably

$$
\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]
$$

Ideal predictor Learned predictor

$$
\hat{f}_{\mathcal{D}} = \arg \min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2
$$

- We are interested in the **True Error** of a (random) learned predictor:
- But the analysis can be done for each $X = x$ separately, so we analyze the **conditional true error**: $\mathbb{E}_{X,Y}[(Y - \hat{f}_{\mathcal{D}}(X))^2]$

$$
\mathbb{E}_{Y|X}[(Y - \hat{f}_{\mathcal{D}}(x))^2 | X = x]
$$

• And we care about the **average conditional true error**, averaged over training data: $\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{Y|X}[(Y-\hat{f}_{\mathcal{D}}(x))^2|X=x]\right]$

written compactly as $\qquad = \mathbb{E}[(Y - \hat{f}_{\mathcal{D}}(x))^2]$

Ideal predictor	Learned predictor
$\eta(x) = \mathbb{E}_{Y X}[Y X = x]$	$\hat{f}_{\mathcal{D}} = \arg \min_{f \in \mathcal{F}} \frac{1}{ \mathcal{D} } \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$

• **Average conditional true error**:

$$
\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^2]
$$
\n
$$
= \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x))^2 + 2(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x)) + (\eta(x)-\hat{f}_{\mathcal{D}}(x))^2]
$$
\n
$$
= \mathbb{E}_{Y|x}[(Y-\eta(x))^2] + 2\mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))] + \mathbb{E}_{\mathcal{D}}[(\eta(x)-\hat{f}_{\mathcal{D}}(x))^2]
$$

(this follows from independence of $\mathscr D$ and (X,Y) and $\mathbb{E}_{Y|x}[Y - \eta(x)] = \mathbb{E}[Y|X = x] - \eta(x) = 0$

$$
= \mathbb{E}_{Y|x}[(Y - \eta(x))^2] + \mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))]
$$

 $=0$

Irreducible error

(a) Caused by stochastic label noise in ${P}_{Y|X=x}$ (b) cannot be reduced

Average learning error Caused by *(a)* either using too "simple" of a model or *(b)* not enough data to learn the model accurately

 2]

• **Average learning error**:

$$
\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)]^2]
$$

$$
\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]
$$

Ideal predictor Learned predictor

$$
\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2
$$

$$
\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]
$$

Ideal predictor Learned predictor

$$
\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2
$$

• **Average learning error**:

• **Average learning error**:

 $\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)]^2$ \rfloor

• **Average learning error**:

$$
\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)]^2]
$$

\n
$$
= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2 + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))
$$

\n
$$
+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^2]
$$

• **Average learning error**:

$$
\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)]^2]
$$

\n
$$
= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2 + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))
$$

\n
$$
+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^2]
$$

$$
= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^2 + \mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^2\right]
$$

• **Average learning error**:

$$
\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)]^2]
$$

\n
$$
= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2 + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))
$$

\n
$$
+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^2]
$$

$$
= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] \right)^2 + \mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x) \right)^2 \right]
$$

biased squared variance

• **Average conditional true error**:

expectation

• variance:

$$
\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{Y|x}[(Y-\eta(x))^2]
$$

irreducible error
+ $(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2$ + $\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^2]$
biased squared
Bias squared:
measures how the
predictor is mismatched with
the best predictor in
variance:
maxures how the predictor
varies each time with a new
training datasets

complexity

Regularization

Sensitivity: how to detect overfitting

- For a linear model, if $|w_j|$ is large then the prediction is sensitive to small changes in x_j $y \approx b + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$
- Large sensitivity leads to overfitting and poor generalization, and equivalently models that overfit tend to have large weights
- Note that b is a constant and hence there is no sensitivity for the offset b
- In **Ridge Regression**, we use a regularizer $||w||_2^2$ to measure and control the sensitivity of the predictor
- **•** And optimize for small loss and small sensitivity, by adding a **regularizer** in the objective (assume no offset for now)

$$
\widehat{w}_{ridge} = \arg \min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2
$$

Use *k***-fold cross validation**

- > Randomly divide training data into *k* equal parts
	- D_1, \ldots, D_k
- > For each *i*
	- $-$ Learn model $f_{\mathscr{D}\setminus\mathscr{D}_i}$ using data point not in \mathscr{D}_i
	- $-$ Estimate error of $f_{\mathscr{D}\setminus\mathscr{D}_i}$ on validation set \mathscr{D}_i :

$$
\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2
$$

> k-fold cross validation error is average over data splits:

$$
error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}
$$

- > k-fold cross validation properties:
	- $−$ Much faster to compute than LOO as $k \ll n$
	- \blacksquare More (pessimistically) biased using much less data, only $n \frac{n}{l_z}$ *k*

$$
- \hspace{2.2cm} \text{Usually, } k = 10
$$

𝒟 = 𝒟¹ 𝒟² 𝒟³ 𝒟⁴ 𝒟⁵ *f* 𝒟∖𝒟³

> Given a dataset, begin by splitting into

- > Model assessment: Use TEST to assess the accuracy of the model you output
	- Never ever ever ever ever train or choose parameters based on the test data