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demo3_diabetes.ipynb

Features Train MSE Test MSE

All 2640 3224

S5 and BMI 3004 3453

S5 3869 4227

BMI 3540 4277

S4 and S3 4251 5302

S4 4278 5409

S3 4607 5419

None 5524 6352

• test MSE is the primary criteria for model selection 
• Using only 2 features (S5 and BMI), one can get very close to the prediction 

performance of using all features

• Combining S3 and S4 does not give any performance gain
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What does the bias-variance theory tell us?

• Train error (random variable, randomness from ) 

• Use  to find 


• Train error: 


• recall the test error is an unbiased estimator of the true error 
• True error (random variable, randomness from ) 

• True error:  

• Test error (random variable, randomness from ) 

• Use 


• Test error: 


• theory explains true error, and hence expected behavior of the (random) 
test error

!
! = {(xi, yi)}n

i=1 ∼ PX,Y ̂w

ℒtrain( ̂w LS) = 1
|! | ∑

(xi,yi)∈!
(yi − ̂w T xi)2

!
ℒtrue( ̂w ) = &(x,y)∼PX,Y

[(y − ̂w T x)2]
! and '

' = {(xi, yi)}m
i=1 ∼ PX,Y

ℒtest( ̂w ) = 1
|' | ∑

(xi,yi)∈'
(yi − ̂w T xi)2



What does bias-variance theory tell us?
• Train error is optimistically biased (i.e. smaller) because the trained 

model is minimizing the train error

• Test error is unbiased estimate of the true error, if test data is never 

used in training a model or selecting the model complexity


• Each line is an i.i.d. instance of  and ! '

Train error

Test error 

model complexity

error



Train/test error vs. complexity

• Model complexity e.g., degree  of the polynomial 
model, number of features used in diabetes example 

• Related to the dimension of the model parameter 
• Train error monotonically decreases with model 

complexity 
• Test error has a U shape

p

Error

degree  of the polynomial regressionp

x

y

y

y

x



Statistical learning

Where we used the chain rule:  &X,Y[ f (X, Y )] = &X[ &Y|X[ f (x, Y ) |X = x] ]

Typical notation:  
 denotes a random variable 
 denotes a deterministic instance

X
x

• Suppose data is generated from a statistical model 


• and assume we know    (just for now to explain statistical learning)


• learning aims to find a predictor  that minimizes 


• expected error 


• think of random  as a new sample you will encounter when you deployed 
your learned model, and we care about its average performance


• We assume the function  could be anything


•  it can take any value for each 


• So the optimization can be done separately for each 


•  

                                 


        Or for discrete ,         

(X, Y ) ∼ PX,Y

PX,Y

η : ℝd → ℝ
&(X,Y )∼PX,Y

[(Y − η(X ))2]
(X, Y )

η(x)
X = x

X = x
&(X,Y )∼PX,Y

[(Y − η(X ))2] = &X∼PX[&Y∼PY|X
[(Y − η(x))2 |X = x] ]

= ∫ &Y∼PY|X
[(Y − η(x))2 |X = x] PX(x) dx

X = ∑
x

PX(x) &Y∼PY|X
[(Y − η(x))2 |X = x]



Statistical learning
• The optimal predictor sets its value for each  separately 


• 


• The optimal solution is ,  
which is the best prediction in -loss/Mean Squared Error


• Claim: 


• Proof:  


• Can’t implement optimal statistical estimator  


• as we do not know  in practice 


• This is only for the purpose of conceptual understanding

X = x
η(x) = arg min

a∈ℝ
&Y∼PY|X

[(Y − a)2 |X = x]

η(x) = &Y∼PY|X
[Y |X = x]

ℓ2
&Y∼PY|X

[Y |X = x] = arg min
a∈ℝ

&Y∼PY|X
[(Y − a)2 |X = x]

η(x) = &[Y |X = x]
PX,Y

xx min
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Statistical Learning

x

PXY (X = x, Y = y)

x0 x1

PXY (Y = y|X = x0)

PXY (Y = y|X = x1)

Ideally, we want to find:

⌘(x) = EY |X [Y |X = x]

η(x0) = &[Y |X = x0]

y = 0

y = 1

y = 0

y = 0 y = 1

y = 1

η(x1) = &[Y |X = x1]

n



Statistical Learning

x

y

PXY (X = x, Y = y) Ideally, we want to find:

⌘(x) = EY |X [Y |X = x]

η(x) = &Y|X[Y |X = x]

But we do not know  

We only have samples. 

PX,Y



Statistical Learning

x

y

PXY (X = x, Y = y)

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

⌘(x) = EY |X [Y |X = x]

⌘(x) = EY |X [Y |X = x]

bf = argmin
f2F

1

n

nX

i=1

(yi � f(xi))
2

So we need to restrict our 
predictor to a function class (e.g., 
linear, degree-  polynomial) to 
avoid overfitting: 

p

We care about how our predictor performs on future unseen data   
                           True Error of  : ̂f &X,Y[(Y − ̂f(X))2]

Mm



Future prediction error  is random  
because  is random (whose randomness comes from training data )

&X,Y[(Y − ̂f(X))2]
̂f !

x

y

PXY (X = x, Y = y)

Each draw D = {(xi, yi)}ni=1 results in di↵erent bf



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor

Notation:  
I use predictor/model/estimate,  
interchangeably

̂f! = arg min
f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• We are interested in the True Error of a (random) learned predictor:   
                                          

• But the analysis can be done for each  separately, so we analyze  
the conditional true error:  
                                          

• And we care about the average conditional true error, averaged over training data:             
                                  
written compactly as       

&X,Y[(Y − ̂f!(X ))2]
X = x

&Y|X[(Y − ̂f!(x))2 |X = x]

&![ &Y|X[(Y − ̂f!(x))2 |X = x] ]
= &[(Y − ̂f!(x))2]

7



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]
Ideal predictor Learned predictor

̂f! = arg min
f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average conditional true error:             
             

                                                    
&!,Y|x[(Y − ̂f!(x))2] = &!,Y|x[(Y − η(x) + η(x) − ̂f!(x))2]D
M M MID
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Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]
Ideal predictor Learned predictor

̂f! = arg min
f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average conditional true error:             
             

 

(this follows from independence of  and  and  
) 

                   

&!,Y|x[(Y − ̂f!(x))2] = &!,Y|x[(Y − η(x) + η(x) − ̂f!(x))2]
= &!,Y|x[ (Y − η(x))2 + 2(Y − η(x))(η(x) − ̂f!(x)) + (η(x) − ̂f!(x))2 ]
= &Y|x[(Y − η(x))2] + 2&!,Y|x[(Y − η(x))

=0

(η(x) − ̂f!(x))] + &![(η(x) − ̂f!(x))2]

! (X, Y )
&Y|x[Y − η(x)] = &[Y |X = x] − η(x) = 0

= &Y|x[(Y − η(x))2] + &![(η(x) − ̂f!(x))2]

Irreducible error 
(a) Caused by stochastic  

label noise in  
(b) cannot be reduced

PY|X=x

Average learning error 
Caused by  

(a) either using too “simple” of a model or  
(b) not enough data to learn the model accurately

O



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:             
 &![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            
&![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            
&![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]
= &![ ( η(x) − &![ ̂f!(x)])2 + 2(η(x) − &![ ̂f!(x)])(&![ ̂f!(x)] − ̂f!(x))

I B



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            
&![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]
= &![ ( η(x) − &![ ̂f!(x)])2 + 2(η(x) − &![ ̂f!(x)])(&![ ̂f!(x)] − ̂f!(x))

                  +(&![ ̂f!(x)] − ̂f!(x))2 ]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            
&![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]
= &![ ( η(x) − &![ ̂f!(x)])2 + 2(η(x) − &![ ̂f!(x)])(&![ ̂f!(x)] − ̂f!(x))

                  +(&![ ̂f!(x)] − ̂f!(x))2 ]
= ( η(x) − &![ ̂f!(x)])2 + &![ (&![ ̂f!(x)] − ̂f!(x))2 ]



Bias-variance tradeoff

⌘(x) = EY |X [Y |X = x]

Ideal predictor Learned predictor
̂f! = arg min

f∈ℱ

1
|! | ∑

(xi,yi)∈!
(yi − f (xi))2

• Average learning error:            
&![(η(x) − ̂f!(x))2] = &![ ( η(x) − &![ ̂f!(x)] + &![ ̂f!(x)] − ̂f!(x) )2 ]
= &![ ( η(x) − &![ ̂f!(x)])2 + 2(η(x) − &![ ̂f!(x)])(&![ ̂f!(x)] − ̂f!(x))

                  +(&![ ̂f!(x)] − ̂f!(x))2 ]
= ( η(x) − &![ ̂f!(x)])2 + &![ (&![ ̂f!(x)] − ̂f!(x))2 ]

biased squared variance



Bias-variance tradeoff

biased squared variance

irreducible error

+ ( η(x) − &![ ̂f!(x)])2 + &![ (&![ ̂f!(x)] − ̂f!(x))2 ]

&!,Y|x[(Y − ̂f!(x))2] = &Y|x[ (Y − η(x))2 ]
• Average conditional true error:            

• Bias squared:  
measures how the  
predictor is mismatched with 
the best predictor in 
expectation 

• variance:  
measures how the predictor  
varies each time with a new  
training datasets



Regularization



Sensitivity: how to detect overfitting

• For a linear model,  
    
if is large then the prediction is sensitive to small changes in 

• Large sensitivity leads to overfitting and poor generalization, and 
equivalently models that overfit tend to have large weights 

• Note that  is a constant and hence there is no sensitivity for the offset 

• In Ridge Regression, we use a regularizer   to measure and control 
the sensitivity of the predictor

• And optimize for small loss and small sensitivity, by adding a regularizer in 
the objective (assume no offset for now)

y ≃ b + w1x1 + w2x2 + ⋯ + wdxd
|wj | xj

b b

∥w∥2
2

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22



 Use k-fold cross validation
> Randomly divide training data into k equal parts 

– D1,…,Dk 

> For each i 

– Learn model  using data point not in  

– Estimate error of  on validation set : 
 

> k-fold cross validation error is average over data splits: 
 

> k-fold cross validation properties: 
– Much faster to compute than LOO as 

– More (pessimistically) biased – using much less data, only  

– Usually, k = 10

f!∖!i
!i

f!∖!i
!i

k ≪ n
n − n

k

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2

! = !1 !2 !3 !4 !5
f!∖!3

errork−fold = 1
k

k

∑
i=1

error!i



Recap

> Given a dataset, begin by splitting into  
 

> Model selection: Use k-fold cross-validation on TRAIN to 
train predictor and choose hyper-parameters such as λ 
 
 
 
 
 

> Model assessment: Use TEST to assess the accuracy of the 
model you output
■ Never ever ever ever ever train or choose 

parameters based on the test data

TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2


