Bias-Variance

UNIVERSITY of WASHINGTON



Features Train MSE Test MSE

All 2640 3224

S5 and BMI 3004 3453
S5 3869 4227
BMI 3540 4277

S4 and S3 4251 5302
S4 4278 5409

S3 4607 5419
None 5524 6352

test MSE is the primary criteria for model selection

Using only 2 features (S5 and BMI), one can get very close to the prediction
performance of using all features

Combining S3 and S4 does not give any performance gain

demo3d_diabetes.ipynb



What does the bias-variance theory tell us?

Train error (random variable, randomness from &)
e UseD = {(x;y)}L, ~ Pxytofind W

~ 1 =
Train error: Ly in(Wg) = —— Z (yi—w Tx,')z

[ )
| | (xjayi)eg
e recall the test error is an unbiased estimator of the true error

e True error (random variable, randomness from &)
. e ~T N2
o« Trueerror: Zy (W) = E(, yop, [y = W x)7]
e Test error (random variable, randomness from & and &)

e UseT = {(xl-,y,-)}?il ~ PX,Y

S 1 S
Test error: & (W) = —— Z (v, — wx,)?

y | 7|

e theory explains true error, and hence expected behavior of the (random)
test error



What does bias-variance theory tell us?

Train error is optimistically biased (i.e. smaller) because the trained

model is minimizing the train error

Test error is unbiased estimate of the true error, if test data is never
used in training a model or selecting the model complexity

Each line is an i.i.d. instance of & and I
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Train/test error vs. complexity
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degree p of the polynomial regression

- Model complexity e.g., degree p of the polynomial y°»;
model, number of features used in diabetes example 1
» Related to the dimension of the model parameter

* Train error monotonically decreases with model

complexity

» Test error has a U shape
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Typical notation:
X denotes a random variable
X denotes a deterministic instance

Statistical learning
Suppose data is generated from a statistical model (X, Y) ~ Py y
« and assume we know Py, (just for now to explain statistical learning)
learning aims to find a predictor # : R? - R that minimizes
« expected error Ey y). ij[(Y —n(X))?]

e think of random (X, Y) as a new sample you will encounter when you deployed
your learned model, and we care about its average performance

We assume the function #(x) could be anything
. it can take any value for each X = x

So the optimization can be done separately for each X = x

o Expyer JOY =11 = Eyop [Eyop, [(¥ = 1(x)*|X = x]|
= JEYNPYIX[(Y — ’7(75))2 | X = x] Py(x)dx

Or for discrete X, = Z Py(x) IEYNPYIX[(Y —n(x))?| X = x]

Where we used the chain rule: Exy[f(X,Y)] = [EX[ Eyx[f(x, Y) | X = x] ]



Statistical learning

e The optimal predictor sets its value for each X = x separately
. N(x) = argmin [EYNPYlX[(Y —a)’| X = x]
a€eR
« The optimal solution is 7(x) = |EYNPY|X[Y|X = x|,
which is the best prediction in £,-loss/Mean Squared Error

. Claim:Ey_p [Y|X=x] = argminE,_p [(Y—a)*|X = x]
Y|X acR Y|X

e Proof:

e Can’t implement optimal statistical estimator n(x) = E[Y | X = x]
« as we do not know Py  in practice

 This is only for the purpose of conceptual understanding



Statistical Learning Ideally, we want to find:

P)(y(Y — y’X = gjo)

y=0" “y=1
n(xp) = E[Y | X = x;]

PXY(Y = gy|X = z,)

“,
““,
.........................................................

n(x) = E[Y|X =x]



Statistical Learning

Pyl =3,V =g Ideally, we want to find:
nz) =By x|[Y]X = ]

But we do not know Py y

We only have samples.

nx) = Ey|x[Y|X = x]



Statistical Learning

Pyl =3,V =g Ideally, we want to find:
n(z) = By x|Y[X = z]

But we only have samples:

(xi,yz)ZZdPXY forizl,...,n

So we need to restrict our
predictor to a function class (e.g
linear, degree-p polynomial) to
avoid overfitting:

2 ) o

f = angain — 3 (@ — fl@)f

fern
=i

IEY|X[Y|X = x|

We care about how our predictor performs on future unseen data
True Error off Ex yl(Y — f(X))z]



Future prediction error [y [ (Y — f(X ))?] is random
because f is random (whose randomness comes from training data &)

Pyy(X =¥ =g

X

Each draw D = {(x;,y;)}I, results in different f



Notation:
| use predictor/model/estimate,

Bias-variance tradeoff interchangeably
Ideal predictor Learned predictor
n(z) = By x[Y]X = z] iy =argmin—— Y (- f)?
feF |D| D

* We are interested in the True Error of a (random) learned predictor:
Ex (Y — fo(X))’]

- But the analysis can be done for each X = x separately, so we analyze
the conditional true error:

[EY|X{(Y_f@(x))2 | X = x]
« And we care about the average conditional true error, averaged over training data:

Eg [ Eyxl(Y = fo(0))*| X = x1]
written compactly as = E[(Y — f@(x))2]



Bias-variance tradeoff

Ideal predictor Learned predictor

nz) =By x|[Y|X = 1] fo = argmin 1 D, Gi—f®)y

feF || e D

« Average conditionaIA true error: A
Eg yl(Y = fo(0))°] = Eg y,[(Y — n(x) + n(x) — fo(x))’]



Bias-variance tradeoff

Ideal predictor Learned predictor
. - n 1
n(z) = By x[Y[X = | f., = arg min Y- f)?
e | (XY )ED

* Average conditionaIA true error: A
Eg vl (Y = fo(0))] = Eg y (Y = n(x) + n(x) — f5(x))*]

o 12| (= 100 + 20 = n(0)16) = Fo(0) + (1) = Fop)? |
= Ey,[(Y = n(0))*] + 2E gy, [(Y = () (%) = fo ()] + Eg[(n(x) — fo ()]

=0
(this follows from independence of & and (X, Y) and
Eyp[Y — 7)1 = E[Y|X = x] — n(x) = 0)

= Ey (Y =02+ Egl) — fo()*]

Irreducible error Average learning error
(a) Caused by stochastic Caused by
label noise in leX (a) either using too “simple” of a model or
=X

(b) cannot be reduced (b) not enough data to learn the model accurately



Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eol(n(x) — fo)?] = Egf (n() — Eglfo()] + Eglfo()] — fo®) )]



Bias-variance tradeoff

Ideal predictor Learned predictor
- e A 1
77(:13) - IE‘Z’Y|X[Yv“X - 33] fo = arg;gg} D Z (yi_f(xi))2

(-xl',yi)e9



Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:



Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eol(n(x) — fo)?] = Egf (n() — Eglfo()] + Eglfo()] — fo®) )]



Bias-variance tradeoff

Ideal predictor Learned predictor
— [R— A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
feF | D | P TeD

* Average learning error:

Eo[(15) — fo )] = Eg[ (1) = Eglfo] + Eglfg (0] = o) )]
= Eg| (100 = EglfoD? + 2019 = Eg [fo D Eg fo/)] - o)



Bias-variance tradeoff

Ideal predictor Learned predictor
—  — — A 1
77(37) = EYIX[Y‘X - 33] fo = argmin Z (y; — f(x))?
ez | D P TeD

* Average learning error:

Eo[(15) — fo )] = Eg[ (1) = Eglfo] + Eglfg (0] = o) )]
= Eg| (100 = EglfoD? + 2019 = Eg [fo D Eg fo/)] - o)

+HEglfo] - fo)” |



Bias-variance tradeoff

Ideal predictor

n(z) = Ey x|Y|X = 1]

* Average learning error:

Eo[(10) = fo(0)] = Eg (1)
Eo | (10 = Egl o (1P + 2010) = Eg o 0D(Eg o ()] = fo(x)

+HEgl o)~ fo)”

Learned predictor

n 1
fo = argmin D> =)

fez |D| e D

— Eg)[ fo(0)] 4 Egl fo(0)] = fo () )2]

(n(x) = Eolf])° + Eg

(El o] = o)’



Bias-variance tradeoff

Ideal predictor

n(z) = Ey x|Y|X = 1]

* Average learning error:

Eo[(10) = fo(0)] = Eg (1)
Eo | (10 = Egl o (1P + 2010) = Eg o 0D(Eg o ()] = fo(x)

+HEgl o)~ fo)”

Learned predictor

n 1
fo = argmin D> =)

fez |D| e D

— Eg)[ fo(0)] 4 Egl fo(0)] = fo () )2]

(n(x) = Eolf])° + Eg

(El o] = o)’

biased squared

variance



Bias-variance tradeoff

« Average conditional true error:
Eg vl (Y = fo(0)’] = Eyp[ (¥ = ()’ ]
irreducible error
+ (100 = Eglfo))” + Eg| (Eglfo(] - fo)’]

biased squared variance

06 —— bias?

Bias squared: _
measures how the B
predictor is mismatched with
the best predictor in
expectation

variance:

measures how the predictor
varies each time with a new
training datasets

0.0 0.2 04 0.6 0.8 10
complexity



Questions?



Test error vs Simple model: Complex model:

Model complexity is below

model complexity the complexity of 7(x)
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error

Recap: Bias-variance tradeoff with simple model

X _
(Ccnceptual) bias variance tradeoff 01 n(. ) p=4

—— bias?
\ . 0.10 1
—— variance

—— total
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« When model complexity is low (lower than the optimal predictor 77(x))
A 2
. Bias? of our predictor,( n(x) — [Egz[f@(x)]) , is large

- Variance of our predictor, [E@[ (E@[ﬁ@(.x,-)] —f@(x))z], is small

* If we have more samples, then
* Bias
* Variance
» Because Variance is already small, overall test error



error

Recap: Bias-variance tradeoff with simple model
7(x) p =20

(Conceptual) bias variance tradeoff

—— bias?
—— variance

complexity

0.15 7

0.10 -

— tofal 0.05 -
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Average predictor Eg | ]?9()(:)]

« When model complexity is high (higher than the optimal predictor 77(x))

. Bias of our predictor,( n(x) — [Eg[fg(x)])z, is small

. Variance of our predictor, [E@[ (E@[ﬁ@(.x,')] —f@(x))z], is large

« If we have more samples, then
» Bias
» Variance

» Because Variance is dominating, overall test error



let us first fix sample size N=30, collect one dataset of size N i.i.d. from a
distribution, and fix one training set S,;, and test set S, via 80/20 split

then we run multiple validations and plot the computed MSEs for all values of p

that we are interested in
true model complexity

error N

10* 1

+——— Test error &

—

10] E teS

107! ;
1072 {

1073 4
<—Training error <

1074 train
10~ T T T T T T T T
0 10 15 20 * 25 30 35 40
%k ~ —
pE, 24— 1

Model complexity ( = deg_ree of the polynomial)

. Given sample size N there is a threshold, p;‘\;, where training error is zero

* Training error is always monotonically non-increasing
* Test error has a trend of going down and then up, but fluctuates



* |et us now repeat the process changing the sample size to N=40 ,
and see how the curves change

true model complexity

€IrTOI7p2 : 7
| N iv\
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? . I DTesterror £,
. \I
107 1 /
] ~ ’
107" 3 Iy
| !
1072 4 Id
10'3; .
N - o Training error £ ...
o \
1 - \'
1()—:I L) T L) L T - T L T
0 > 0 15 20, 25 430 35 40
P24 P32

Model complexity ( = degree of the polynomial)
The threshold, p;’\j, moves right

Training error tends to increase, because more points need to fit
Test error tends to decrease, because Variance decreases



* et us now fix predictor model complexity p=30, collect multiple
datasets by starting with 3 samples and adding one sample at a time to
the training set, but keeping a large enough test set fixed

e then we plot the computed MSEs for all values of train sample size
Ntrain that we are interested in

error {
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e There is a threshold, Nl;“, below which training error is zero (extreme overfit)

e Below this threshold, test error is meaningless, as we are overfitting and there are
multiple predictors with zero training error some of which have very large test error

e Test error tends to decrease
e Training error tends to increase lecture2_polynomialfit.ipynb



Bias-variance tradeoff for linear models

If Y, = X w* + ¢;and ¢; ~ N (0,6%)

y = Xw* +¢€
Wy = XIX) Xy =

n(x) = Ey|x[Y|X = x| =

. .
fo(X) =x"Wyg =



Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
y =Xw*+e€
WME = X'X) X'y = XTX)"IXT(Xw* + ¢)
= w* + (XTX) ' X’e
nx) = EyxlY[X =x] = xTw*

f@(x) = xT Wy = xIw* + xI(XITX)" X e

+ Irreducible error: [Ey [(Y — n(x))?*| X =x] =

A 2
. Bias squared: (n(x) — Eglfoe>x)] ) =
(is independent of the sample size!)



Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
Warg = w¥ + (XTX)"!1XTe

n(x) = x'

fo() = xTw* + xT(XTX)"'XTe

. Variance: [EQZ[ (f@(x) — E@[f@()(:)] )2] =

W>X<



Bias-variance tradeoff for linear models
If Y, = X w* + ¢;and ¢; ~ N (0,6%)
W =w* + XTX)"1XTe
n(x) = x'
forx) = xTw* + xT(XTX)"1XTe
. Variance: Eg, [ (f5(0) — Eglfo)]1 )] = Eolt”(XTX) X e X(X"X)x]

= 67 Eo[xT (XTX)"IXTX(XTX) " x]
= o> xTE,[(XTX) ' ]x

W>X<

- To analyze this, let's assume that X; ~ 4/(0,I) and number of samples, n, is large

1
enough such that X7 X = nI with high probability and E[(X?X)™!'] ~ —I, then

n

GZ.XTX

. Variance is , and decreases with increasing sample size n

n



Regularization




Recap: bias-variance tradeoff

« Consider 100 training examples and 100 test examples

i.i.d.drawn from degree-5 polynomial features

x; ~ Uniform[—1,1], y; ~ £, «(x;)) + €, €; ~ N (0,6%)

Fu@) = D% + wix, + wi () + wiFon) +wi () + wiFxn)
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This is a linear model with features

h(xi) = (xl-, (xi)z, (xl-)3, (xl-)4, (xl_)S)



Recap: bias-variance tradeoff

With degree-3 polynomials, we underfit With degree-20 polynomials, we overfit
A \X A \X
Fin @ fi )
0.2 0.2
0.1 1 0.1 4
0.0 0.0 1
-0.1 -0.1
-0.2 -0.2
<4—Ground truth f(x)
-03 -03
—04 ] ] ] L] L] ] L} ] L] -04 L] ] L] ] ] L] ] LJ
-100 -0.75 -0.50 -0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 000 025 050 075 100
X X
current train error = 0.0036791644380554187 0.0005421686349568773
current test error = 0.0037962529988410953 0.14210029429557927



Sensitivity: how to detect overfitting

« For a linear model,
y =~ b + Wlxl + W2X2 + °e + ded
if | w;|is large then the prediction is sensitive to small changes in x;

- Large sensitivity leads to overfitting and poor generalization, and
equivalently models that overfit tend to have large weights

. Note that b is a constant and hence there is no sensitivity for the offset b

. In Ridge Regression, we use a regularizer ||w||% to measure and control
the sensitivity of the predictor

- And optimize for small loss and small sensitivity, by adding a regularizer in
the objective (assume no offset for now)

n
~ . 2
Wyridge — al'g mru%nz (yz — ZE;FUJ) T )‘HwH%
1=1



Ridge Regression

= (Original) Least squares objective: n

= Ridge Regression obJectlve .

2
wrzdge — arg mlnz — &y ”UJ) T )‘”w”%

— A

er\\ +...+E F A c 4




Minimizing the Ridge Regression Objective

n
o~ . 2
Wridge — Al mu%nz (yz — ZB?U)) + )\HUJH%
1=1



Shrinkage Properties

n

—~ . 2

Wridge — AI'g mul,nz (yz - CE‘;F”(U) + )\H’UJH%
1=1

= (XIX + X)Xy

e When A = 0, this gives the least squares model

e This defines a family of models hyper-parametrized by A

e Large A means more regularization and simpler model

e Small A means less regularization and more complex model



n

Ridge regression: minimize Z (wal- — yi)2 + /’t||w||§

L i=1
. 1 o Tpd 2
training MSE n;(y, X W) Ww;'s
i —
10 0251 area of living space
020 -
08 {
015 -
06 {
010 -
0- 0.05 -
0.00 -
02
~0.05 | ——”
3 2 4 0 1 2 3 4 3 2 a1 o0 1 2 3 a
log1o(N) logyo(A)

e Left plot: leftmost training error is with no regularization: 0.1093
e Left plot: rightmost training error is variance of the training data: 0.9991
e Right plot: called regularization path



Ridge regression: minimize Z (wal- — yl-)2 + /’t||w||§
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 this gain in test MSE comes from
shrinking w’s to get a less sensitive
predictor
(which in turn reduces the variance)
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Bias-Variance Properties

. Recall: g, = X' X+ 2D~ X"y

= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y=Xw+e€, € ~ N(0,6°1)

» The true error at a sample with feature x is

T~ 2
ﬂzy’@trainpc[(y_x erdge) |x]



Bias-Variance Properties

. Recall: g, = X' X+ 2D~ X"y
= To analyze bias-variance tradeoff, we need to assume probabilistic
generative model: x; ~ Py, y = Xw +¢, € ~ 4(0,6°])
» The true error at a sample with feature x is
[Ey,gtram| Ay —x a7 rldge)2 | x]
(v — EDy [xD)? [ x] + Eg,  [(ELy[x] = x Wiq00)° | 4]

ylx train
Irreducible Error Learning Error




