Bias-Variance

Features	Train MSE	Test MSE
All	2640	3224
S5 and BMI	3004	3453
S 5	3869	4227
ВМІ	3540	4277
S4 and S3	4251	5302
S 4	4278	5409
S 3	4607	5419
None	5524	6352

- test MSE is the primary criteria for model selection
- Using only 2 features (S5 and BMI), one can get very close to the prediction performance of using all features
- Combining S3 and S4 does not give any performance gain

demo3_diabetes.ipynb

What does the bias-variance theory tell us?

- **Train error** (random variable, randomness from \mathscr{D})
 - Use $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n \sim P_{X,Y}$ to find \widehat{w}

Train error:
$$\mathcal{L}_{\text{train}}(\widehat{w}_{\text{LS}}) = \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - \widehat{w}^T x_i)^2$$

- recall the test error is an unbiased estimator of the true error
- True error (random variable, randomness from 2)

• True error:
$$\mathcal{L}_{\text{true}}(\widehat{w}) = \mathbb{E}_{(x,y) \sim P_{X,Y}}[(y - \widehat{w}^T x)^2]$$

- **Test error** (random variable, randomness from \mathscr{D} and \mathscr{T})
 - Use $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^m \sim P_{X,Y}$

Test error:
$$\mathcal{L}_{\text{test}}(\widehat{w}) = \frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{T}} (y_i - \widehat{w}^T x_i)^2$$

 theory explains true error, and hence expected behavior of the (random) test error

What does bias-variance theory tell us?

- Train error is optimistically biased (i.e. smaller) because the trained model is minimizing the train error
- Test error is unbiased estimate of the true error, if test data is never used in training a model or selecting the model complexity
- Each line is an i.i.d. instance of ${\mathscr D}$ and ${\mathscr T}$

Train/test error vs. complexity

- Related to the dimension of the model parameter
- Train error monotonically decreases with model complexity
- Test error has a U shape

-0.75 -0.50 -0.25 0.00 X 0.25

0.50

degree 3

0.10

-0.15

-0.20

Statistical learning

Typical notation:

X denotes a random variable

x denotes a deterministic instance

- Suppose data is generated from a statistical model $(X,Y) \sim P_{X,Y}$
 - ullet and assume we know $P_{X,Y}$ (just for now to explain statistical learning)
- **learning** aims to find a predictor $\eta: \mathbb{R}^d \to \mathbb{R}$ that minimizes
 - expected error $\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2]$
 - think of random (X, Y) as a new sample you will encounter when you deployed your learned model, and we care about its average performance
- We assume the function $\eta(x)$ could be anything
 - it can take any value for each X = x
- So the optimization can be done separately for each X = x

•
$$\mathbb{E}_{(X,Y)\sim P_{X,Y}}[(Y-\eta(X))^2] = \mathbb{E}_{X\sim P_X}[\mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2 | X=x]]$$

= $\int \mathbb{E}_{Y\sim P_{Y|X}}[(Y-\eta(x))^2 | X=x] P_X(x) dx$

Or for discrete
$$X$$
,
$$= \sum P_X(x) \mathbb{E}_{Y \sim P_{Y|X}} [(Y - \eta(x))^2 | X = x]$$

Where we used the chain rule: $\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \Big[\mathbb{E}_{Y|X}[f(x,Y) \,|\, X=x] \Big]$

Statistical learning

- The optimal predictor sets its value for each X = x separately
 - $\eta(x) = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}} [(Y a)^2 | X = x]$
- The optimal solution is $\eta(x)=\mathbb{E}_{Y\sim P_{Y|X}}[Y|X=x],$ which is the best prediction in \mathcal{E}_2 -loss/Mean Squared Error
- Claim: $\mathbb{E}_{Y \sim P_{Y|X}}[Y|X=x] = \arg\min_{a \in \mathbb{R}} \mathbb{E}_{Y \sim P_{Y|X}}[(Y-a)^2|X=x]$
- Proof:

- Can't implement optimal statistical estimator $\eta(x) = \mathbb{E}[Y | X = x]$
 - as we do not know $P_{X,Y}$ in practice
- This is only for the purpose of conceptual understanding

Statistical Learning

$$P_{XY}(X=x,Y=y)$$

$$y=1$$

$$y=0$$

$$x$$

$$x$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$P_{XY}(Y=y|X=x_0)$$

Statistical Learning

$$P_{XY}(X=x,Y=y)$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we do not know $P_{X,Y}$ We only have samples.

$$\eta(x) = \dot{\mathbb{E}}_{Y|X}[Y|X = x]$$

Statistical Learning

$$P_{XY}(X=x,Y=y)$$

Ideally, we want to find:

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

But we only have samples: $(x_i, y_i) \stackrel{i.i.d.}{\sim} P_{XY}$ for i = 1, ..., n

So we need to restrict our predictor to a function class (e.g., linear, degree-p polynomial) to avoid overfitting:

$$\widehat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

 $\mathbb{E}_{Y|X}[Y|X=x]$

We care about how our predictor performs on future unseen data True Error of \hat{f} : $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$

Future prediction error $\mathbb{E}_{X,Y}[(Y-\hat{f}(X))^2]$ is random because \hat{f} is random (whose randomness comes from training data \mathcal{D})

$$P_{XY}(X=x,Y=y)$$

Each draw $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ results in different \widehat{f}

Notation:

I use predictor/model/estimate, interchangeably

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

We are interested in the True Error of a (random) learned predictor:

$$\mathbb{E}_{X,Y}[(Y-\hat{f}_{\mathcal{D}}(X))^2]$$

• But the analysis can be done for each X=x separately, so we analyze the **conditional true error**:

$$\mathbb{E}_{Y|X}[(Y - \hat{f}_{\mathcal{D}}(x))^2 | X = x]$$

• And we care about the average conditional true error, averaged over training data:

$$\mathbb{E}_{\mathcal{D}} \Big[\, \mathbb{E}_{Y|X} [(Y - \hat{f}_{\mathcal{D}}(x))^2 \, | \, X = x] \, \Big]$$
 written compactly as
$$= \mathbb{E} [(Y - \hat{f}_{\mathcal{D}}(x))^2]$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^2]$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x)+\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D},Y|x}\Big[(Y-\eta(x))^{2}+2(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))+(\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}\Big]$$

$$= \mathbb{E}_{Y|x}[(Y-\eta(x))^{2}]+2\mathbb{E}_{\mathcal{D},Y|x}[(Y-\eta(x))(\eta(x)-\hat{f}_{\mathcal{D}}(x))]+\mathbb{E}_{\mathcal{D}}[(\eta(x)-\hat{f}_{\mathcal{D}}(x))^{2}]$$

$$=0$$

(this follows from independence of \mathscr{D} and (X, Y) and

$$\mathbb{E}_{Y|x}[Y - \eta(x)] = \mathbb{E}[Y | X = x] - \eta(x) = 0)$$

$$= \mathbb{E}_{Y|x}[(Y - \eta(x))^2]$$

+ $\mathbb{E}_{\mathscr{D}}[(\eta(x) - \hat{f}_{\mathscr{D}}(x))^2]$

Irreducible error

(a) Caused by stochastic label noise in $P_{Y\mid X=x}$ (b) cannot be reduced

Average learning error

Caused by

(a) either using too "simple" of a model or(b) not enough data to learn the model accurately

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^{2}\right]$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Ideal predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

Average learning error:

Learned predictor

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^{2}\right]$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}\left[\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))\right]$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))$$

$$+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))$$

$$+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] \right)^2 + \mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x) \right)^2 \right]$$

Ideal predictor

Learned predictor

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x]$$

$$\hat{f}_{\mathcal{D}} = \arg\min_{f \in \mathcal{F}} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - f(x_i))^2$$

Average learning error:

$$\mathbb{E}_{\mathcal{D}}[(\eta(x) - \hat{f}_{\mathcal{D}}(x))^{2}] = \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] + \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^{2} + 2(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))$$

$$+ (\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x))^{2}]$$

$$= \left(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] \right)^2 + \mathbb{E}_{\mathcal{D}} \left[\left(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x) \right)^2 \right]$$

biased squared

variance

Average conditional true error:

$$\mathbb{E}_{\mathcal{D},Y|x}[(Y-\hat{f}_{\mathcal{D}}(x))^2] = \mathbb{E}_{Y|x}\Big[(Y-\eta(x))^2\Big]$$
 irreducible error
$$+ \frac{\big(\eta(x) - \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\big)^2}{\text{biased squared}} + \mathbb{E}_{\mathcal{D}}\Big[\big(\mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)] - \hat{f}_{\mathcal{D}}(x)\big)^2\Big]$$
 variance

Bias squared:

measures how the predictor is mismatched with the best predictor in expectation

variance:

measures how the predictor varies each time with a new training datasets

Questions?

Test error vs. model complexity

Optimal predictor $\eta(x)$ is degree-5 polynomial

Error

 $\label{eq:polynomial} \text{degree } p \text{ of the polynomial regression}$

Simple model: Model complexity is below the complexity of $\eta(x)$

0.00 0.25 0.50

-0.10

-0.15

-1.00 -0.75 -0.50 -0.25

Complex model:

demo4_tradeoff.ipynb

Recap: Bias-variance tradeoff with simple model

- When model **complexity is low** (lower than the optimal predictor $\eta(x)$)
 - Bias 2 of our predictor, $\left(\eta(x) \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2$, is large
 - Variance of our predictor, $\mathbb{E}_{\mathscr{D}} \left[\left(\mathbb{E}_{\mathscr{D}} [\hat{f}_{\mathscr{D}}(x)] \hat{f}_{\mathscr{D}}(x) \right)^2 \right]$, is small
 - · If we have more samples, then
 - Bias
 - Variance
 - Because Variance is already small, overall test error

Recap: Bias-variance tradeoff with simple model

- When model complexity is high (higher than the optimal predictor $\eta(x)$)
 - Bias of our predictor, $\left(\eta(x) \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2$, is small
 - Variance of our predictor, $\mathbb{E}_{\mathscr{D}} \left[\left(\mathbb{E}_{\mathscr{D}} [\hat{f}_{\mathscr{D}}(x)] \hat{f}_{\mathscr{D}}(x) \right)^2 \right]$, is large
 - · If we have more samples, then
 - Bias
 - Variance
 - Because Variance is dominating, overall test error

- let us first fix sample size N=30, collect one dataset of size N i.i.d. from a distribution, and fix one training set S_{train} and test set S_{test} via 80/20 split
- then we run multiple validations and plot the computed MSEs for all values of p
 that we are interested in

Model complexity (= degree of the polynomial)

- Given sample size N there is a threshold, p_N^* , where training error is zero
- Training error is always monotonically non-increasing
- Test error has a trend of going down and then up, but fluctuates

 let us now repeat the process changing the sample size to N=40, and see how the curves change

- The threshold, p_N^* , moves right
- Training error tends to increase, because more points need to fit
- Test error tends to decrease, because Variance decreases

- let us now fix predictor model complexity p=30, collect multiple datasets by starting with 3 samples and adding one sample at a time to the training set, but keeping a large enough test set fixed
- then we plot the computed MSEs for all values of train sample size
 Ntrain that we are interested in

- There is a threshold, N_p^* , below which training error is zero (extreme overfit)
- Below this threshold, test error is meaningless, as we are overfitting and there are multiple predictors with zero training error some of which have very large test error
- Test error tends to decrease
- Training error tends to increase

lecture2_polynomialfit.ipynb

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\mathbf{y} = \mathbf{X}w^* + \epsilon$$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} =$$

$$=$$

$$\eta(x) = \mathbb{E}_{Y|X}[Y|X = x] =$$

$$\widehat{f}_{\emptyset}(x) = x^T \widehat{w}_{\text{MLE}} =$$

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\mathbf{y} = \mathbf{X} w^* + \epsilon$$

$$\widehat{w}_{\text{MLE}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} w^* + \epsilon)$$

$$= w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = \mathbb{E}_{Y|X} [Y|X = x] = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T \widehat{w}_{\text{MLE}} = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

- Irreducible error: $\mathbb{E}_{X,Y}[(Y \eta(x))^2 | X = x] =$
- Bias squared: $\left(\eta(x) \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)]\right)^2 =$ (is independent of the sample size!)

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{\text{MLE}} = w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

• Variance: $\mathbb{E}_{\mathscr{D}}\left[\left(\hat{f}_{\mathscr{D}}(x) - \mathbb{E}_{\mathscr{D}}[\hat{f}_{\mathscr{D}}(x)]\right)^2\right] =$

If
$$Y_i = X_i^T w^* + \epsilon_i$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

$$\widehat{w}_{\text{MLE}} = w^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

$$\eta(x) = x^T w^*$$

$$\widehat{f}_{\mathcal{D}}(x) = x^T w^* + x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon$$

• Variance:
$$\mathbb{E}_{\mathcal{D}} \left[\left(\hat{f}_{\mathcal{D}}(x) - \mathbb{E}_{\mathcal{D}} [\hat{f}_{\mathcal{D}}(x)] \right)^{2} \right] = \mathbb{E}_{\mathcal{D}} [x^{T} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \epsilon \epsilon^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} x]$$

$$= \sigma^{2} \mathbb{E}_{\mathcal{D}} [x^{T} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} x]$$

$$= \sigma^{2} x^{T} \mathbb{E}_{\mathcal{D}} [(\mathbf{X}^{T} \mathbf{X})^{-1}] x$$

- To analyze this, let's assume that $X_i \sim \mathcal{N}(0,\mathbf{I})$ and number of samples, n, is large enough such that $\mathbf{X}^T\mathbf{X} = n\mathbf{I}$ with high probability and $\mathbb{E}[(\mathbf{X}^T\mathbf{X})^{-1}] \simeq \frac{1}{n}\mathbf{I}$, then
 - Variance is $\frac{\sigma^2 x^T x}{n}$, and decreases with increasing sample size n

Regularization

Recap: bias-variance tradeoff

• Consider 100 training examples and 100 test examples i.i.d.drawn from degree-5 polynomial features $x_i \sim \text{Uniform}[-1,1], y_i \sim f_{w*}(x_i) + \epsilon_i, \epsilon_i \sim \mathcal{N}(0,\sigma^2)$

$$f_w(x_i) = b^* + w_1^* x_i + w_2^* (x_i)^2 + w_3^* (x_i)^3 + w_4^* (x_i)^4 + w_5^* (x_i)^5$$

This is a linear model with features $h(x_i) = (x_i, (x_i)^2, (x_i)^3, (x_i)^4, (x_i)^5)$

Recap: bias-variance tradeoff

With degree-3 polynomials, we underfit

 $\hat{f}_{\hat{w}_{LS}}(x)$ $f_{\hat{w}_{\mathrm{LS}}}(x)$ 0.1 0.0 -0.1 $\mathbb{E}[f_{\hat{w}_{LS}}(x)]$ -0.2**–**Ground truth f(x)-0.3-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

current train error = 0.0036791644380554187
current test error = 0.0037962529988410953

With degree-20 polynomials, we overfit

Sensitivity: how to detect overfitting

- For a linear model, $y \simeq b + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$ if $|w_j|$ is large then the prediction is sensitive to small changes in x_j
- Large sensitivity leads to overfitting and poor generalization, and equivalently models that overfit tend to have large weights
- Note that b is a constant and hence there is no sensitivity for the offset b
- In Ridge Regression, we use a regularizer $\|w\|_2^2$ to measure and control the sensitivity of the predictor
- And optimize for small loss and small sensitivity, by adding a regularizer in the objective (assume no offset for now)

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

Ridge Regression

(Original) Least squares objective:

- Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} \left(y_i - x_i^T w\right)^2 + \lambda ||w||_2^2$ + ... + $\lambda + \lambda = 1$

Minimizing the Ridge Regression Objective

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

Shrinkage Properties

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$
$$= (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

- When $\lambda = 0$, this gives the least squares model
- ullet This defines a family of models hyper-parametrized by λ
- ullet Large λ means more regularization and simpler model
- Small λ means less regularization and more complex model

Ridge regression: minimize $\sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_2^2$

$$\sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

training MSE
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \hat{w}_{\text{ridge}}^{(\lambda)})^2$$

- Left plot: leftmost training error is with no regularization: 0.1093
- Left plot: rightmost training error is variance of the training data: 0.9991
- Right plot: called regularization path

Ridge regression: minimize $\sum (w^T x_i - y_i)^2 + \lambda ||w||_2^2$

this gain in test MSE comes from shrinking w's to get a less sensitive predictor (which in turn reduces the variance)

Bias-Variance Properties

- Recall: $\hat{w}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$
- To analyze bias-variance tradeoff, we need to assume probabilistic generative model: $x_i \sim P_X$, $\mathbf{y} = \mathbf{X}w + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2\mathbf{I})$
- The true error at a sample with feature x is $\mathbb{E}_{y,\mathcal{D}_{train}|x}[(y-x^T\hat{w}_{ridge})^2 \mid x]$

Bias-Variance Properties

- Recall: $\hat{w}_{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$
- To analyze bias-variance tradeoff, we need to assume probabilistic generative model: $x_i \sim P_X$, $\mathbf{y} = \mathbf{X}w + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2\mathbf{I})$
- The true error at a sample with feature *x* is

$$\mathbb{E}_{y, \mathcal{D}_{\text{train}} | x} [(y - x^T \hat{w}_{\text{ridge}})^2 | x]$$

$$= \mathbb{E}_{y | x} [(y - \mathbb{E}[y | x])^2 | x] + \mathbb{E}_{\mathcal{D}_{\text{train}}} [(\mathbb{E}[y | x] - x^T \hat{w}_{\text{ridge}})^2 | x]$$
Irreducible Error
Learning Error