Linear Regression,
continued
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The regression problem in matrix notation

. T
Linear model: ¥y; = X; W + €;

Least squares solution:

s = argmin|[ly — Xw|[;

= (X'X)' X"y

What about an offset
(a.k.a intercept)?




The regression problem in matrix notatinn

. T
Linear model: ¥y; = X; W + €;

— —

Least squares solution:

Wy = argmin [[y — Xuwl|;
_ (XTX)_ley
Affine model: y; = x;-rw +b+ ¢

Least squares solution:

n

L . 2
Wrs,brs = argmin ¥ (y; — (z; w+ b))

w,b “
1=1

= argmin [ly — (Xuw + 10)|[3
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Dealing with an offset

Wi bLS =arg min |y—-Xw+ lb)llg

weRY,heR
b =arg min (y— Xw+ 1) (y — Xw + 1b))
W) weR?beR ,
g(W,b) b/ b
Set gradient w.r.t. w and b to zero to find the minima: - -1

/ gg/ﬁﬁ \D> ==X | Vbi(wzb} 6 - U‘) X

7/ ‘/‘) 7
_ ) A _J
= “2?([ (’XL&S'\’ b} O l 7b[ b {_» X(,J

~ + 1 Xed
= ZXTX("_,{,/ZX‘Q-}ZX?b é-l@
0= 7 X Au ~Y’/]{~X7b —

T = XKw +XLL

o A reminder on vector calculus
f)=@Qr+p"Qr+p) =V, fly) =2Q"(Qy + )




Dealing with an offset

@rs,brg = arg min ly — (Xw + 1b)||5

. @
XX W g+ bLSX(T/ X T

/(wLS ]L brs171=1Ty
ST
If X11=0,}fthe features have zero mean, d

wis = XIX)" X'y

(T_' 1 n
bis = "D 1y = ;Zyi ‘ l
— < i=1 X y




Dealing with an offset
WLs,brs = arg mlﬂ ly — (Xw + 10)|]3
X' X s + bLSXTl = X'y

1" X g +br5171 =17y
In general, when X*1 # 0,

If XT1 =

07 - x __14( _-:>
wis = XIX)" X7y
~ 1 ¢ (:)\ _ ()f(cr/()\))f(\?\
brs = ; Yi LS~ /

(
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Dealing with an offset i‘" N (;(\'T f") X Y -1 |-

SO . 1 4"
G, brs = argmin [ly — (Xw + 16)|[3 bl

XX w16 +brsXT1 =XTy

f}ij@Ls})—I— brsl™ 1 = 1Tﬂ

T
If XT1 =0, In general, when X~ 1 # 0,
wis = X'X)" X"y 1= 1
~ 1 & N -
bLS:; Vi X=X-1u
= s = (XTX) ' X"y
P T B
brg = — o uTw

——



Process for linear regression with intercept
Collectdata: & = {(x,y)}—;
Decide on a model: ¢, — x?w +b+ e

Choose a loss function - least squares
Pick the function which minimizes loss on data

@LS,ELS = arg Igiil (yz — (x;rw s b))2 L
T i=1

Use function to make prediction on new examples x,.,

A T A -
Unew = TpowWLS + OLs



Another way of dealing with an offset
Ws,brs = arg min ly — (Xw + 1b)|]3

reparametrize the problem as X = [X, 1] and w = [7[1;]

Xw =



Why do we use least squares (i.e. z/”z-loss)?

Wps = argmin||y — Xuwl|3

= (X'X)"' X'y - lj

A
[X new s ?’\w\\cl' wuﬁ X’\U«J—\_

—>(Y;) ~ M\Pwe//{\a {?/\ h&&)\

T
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C

LS

— Py, w,0) =



Why do we use least squares (i.e. £’,-loss)?
7 X & fixed
@15 = arg min | ~(Xul (10T rorclom ]
_ (XTX)_ley
DT Dew ) ¥ =¥ pew sEC =€ pens L Fresh, M‘AT'VLKJ
Consider @)— Tul+¢  where ¢ "K' N(0,0 )
— Yi~ /\/(xw/ (‘91"‘"‘1

— P(y;;x;,w, 0) = R
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Why do we use least squares (i.e. z/”z-loss)?

Maximum Likelihood Estimator:

wmLe = argmax log P({yi}io1;{%i}iz1, W, 0)

—2 = arg max —nlog(ff:f 2m) +Z_ . 20;
i=1 T
xT - zb
V(Jo & = ”ZZXL (j‘%)
2




Why do we use least squares (i.e. z,”z-loss)?

Maximum Likelihood Estimator:

WMLE = arg max log P({y;}i_y; {x; i, w,0)
_ )2
— argmgx +Z© @xw 7
= argmin Z Yi — xTw)2 </‘/
D
Recal: ~ Wrg = arg mJHZ (yi — a:ffw)Q

1=1

Wrs = Wypre = (X' X) ' X'Y

—_—




Recap of linear regression

Data {(zi, y:) }iey

Minimize the loss Maximize the likelihood

(Empirical Risk Minimization) (MLE)

Choose a loss Choose a Hypothesis class

e.g., £5-loss: (y; — xl.Tw)2 eg., )y = xiTw +€, €~ N (0,0%)

n
Solve W | ¢ = arg min Z (y; — xI'w)? Maximize the likelihood, o
w o~ - (yz — X w)
i=1 WMLE = arg mv?X { —n log(ax/ﬂ) — Z Sy }

i=1



Analysis of Error under additive Gaussian noise

Let's suppose y; = x! w* + ¢; a

y =Xw*+e¢€
é[w MLE]

¢; ~ N/ (0,6%), then this can be written as

X"X)" X"y )
={[(XTX)"IXT (Xw* + e)j wm
=+ (XX 'X"e. |

> g Y %&x \’M

Maximum Likelihood Estimator is unbiased: |

L5 ! @ e ]
> =0




Analysis of Error under additive Gaussian noise

Let’s suppose y; = xl.T

w* + ¢; and €; ~ 4(0,67), then this can be written as
y =Xw*+e€ -

Wy = X'X)7' X'y
= (X'X)"'X"(Xw* + ¢€)
Vorionct. = w* + (X'X)"X’e

_Covarlance is: \/a-r( WMLE> [L[( - Mu;— *")J

= 5@1

MG
:4[[ F2U (XX—'X‘C‘ )



Analysis of Error under additive Gaussian noise

Let's suppose y; = xiTw* + €;and €; ~ N (0,62), then this can be written as

y = Xw* + ¢, and the MLE is
w MLE = \/V>x< -+ (XTX)_1XT€

This random estimate has the following distribution:
E[Wyg gl = w*, Cov(Wygg) = E[(W — EpW])(W — E[Ww])T] = a*(XTX)™!

e ~ A w*, eA(XTX)™)

Interpretation: consider an example with x = |~!

- O O O O
|

|0 —1]

The covariance of the MLE, JZ(XTX)_I, captures how each sample gives information

about the unknown w*, but'each sample gives information about for different
(linear combination of) coordinates and of different quality/strength



Questions?



Polynomial regression

- How to fit more complex data?




Recap: Linear Regression

label
d Z f(x) = 100,000 + 500 x

—

f(x) = 150,000 + 400 x

_—
pd

input x

 In general high-dimensions, we fit a linear model with intercept
y;~wlx.+b, orequivalently y,=w'x +b+e¢,
with model parameters (w € R%, b € R) that minimizes #,-loss
n

Fw,b) = ) (i— Wi+ b))y
i=1 - ‘

error e,




Recap: Linear Regression

« The least squares solution, i.e. the minimizer of the L”z-loss can be
written in a closed form as a function of data X and y as

As we derived in class: or equivalently using
straightforward linear algebra
= lXTl by setting the gradient to zero:
n
X =X—14" Wis| _ (le] x H)‘l [XT] v
wrs = (X' X)) X'y

AN

1 — R
brLs = - z; yi — WL
1=



Quadratic regression in 1-dimension

L o label y o005 -
X2 Y2

Data: X =| |, y=|". ~0.05 1
d . . -0.10 A
—xn . - In . -0.15 -
-0.20 -
* Linear model with parameter (b, w)): .
c Vi =b+wx +e 030 |

*y=10+Xw; +e¢ 100 075 050 025 000 035 050 075 100

: . w input x
. Quadratic model with parameter (b, w = [WI] ): P
2

. yi=b+w1xi+w2xi2+€i
. Define & : R — R? such that x — h(x) = ﬁ

X

X
. Replace x; by

2
Xi

h(xl)T
Treat i(x) as new input features. Let H = :

_h(xn)T_

y=1b+Hw+e¢€



Degree-p polynomial regression in 1-dimension

_ - _ - 1 1 0.05
X1 Y1 abel y 200 -
X Y
Data: X = ,2 , Y= ,2 ~0.05 -
xn yn -0.10 A
- - -0.15 -
-0.20 A
« Linear model with parameter (b, w)): 095 |
c Vi =b+wix+¢ ~0.30 -
*Yy=10+Xw, +e 1700 075 050 025 000 025 050 075 100
« Degree-p model with parameter (b, w € RP): input x

. yl.=b+w1xi+---+wpr+ei

X
Define i : R — R? such that x — h(x) = [ : ]

Treat (x) as new input features and let H =

y=1b+Hw+¢



Degree-p polynomial regression in d-dimension

X1 X2 ot Xyg "y, ]
T
X y
) )
Data: X = ) , y=1.
. [ ] [ ]
an | Vi

- Degree-p model with parameter (b, w € R%):

X1
yi=b+x/w + -+ 'w, +e, wherex] = |
. <P
X
. Define h : R? - R such that x — h(x) = [ : ] e R
P
e v:=b+h(x)'w+e i .
h(x1)T
Treat i(x) as new input features and let H = :
' h(x,)"

cy=1b+Hw+e¢
. 2
- In general, any feature i(x) can be used, e.g., sin(ax + b), e 7?9 log x, etc.



Which p should we choose?

 First instance of class of models with different
representation power = model complexity

label y degree 3 label y degree 20 overfits
y 0.10

0.10 - ¢ |

0.05 - - 0.05 A

0.00 - 0.00 A
~0.05 - ~0.05 -
~0.10 - -0.10 -
0154 * -0.15 -
-0201 o -0.20 1

-1.00 -0.75 -050 -025 000 025 050 075 100 2100 —-075 —050 —025 000 025 050 075 100
input x input x

« How do we determine which is better model?



Generalization

* we say a predictor generalizes if it performs as well on unseen data
as on training data

e formal mathematical definition involves probabilistic assumptions
(coming later in this week)

* the data used to train a predictor is training data or in-sample data
e we want the predictor to work on out-of-sample data

* we say a predictor fails to generalize if it performs well on in-
sample data but does not perform well on out-of-sample data

6 6

) o o] e
o .° ® oo ‘e @°

I o °®
o
Sfome ooO ogm f.o
o) Oo o
© ® o
o O
o) fo)

e train a cubic predictor on 32 (in-sample) white circles: Mean Squared Error (MSE) 174
e predict label y for 30 (out-of-sample) blue circles: MSE 192

e conclude this predictor/model generalizes, as in-sample MSE ~ out-of-sample MSE



Split the data into training and testing

e away to mimic how the predictor performs on unseen data
« given asingle dataset § = {(x;, y)}'_,
e we split the dataset into two: training set and test set

e selection of data train/test should be done randomly
(80/20 or 90/10 are common)

* fraining set used to train the model

D, Oi—xlwy?

IeS

train

minimize &£, (W) =
* | S train |

e test set used to evaluate the model

gtest(w) — Z (yz — X W)2

S
| test| £

e this assumes that test set is similar to unseen data

* test set should never be used in training



We say a model w or predictor overfits if Z.... (W) K & . (W)

train

small training error large training error

generalizes well

small test error possible, but unlikely

performs well

large test error fails to generalize generalizes well

Overfitting performs poorly



How do we choose which model to use?

0.05 A1

0.00 A1

-0.05 1

-0.10 A

-0.15 A

-0.20 A

-0.25 A

-0.30 A

-1.00 -0.75 -050 -025 000 025 050 075 100

X

Error

0.0035 -

0.0030 A

0.0025 A

0.0020 A

0.0015 A

0.0010 A

—&— train error
- &~ test error

*
L 4

*ﬂ\.

0.0005

25 50 75 100 125 150 175 200

Degree-p polynomial model

1. first use 60 data points to train and 60 data points to test and train
several models to get the above graph on the right

2. then choose degree p = 3, since it achieves minimum test error

3. now re-train on all 120 data points with degree 5 polynomial model

demoZ2_lin.ipynb




Another example: Diabetes

e Example: Diabetes

yl 200

150 -

100 -

100

10 explanatory variables

from 442 patients

we use half for train and half for validation

-
° . ..: ...... .
u v “‘ 3
LI S T S

200 1

150 -

100 -

100 -

—0025 0000 0025 0DOS0

200

150 4

100 -

200

150 1

100 -

100 A

200 1

150 1

100 A




Features Train MSE Test MSE

All 2640 3224

S5 and BMI 3004 3453
S5 3869 4227
BMI 3540 4277

S4 and S3 4251 5302
S4 4278 5409

S3 4607 5419
None 5524 6352

test MSE is the primary criteria for model selection

Using only 2 features (S5 and BMI), one can get very close to the prediction
performance of using all features

Combining S3 and S4 does not give any performance gain

demo3_diabetes.ipynb



What does the bias-variance theory tell us?

e Train error (random variable, randomness from &)
e Use D = {(x,y)}L, ~Pxytofind w

N 1 AN
Train error: &£, .. (Wg) = —— Z (y; — wlx,)?
| | (x;,y,)ED
e recall the test error is an unbiased estimator of the true error

e True error (random variable, randomness from &)
: —\ _ ST .82
o Trueerror: 2y (W) = E j)op, [V = W X)7]
e Test error (random variable, randomness from & and )

e UseJ ={(x,y)} , ~Pxy

~ 1 -
Test error: £ (W) = —— Z (y;— W Tx)?

y | 7|

e theory explains true error, and hence expected behavior of the (random)
test error



What does the bias-variance theory tell us?

Train error is optimistically biased (i.e. smaller) because the trained
model is minimizing the train error

Test error is unbiased estimate of the true error, if test data is never
used in training a model or selecting the model complexity

Each line is an i.i.d. instance of & and

N High Bias Low Bias
Low Variance High Variance

-

-

1.0

—Test error

0.8
L

error

0.6
l

0.4

0.2

<—Train error

0.0

[ I I | | I | |

5 10 15 20 _25 30 35
model complexity



Questions?



Lecture 5:
Bias-Variance Tradeoff

- explaining test error using theoretical analysis

W




y degree 3

Train/test error vs. complexity

0.00 4

Error 005 |
0.0035 -
e . —&— train error -0.10 1
* & test error 015 ®
0.0030 - '
4 .
| 0201
0.0025 - -100 -0.75 -0.50 025 000 025 050 075 100
degree 5
0.0020 A y 0.10 -
0.05 -
0.0015 -
0.00 -
0.0010 - . ¢ 0031
g -0.10 -
ﬂ\_.
0.0005 T T T T T T T T -0.15 4
25 50 15 10.0 12.5 15.0 17.5 200
-0.20 -
degreep of the pOIynomIaI regression -100 -075 -050 -025 000 025 050 075 100

degree 20 overfits

« Model complexity e.g., degree p of the polynomial y°]

model, number of features used in diabetes example °*

» Related to the dimension of the model parameter °“

« Train error monotonically decreases with model o
complexity

» Test error has a U shape

-0.10 A

-0.15 1

-0.20 A1

-100 -0.75 -050 -0.25 000X 025 050 075 100



Typical notation:
= g= - X denotes a random variable
StﬂtlStlcaI Iearn I ng X denotes a deterministic instance
Suppose data is generated from a statistical model (X, Y) ~ Py,
e and assume we know PX7Y (just for now to explain statistical learning)

Then learning is to find a predictor # : R? - R that minimizes

. the expected error Ey ) _p [(¥ —n(X )]

think of this random (X, Y') as a new sample you will encounter when you
deployed your learned model, and we care about its average performance

Since, we do not assume anything about the function #(x), it can take any value for
each X = x, hence the optimization can be broken into sum (or more precisely
integral) of multiple objective functions, each involving a specific value X = x

o Exyyer J(V =001 = Exop, [Eyop, J(¥ = n(x)*| X =]
- [[EYNPY|X[<Y @R 1X = x] Py() dx

Or for discrete X, = Z Py (x) [EYNPY|X[(Y —n(x)?| X = x]

Where we used the chain rule: Ey [ f(X, Y)] = Ex| Eyx[f(x, Y) | X = x]|



Statistical learning

 We can solve the optimization for each X = x separately
. ) = argminEy p [(¥—a)*|X =x]
a€R
« The optimal solution is 7(x) = [EYNan[YlX = x],
which is the best prediction in £,-loss/Mean Squared Error
. Clam:Ey p [Y|X=x] = argminE,_p [(Y—a)*|X = x]
Y|X 4E€R Y|X

e Proof:

e Note that this optimal statistical estimator #(x) = E[Y | X = x] cannot be
implemented as we do not know Py  in practice

* Thisis only for the purpose of conceptual understanding



Statistical Learning Ideally, we want to find:

PXy(Y = y’X = Qjo)
\\“I""/,,,

y=0" Yyt
n(xp) = E[Y|X = x;]

_y
S E
‘ELXY =@ = T

”’l
.........................................................

n(x) =E[Y|X = x]



Statistical Learning

Pxy (X — 2, Y = y) Ideally, we want to find:
nN(x) =Ey x|V X = x]

But we do not know Py

We only have samples.

nx) = Ey|x[Y|X = Xx]



Statistical Learning

PXY(X —x,Y = y) Ideally, we want to find:

But we only have samples:

(CEi,yZ)ZZdPXY fOI"iZl,...,n

So we need to restrict our
predictor to a function class (e.g.,

linear, degree-p polynomial) to
avoid overfitting:

f = arg min ? > (i — fm))?

feFrn
=il

n

We care about how our predictor performs on future unseen data
True Error of f Ex yl(Y — f(X A



Future prediction error [y [(Y — f(X ))?] is random
because f is random (whose randomness comes from training data &)

ny(X:Q?,Y:y)

X

Each draw D = {(z;,y;)} ', results in different f



Notation:
| use predictor/model/estimate,

Bias-variance tradeoff interchangeably
Ideal predictor Learned predictor
77($) - EY|X[Y‘X - ZIZ] fgz = arg min : 2 (y; = f(x))
JeF |@| (X Y,)ED

» We are interested in the True Error of a (random) learned predictor:
[EX,Y[(Y—fgz(X))Z]

« But the analysis can be done for each X = x separately, so we analyze
the conditional true error:

Eyxl(Y = fo(x))*| X = x]
* And we care about the average conditional true error, averaged over training data:

Eg [ Eyxl(Y = f(0))? | X = x]]
written compactly as = E[(Y — fg,z(x))z]



Bias-variance tradeoff

Ideal predictor Learned predictor

n(z) = Ey|x[Y|X = 7] fo = argmin 1 D, =[O

e |9| (XY )ED

* Average conditionaIA true error: A
Eg vl (Y — fo(0))?] = Eg y[(Y = n(x) + n(x) — fo(x))*]



Bias-variance tradeoff

Ideal predictor Learned predictor
- = A 1
n(z) = Ey|x[Y]X = z] f., = arg min Y O f@)?
feF | D | D

* Average conditionaIA true error: A
Eg v l(Y = fo(0))*] = Eg y [(Y = n(x) + n(x) — f5(x))*]

o 12| (¥ = 100 + 20 = n(0)n0) = Fo () + (1) = Fop)? |
Eyp,[(Y = 7(0))2] + 2Eg y, [(Y = n(0)(1(x) = fo()] + Eg[((x) — fo(x))*]

=0
(this follows from independence of & and (X, Y) and
Ey lY —n(x)] =E[Y]|X = x] — n(x) = 0)

= Ey [(Y - 1)1+  Eglix) — fox)*]

Irreducible error Average learning error
(a) Caused by stochastic Caused by
label noise in leX (a) either using too “simple” of a model or
=X

(b) cannot be reduced (b) not enough data to learn the model accurately



Bias-variance tradeoff

Ideal predictor Learned predictor
- - A 1
77(37) ~ IE:1'Y|X[Y“X - :C] fg = argmin Z (y; — f(x)))?
feF || e

« Average learning error:

Eol(n(x) — fo)X = Eg[ (100 — Eglfo(] + Eglin®] - fo(0 )]



Bias-variance tradeoff

Ideal predictor Learned predictor
- - A 1
77(37) ~ IE:1'Y|X[Y“X - :C] fg = argmin Z (y; — f(x)))?
feF || e

« Average learning error:

Eol(1(x) — fo)?] = Eg [ (7(x) = Eglfo(] + Eglfo(] - fo() )]
= [E@[ (7(x) = Eg[fo0)])? + 201(x) = Eglfo)D(Egl ()] = for(x))

+(Eg[ o] = fo0)”

— (77()(7) _ [E@[f‘g(x)])Z + [ESJZ : ([E@[f@(x)] _fg%(x)>2]

biased squared variance



Bias-variance tradeoff

« Average conditional true error:
Eg vl (Y = fo()] = Eyp,[ (¥ = n(0)° ]
irreducible error
+ (100 = Eglfo1)” + o (Eolfo0] - fo)”)

biased squared variance

06 —— bias?

Bias squared: _
measures how the . T tvoat;:lance
predictor is mismatched with

the best predictor in
expectation 5

variance:

measures how the predictor
varies each time with a new
training datasets

00 02 04 06 08 170
complexity



Questions?



Lecture 6:
Bias-Variance Tradeoff
(continued)




Complex model:

Test error vs. Simple model:

Model complexity is below

model complexity the complexity of 7(x)
Vo

010

0.15 1

005
0.10 1

0.00
0.05 1
0.00 |

—-0.05 -

—-0.10 A1

—-0.15 A1

-0.20 A

-1.00 -0.75 -050 -025 000] 025 o050 075 100

Optimal predictor 7(x)
is degree-5 polynomial

Error
000401 & Test Error
S o
0.0035 - .
Train Error
0.0030 A -0.05
0.0025 - . o
-0.15
0.0020 020
-
0.0015 A 015
*
010
0.0010 1 e : °
* 0.05
25 50 75 100 125 150 175 200 000

degree p of the polynomial regression ..

.
dem04_tradeOff.|pynb -100 -0.75 -0.50 -025 000 025 050 075 100 © 10 -075 -050 -025 000 025 050 075 100



error

Recap: Bias-variance tradeoff with simple model

X _
(Ccnceptual) bias variance tradeoff 015 ’7(. ) p=4

—— bias?
\ . 0.10 1
—— variance

— total
0.05 -

0.00 A

-0.05 -

-0.10 A

o <0151 | Average predictor [E@[f@(X)]

complexity -0.20 T T T T T T T T T
-1.00 -0.75 -050 -025 000 025 050 075 100

« When model complexity is low (lower than the optimal predictor 77(x))
A 2
. Bias” of our predictor,( n(x) — [Eg,z[fg(x)]) , is large

- Variance of our predictor, [Egz[ ([Eg[f@(x)] —fg(x))2], is small

* If we have more samples, then
» Bias
» Variance
« Because Variance is already small, overall test error



error

Recap: Bias-variance tradeoff with simple model
7(x) p =20

(Conceptual) bias variance tradeoff

—— bias?
—— variance

complexity

0.15 1

0.10 A

—— tolal 0.05 4
/ 0.00 -
-0.05 A
-0.10 A
-0.15 1

-0.20 -

-1.00 -0.75 —r.SO -025 000 025 050 075 100

Average predictor E g f@(x)]

« When model complexity is high (higher than the optimal predictor 77(x))

. Bias of our predictor,( n(x) — [Eg[fc@(x)])z, is small
. Variance of our predictor, [Egz[ (Eg[fg(x)] _fg(X))z], is large

* If we have more samples, then
» Bias
» Variance

« Because Variance is dominating, overall test error



* |et us first fix sample size N=30, collect one dataset of size N i.i.d. from a
distribution, and fix one training set S,;, and test set S, via 80/20 split

 then we run multiple validations and plot the computed MSEs for all values of p

that we are interested in
true model complexity

error ' N

101 P

| +<— Test error &£ _|,
10° 5

1071 o

1077 3

1077

< TaY )
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. Given sample size N there is a threshold, p;’\j, where training error is zero

- Training error is always monotonically non-increasing
« Test error has a trend of going down and then up, but fluctuates



* |et us now repeat the process changing the sample size to N=40 ,
and see how the curves change

true model complexity

CITOLy: :
| ! \
10* 1
| .. | DTesterror &,
N
103 .i ’
f Al
107* ; I
| !
10-2 : '/./
10'3; .
N - - —Training error £,
-4 J ~'\.
107 ; \_
1 '\'
10_:' T T T T T Ay T T
0 b 10 15 20 , 25 30 35 40
Pas P32

Model complexity ( = degree of the polynomial)
e The threshold, p;’\j, moves right

e Training error tends to increase, because more points need to fit
e Test error tends to decrease, because Variance decreases



* |et us now fix predictor model complexity p=30, collect multiple
datasets by starting with 3 samples and adding one sample at a time to
the training set, but keeping a large enough test set fixed

e then we plot the computed MSEs for all values of train sample size

Ntrain that we are interested in
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Ny=p+1=3l
e There is a threshold, NI;k, below which training error is zero (extreme overfit)

e Below this threshold, test error is meaningless, as we are overfitting and there are
multiple predictors with zero training error some of which have very large test error
e Test error tends to decrease

e Training error tends to increase lecture2_polynomialfit.ipynb



Bias-variance tradeoff for linear models

If Y; = X'w* + ¢;and ¢; ~ H(0,6%)

y = Xw* +¢€
Wwave = XITX)" Xy =

n(x) = ‘Y|X[Y‘X = x| =

. .
fo(X) =X Wypg =



Bias-variance tradeoff for linear models

If Y; = X'w* + ¢;and ¢; ~ H(0,6%)

y = Xw*+¢€
Wie = X'X) ™ Xy = XIX) "' X' Xw* + )
= w* + (X'X)"'X"¢
n(x) = Eyx[Y]X = x] = x"w*

Fo@) = xT Wy g = xTw* + xT(XTX) "X e

+ Irreducible error: Ey [ (Y — nx))*| X = x] =

A 2
. Bias squared: (n(x) — Eglfe(x)] ) =
(is independent of the sample size!)



Bias-variance tradeoff for linear models
If Y; = X'w* + ¢;and ¢; ~ H(0,6%)
Warg = w* + XITX)"1Xe

n(x) = x'

f@(X) = xTw* + xT(XITX) X’

. Variance: [Eg[ (f@(x) — [E@[f@(x)] )2] =

W>I<



Bias-variance tradeoff for linear models
If Y; = X'w* + ¢;and ¢; ~ H(0,6%)
Ware = w* + XTX) " 1XTe

n(x) = x"

f@(X) = xTw* + xT(XITX) X’

. Variance: [EQZ[ (f@(x) — [E@[fg(x)] )2] = [E@[xT(XTX)_1XT€€TX(XTX)_1x]
= 67 Eg[xT(XTX) " IXTX(XTX) ™ 1x]
= 0° xTEq[(XTX)™!x

W>I<

- To analyze this, let's assume that X; ~ ./ (0,I) and number of samples, #, is large

1
enough such that X7 X = nI with high probability and E[(X”X)~!] ~ —I, then

n

O'2XT.X

. Variance is , and decreases with increasing sample size n

n



Questions?



