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Write a program that sorts 
tweets into those containing  
“cat”, “dog”, or other

Twitter?

for tweet in tweets:

cats = []
dogs = []

if “cat” in tweet:
cats.append(tweet)

elseif “dog” in tweet:

other = []

dogs.append(tweet)
else:

other.append(tweet)
return cats, dogs, other
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Machine Learning algorithms

Write a program that sorts images 
into those containing “birds”, 
“airplanes”, or other.
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The decision rule of  
 if bird in image: 
is LEARNED using DATA

The decision rule of  
 if “cat” in tweet: 
is hard coded by expert.



Machine Learning Ingredients 

• Data: past observations 

• Hypotheses/Models: devised to capture the patterns in data  

• Prediction: apply model to forecast future observations 
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What this class is:
• Fundamentals of ML: bias/variance tradeoff, overfitting, 

optimization and computational tradeoffs, supervised learning 
(e.g., linear, boosting, deep learning), unsupervised models (e.g. 
k-means, EM, PCA) 

• Preparation for further learning: the field is fast-moving, you will 
be able to apply the basics and teach yourself the latest
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• Fundamentals of ML: bias/variance tradeoff, overfitting, 

optimization and computational tradeoffs, supervised learning 
(e.g., linear, boosting, deep learning), unsupervised models (e.g. 
k-means, EM, PCA) 

• Preparation for further learning: the field is fast-moving, you will 
be able to apply the basics and teach yourself the latest

What this class is not:
• Survey course: laundry list of algorithms, how to win Kaggle  
• An easy course: familiarity with intro linear algebra and probability 

are assumed, homework will be time-consuming
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Prerequisites

■ Formally: 
■ MATH 308, CSE 312, STAT 390 or equivalent 

■ Familiarity with: 
■ Linear algebra 

■ linear dependence, rank, linear equations, SVD 
■ Multivariate calculus 
■ Probability and statistics 

■ Distributions, marginalization, moments, conditional expectation 
■ Algorithms 

■ Basic data structures, complexity 
■ “Can I learn these topics concurrently?” 
■  Use HW0 to judge skills 
■ See website for review materials!



Grading

■ 5 homework  
■ Each contains both theoretical questions and will have 

programming 
□ Collaboration okay but must write who you collaborated 

with. You must write, submit, and understand your 
answers and code (which run on autograder) 

□ WHITEBOARD POLICY 
□ Do not Google for answers. 

■ 2 exams, a midterm and a final



Homework

□ HW 0 is out (Due next Wednesday 10/6 Midnight)  
□ Short review 
□ Work individually, treat as barometer for readiness  

□ HW 1,2,3,4 
□ They are not easy or short. Start early. 

□ Submit to Gradescope 
□ Regrade requests on Gradescope 
□ There is no credit for late work, 5 late days
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Homework

□ HW 0 is out (Due next Wednesday 10/6 Midnight) 
□ Short review 
□ Work individually, treat as barometer for readiness  

□ HW 1,2,3,4 
□ They are not easy or short. Start early. 

□ Submit to Gradescope 
□ Regrade requests on Gradescope 
□ There is no credit for late work, 5 late days

1. All code must be written in Python  
2. All written work must be typeset (e.g., LaTeX)  

See course website for tutorials and references.



Communication Chanels

■ Announcements, questions about class, homework help 
□ EdStem (invitation sent, contact TAs if you need 

access) 
□ Weekly Section 
□ Office hours 

■ Regrade requests 
□ Directly to Gradescope 

■ Personal concerns 
□ Email: cse446-staff@cs.washington.edu 

■ Anonymous feedback 
□ See website for link



Textbooks

■ Required Textbook:  
□Machine Learning: a Probabilistic Perspective; 

Kevin Murphy 

■ Optional Books (free PDF): 
□The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction; Trevor Hastie, Robert 
Tibshirani, Jerome Friedman



Addcodes

■ Email: Elle Brown (ellean@cs.washington.edu) 
for addcodes



Enjoy!

■ ML is becoming ubiquitous in science, engineering and 
beyond 

■ It’s one of the hottest topics in industry today  
■ This class should give you the basic foundation for applying 

ML and developing new methods 
■ The fun begins…



Maximum Likelihood 
Estimation
Jamie Morgenstern 
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Your first consulting job

□ Billionaire: I have a special coin, if I flip it, what’s the 
probability it will be heads? 

□ You: Please flip it a few times: 

□ You: The probability is: 

□ Billionaire: Why?

&THEINTE
kheads
I
n
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Coin – Binomial Distribution

P (D|✓) =

■ Data: sequence D= (HHTHT…), k heads out of n flips
■ Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ

□ Flips are i.i.d.:
□ Independent events
□ Identically distributed according to Binomial 

distribution

■  
 

0
+

(1 - 8)n-
k
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Maximum Likelihood Estimation

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax
✓

P (D|✓)

= argmax
✓

logP (D|✓)
P (D|✓)

✓

b✓MLE

■ Data: sequence D= (HHTHT…), k heads out of n flips
■ Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ 
 

■ Maximum likelihood estimation (MLE): Choose θ that 
maximizes the probability of observed data:

When
x> Y

~ logyology

)
-0-
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Your first learning algorithm

■ Set derivative to zero: d

d✓
logP (D|✓) = 0

b✓MLE = argmax
✓

logP (D|✓)

= argmax
✓

log ✓k(1� ✓)n�k

-
( y =S

11 -0)= to KlogO +(n-E) log(1-0)
⑳

-
K.t -(nt)to

t- 1
=k
EFE550 =

0



How many flips do I need?

28

■ You: flip the coin 5 times. Billionaire: I got 3 heads. 

■ You: flip the coin 50 times. Billionaire: I got 20 heads. 

■ Billionaire: Which one is right? Why?

©2019 Kevin Jamieson

b✓MLE =
k

n

b✓MLE =

b✓MLE =

-
=,6

5 =.4
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Simple bound  
(based on Hoeffding’s inequality)

■ For n flips and k heads the MLE is unbiased for true θ*: 

■ Hoeffding’s inequality says that for any ε>0:

b✓MLE =
k

n
E[b✓MLE ] = ✓⇤

P (|b✓MLE � ✓⇤| � ✏)  2e�2n✏2
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PAC Learning

■ PAC: Probably Approximate Correct 
■ Billionaire: I want to know the parameter θ*, within ε = 0.1, with 

probability at least 1-δ = 0.95. How many flips?

P (|b✓MLE � ✓⇤| � ✏)  2e�2n✏28
-E *

--
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What about continuous variables?

■ Billionaire: What if I am measuring a continuous variable? 
■ You: Let me tell you about Gaussians…

-

..
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Some properties of Gaussians

■ affine transformation (multiplying by scalar and adding a 
constant) 
□ X ~ N(µ,σ2) 
□ Y = aX + b    ➔ Y ~ N(aµ+b,a2σ2) 

■ Sum of Gaussians 
□ X ~ N(µX,σ2

X) 
□ Y ~ N(µY,σ2

Y) 

□ Z = X+Y    ➔  Z ~ N(µX+µY, σ2
X+σ2

Y)

-
-

-
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MLE for Gaussian

■ Prob. of i.i.d. samples D={x1,…,xN} (e.g., exam scores): 

■ Log-likelihood of data:

P (D|µ,�) = P (x1, . . . , xn|µ,�)

=

✓
1

�
p
2⇡

◆n nY

i=1

e�
(xi�µ)2

2�2

logP (D|µ,�) = �n log(�
p
2⇡)�

nX

i=1

(xi � µ)2

2�2

x
28

--

En
=0

- EaM -24

Enlostom,s
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Your second learning algorithm: 
MLE for mean of a Gaussian

• What’s MLE for mean?
d

dµ
logP (D|µ,�) = d

dµ

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2

#

Ia :O
2(xi -)

=0
d

ExiFMin
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MLE for variance

• Again, set derivative to zero:
d

d�
logP (D|µ,�) = d

d�

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2

#
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Learning Gaussian parameters

■ MLE: 

■ MLE for the variance of a Gaussian is biased 

□ Unbiased variance estimator:

bµMLE =
1

n

nX

i=1

xi

c�2
MLE =

1

n

nX

i=1

(xi � bµMLE)
2

E[c�2
MLE ] 6= �2

c�2
unbiased =

1

n� 1

nX

i=1

(xi � bµMLE)
2

[Mm() =y

t

-
I since =E(xi-MM
-

O
-
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Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)
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Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Properties (under benign regularity conditions—smoothness, identifiability, etc.):

Asymptotically consistent and normal:
b✓MLE�✓⇤

bse ⇠ N (0, 1)

Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)



Recap
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■ Learning is… 
□ Collect some data 

■ E.g., coin flips 
□ Choose a hypothesis class or model 

■ E.g., binomial 
□ Choose a loss function 

■ E.g., data likelihood 
□ Choose an optimization procedure 

■ E.g., set derivative to zero to obtain MLE 
□ Justifying the accuracy of the estimate 

■ E.g., Hoeffding’s inequality
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Maximum Likelihood 
Estimation, cont.
Machine Learning – CSE446 
Jamie Morgenstern 
University of Washington 

Maximum Likelihood 
Estimation, cont.



The 1d regression problem
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# square feet

S
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Given past sales data on zillow.com, predict: 
     y = House sale price from  
     x = # sq. ft.

Linear model Noise model

Training Data:

{(xi, yi)}ni=1

Model:
yi = xiw + b+ ✏i

✏i ⇠ N (0,�2)
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Model:
yi = xiw + b+ ✏i

✏i ⇠ N (0,�2)Loss function:
nX
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nX
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� log(
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exp

⇢
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2�2

�
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Model:
yi = xiw + b+ ✏i

✏i ⇠ N (0,�2)Loss function:
nX

i=1

� log(p(yi|xi, w, b))

=
nX

i=1

� log(
1p
2⇡�2

exp

⇢
�(yi � (wxi + b))2

2�2

�
)

argmin
w,b

nX

i=1

� log(p(yi|xi, w, b)) ⌘ argmin
w,b

nX

i=1

(yi � (wxi + b))2
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