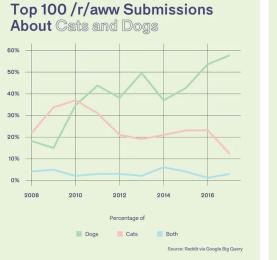
CSE 446: Machine Learning

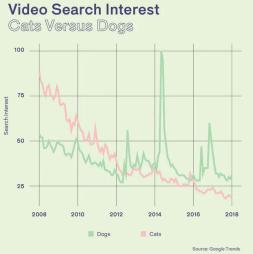
Jamie Morgenstern

Traditional Algorithms

Social media mentions of Cats vs. Dogs

Reddit





Google

Twitter?

Traditional Algorithms

Social media mentions of Cats vs. Dogs

Google

2018

Reddit

60%

50% 40%

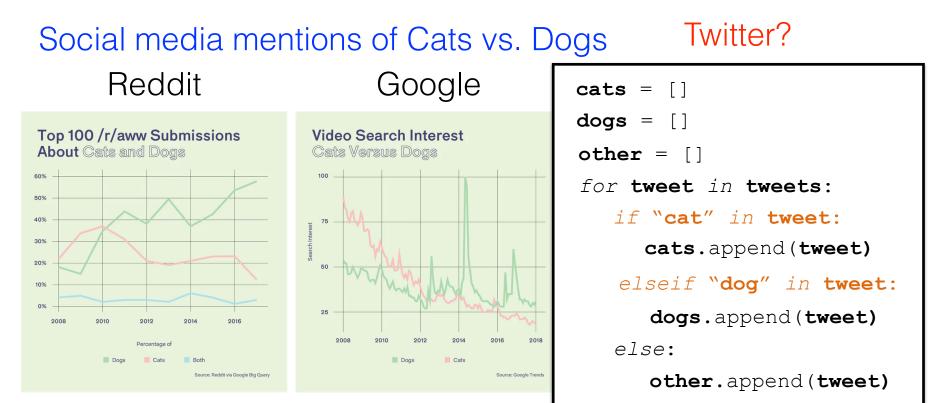
30% 20%

> 10% 0%

Twitter?

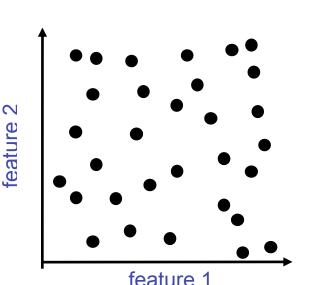
Write a program that sorts tweets into those containing "cat", "dog", or other

Traditional Algorithms

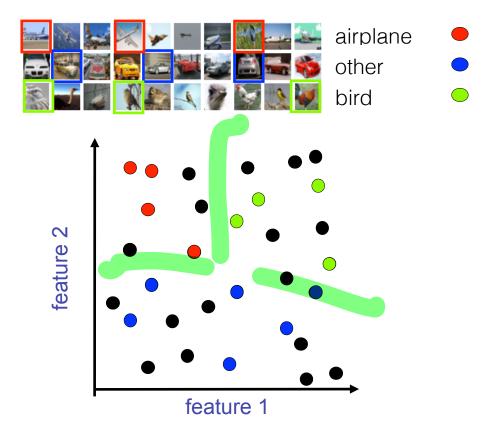


Write a program that sorts tweets into those containing "cat", "dog", or *other* return cats, dogs, other


```
birds = []
planes = []
other = []
for image in images:
    if bird in image:
        birds.append(image)
    elseif plane in image:
        planes.append(image)
    else:
        other.append(tweet)
return birds, planes, other
```

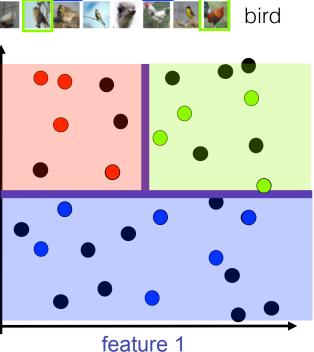
```
birds = []
planes = []
other = []
for image in images:
  if bird in image:
     birds.append(image)
   elseif plane in image:
     planes.append(image)
   else:
     other.append(tweet)
return birds, planes, other
```



```
birds = []
planes = []
other = []
for image in images:
  if bird in image:
     birds.append(image)
   elseif plane in image:
     planes.append(image)
   else:
     other.append(tweet)
return birds, planes, other
```

Write a program that sorts images into those containing "birds", "airplanes", or *other.*

feature 2

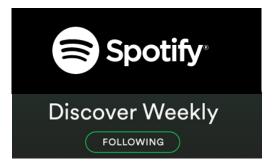


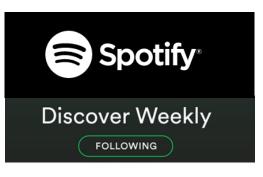
The decision rule of *if* "cat" *in* tweet: is hard coded by expert.

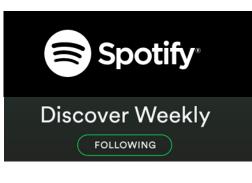
The decision rule of *if bird in image:* is **LEARNED using DATA**

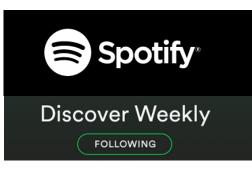
Machine Learning Ingredients

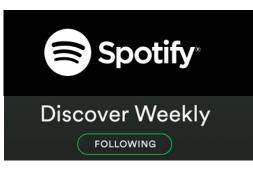
- Data: past observations
- Hypotheses/Models: devised to capture the patterns in data
- **Prediction**: apply model to forecast future observations

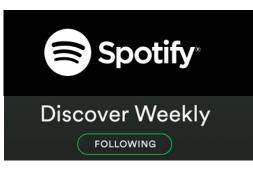


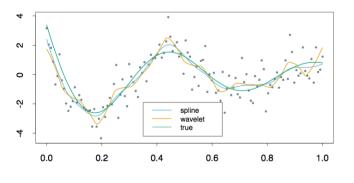






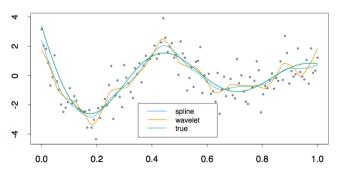






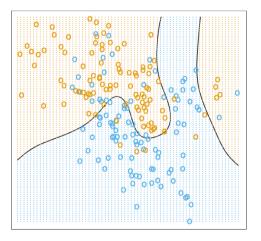
Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

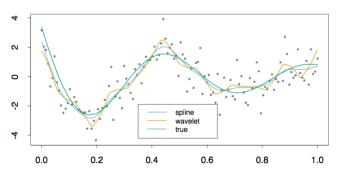


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

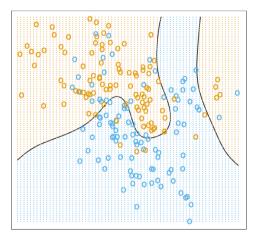


Classification Predict categorical value: loan or not? spam or not? what disease is this?

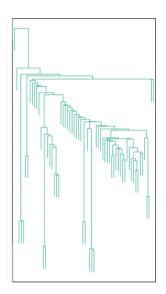


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

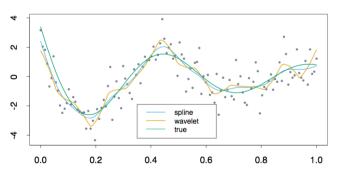


Classification Predict categorical value: loan or not? spam or not? what disease is this?



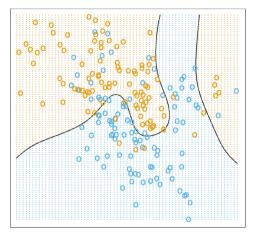
Unsupervised Learning

Predict structure: tree of life from DNA, find similar images, community detection

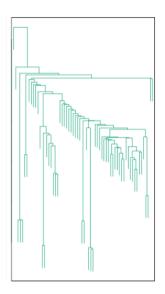


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating



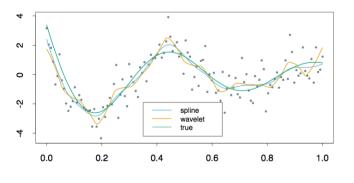
Classification Predict categorical value: loan or not? spam or not? what disease is this?



Unsupervised Learning

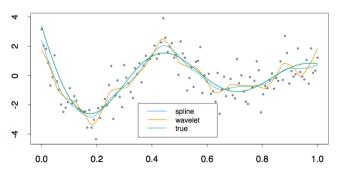
Predict structure: tree of life from DNA, find similar images, community detection

Mix of statistics (theory) and algorithms (programming)



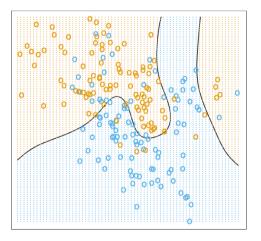
Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

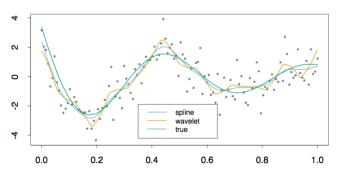


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

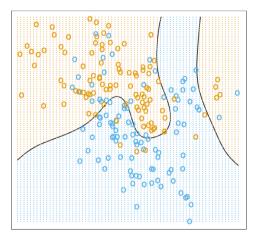


Classification Predict categorical value: loan or not? spam or not? what disease is this?

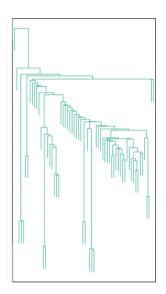


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating

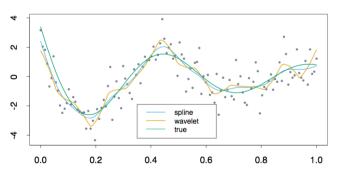


Classification Predict categorical value: loan or not? spam or not? what disease is this?



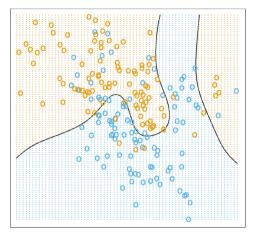
Unsupervised Learning

Predict structure: tree of life from DNA, find similar images, community detection

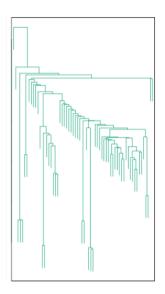


Regression

Predict continuous value: ex: stock market, credit score, temperature, Netflix rating



Classification Predict categorical value: loan or not? spam or not? what disease is this?



Unsupervised Learning

Predict structure: tree of life from DNA, find similar images, community detection

Mix of statistics (theory) and algorithms (programming)

CSE446/546: Machine Learning

Instructor: Jamie Morgenstern

Contact: <u>cse446-staff@cs.washington.edu</u>

Course Website: https://courses.cs.washington.edu/courses/cse446/23wi

CSE446/546: Machine Learning

Instructor: Jamie Morgenstern

Contact: <u>cse446-staff@cs.washington.edu</u>

Course Website: https://courses.cs.washington.edu/courses/cse446/23wi

What this class is:

- Fundamentals of ML: bias/variance tradeoff, overfitting, optimization and computational tradeoffs, supervised learning (e.g., linear, boosting, deep learning), unsupervised models (e.g. k-means, EM, PCA)
- **Preparation for further learning:** the field is fast-moving, you will be able to apply the basics and teach yourself the latest

CSE446/546: Machine Learning

Instructor: Jamie Morgenstern

Contact: <u>cse446-staff@cs.washington.edu</u>

Course Website: https://courses.cs.washington.edu/courses/cse446/23wi

What this class is:

- Fundamentals of ML: bias/variance tradeoff, overfitting, optimization and computational tradeoffs, supervised learning (e.g., linear, boosting, deep learning), unsupervised models (e.g. k-means, EM, PCA)
- **Preparation for further learning:** the field is fast-moving, you will be able to apply the basics and teach yourself the latest

What this class is not:

- Survey course: laundry list of algorithms, how to win Kaggle
- An easy course: familiarity with intro linear algebra and probability are assumed, homework will be time-consuming

Prerequisites

- Formally:
 - MATH 308, CSE 312, STAT 390 or equivalent
- Familiarity with:
 - Linear algebra
 - linear dependence, rank, linear equations, SVD
 - Multivariate calculus
 - Probability and statistics
 - Distributions, marginalization, moments, conditional expectation
 - Algorithms
 - Basic data structures, complexity
- "Can I learn these topics concurrently?"
- Use HW0 to judge skills
- See website for review materials!

Grading

- 5 homework
 - Each contains both theoretical questions and will have programming
 - Collaboration okay but must write who you collaborated with. You must write, submit, and understand your answers and code (which run on autograder)
 - WHITEBOARD POLICY
 - Do not Google for answers.
- 2 exams, a midterm and a final

Homework

HW 0 is out (Due next Wednesday 10/6 Midnight)

- □ Short *review*
- Work individually, treat as barometer for readiness
- □ HW 1,2,3,4
 - □ They are not easy or short. Start early.
- Submit to Gradescope
- Regrade requests on Gradescope
- □ There is no credit for late work, 5 late days

Homework

HW 0 is out (Due next Wednesday 10/6 Midnight)

- □ Short *review*
- Work individually, treat as barometer for readiness
- □ HW 1,2,3,4
 - □ They are not easy or short. Start early.
- Submit to Gradescope
- Regrade requests on Gradescope
- □ There is no credit for late work, 5 late days

Homework

HW 0 is out (Due next Wednesday 10/6 Midnight)

- □ Short *review*
- Work individually, treat as barometer for readiness

□ HW 1,2,3,4

- □ They are not easy or short. Start early.
- Submit to Gradescope
- Regrade requests on Gradescope
- □ There is no credit for late work, 5 late days
 - 1. All code must be written in Python
 - 2. All written work must be typeset (e.g., LaTeX)

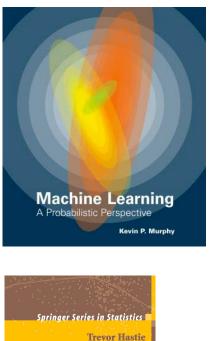
See course website for tutorials and references.

Communication Chanels

- Announcements, questions about class, homework help
 - EdStem (invitation sent, contact TAs if you need access)
 - Weekly Section
 - Office hours
- Regrade requests
 - Directly to Gradescope
- Personal concerns
 - Email: <u>cse446-staff@cs.washington.edu</u>
- Anonymous feedback
 - See website for link

- Required Textbook:
 - Machine Learning: a Probabilistic Perspective;
 Kevin Murphy

- Optional Books (free PDF):
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman



Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

> Data Mining, Inference, and Prediction

Email: Elle Brown (<u>ellean@cs.washington.edu</u>) for addcodes

- ML is becoming ubiquitous in science, engineering and beyond
- It's one of the hottest topics in industry today
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins...

Maximum Likelihood Estimation

Jamie Morgenstern

Your first consulting job

Billionaire: I have a special coin, if I flip it, what's the probability it will be heads?

 $\mathcal{D} = (HTHHT...)$

n flips Kheada

□ *You*: Please flip it a few times:

- □ *You*: The probability is:
- Billionaire: Why?

Coin – Binomial Distribution

- Data: sequence D= (HHTHT...), k heads out of n flips
- **Hypothesis:** $P(Heads) = \theta$, $P(Tails) = 1-\theta$
 - □ Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Binomial distribution

•
$$P(\mathcal{D}|\theta) = \mathcal{O}^k (I - \mathcal{O})^{n-k}$$

Maximum Likelihood Estimation

- Data: sequence D= (HHTHT...), k heads out of n flips
- **Hypothesis:** $P(Heads) = \theta$, $P(Tails) = 1-\theta$

 Maximum likelihood estimation (MLE): Choose 0 that maximizes the probability of observed data:

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} \underbrace{P(\mathcal{D}|\theta)}_{\theta} \underbrace{P(\mathcal{D}|\theta)}_{\theta} P(\mathcal{D}|\theta) P(\mathcal{D}|\theta)$$

$$= \arg\max_{\theta} \log P(\mathcal{D}|\theta)$$

Your first learning algorithm

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \log P(\mathcal{D}|\theta)$$

$$= \arg \max_{\theta} \log \theta^{k} (1-\theta)^{n-k}$$
• Set derivative to zero:

$$\frac{d}{d\theta} \log P(\mathcal{D}|\theta) = 0$$

$$\frac{k}{\theta} = \frac{n-k}{(1-\theta)}$$

$$\frac{d}{d\theta} \log P(\mathcal{D}|\theta) = 0$$

$$\frac{k}{\theta} = \frac{n-k}{k}$$

How many flips do I need?

$$\widehat{\theta}_{MLE} = \frac{k}{n}$$

• You: flip the coin 5 times. Billionaire: I got 3 heads.

$$\widehat{\theta}_{MLE} = \frac{3}{5} = .6$$

• You: flip the coin 50 times. Billionaire: I got 20 heads.

$$\widehat{\theta}_{MLE} = \frac{2}{5} = .4$$

• *Billionaire:* Which one is right? Why?

Simple bound (based on Hoeffding's inequality)

• For **n flips** and **k heads** the MLE is **unbiased** for true θ^* :

$$\widehat{\theta}_{MLE} = \frac{k}{n} \qquad \mathbb{E}[\widehat{\theta}_{MLE}] = \theta^*$$

• Hoeffding's inequality says that for any ε >0:

$$P(|\widehat{\theta}_{MLE} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

PAC Learning

- PAC: Probably Approximate Correct
- *Billionaire*: I want to know the parameter θ^* , within $\varepsilon = 0.1$, with probability at least $1-\delta = 0.95$. How many flips?

$$P(|\hat{\theta}_{MLE} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

What about continuous variables?

- *Billionaire*: What if I am measuring a **continuous variable**?
- You: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)
 - □ $X \sim N(\mu, \sigma^2)$ □ $Y = aX + b \rightarrow Y \sim N(a\mu+b, a^2\sigma^2)$
- Sum of Gaussians
 - $X \sim N(\mu_X, \sigma^2_X)$ $Y \sim N(\mu_Y, \sigma^2_Y)$ $Z = X + Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

MLE for Gaussian

- ERZ6
- Prob. of i.i.d. samples D={x₁,...,x_N} (e.g., exam scores):

$$P(\mathcal{D}|\mu,\sigma) = P(x_1,\ldots,x_n|\mu,\sigma)$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$
• Log-likelihood of data:

$$\log P(\mathcal{D}|\mu,\sigma) = \left[-n\log(\sigma\sqrt{2\pi}) + \sum_{i=1}^n \frac{(x_i-\mu)^2}{2\sigma^2}\right]$$

$$= \left[\log P(\mathcal{D}|\mu,\sigma) + \sum_{i=1}^n \frac{(x_i-\mu)^2}{2\sigma^2}\right]$$

Your second learning algorithm: MLE for mean of a Gaussian

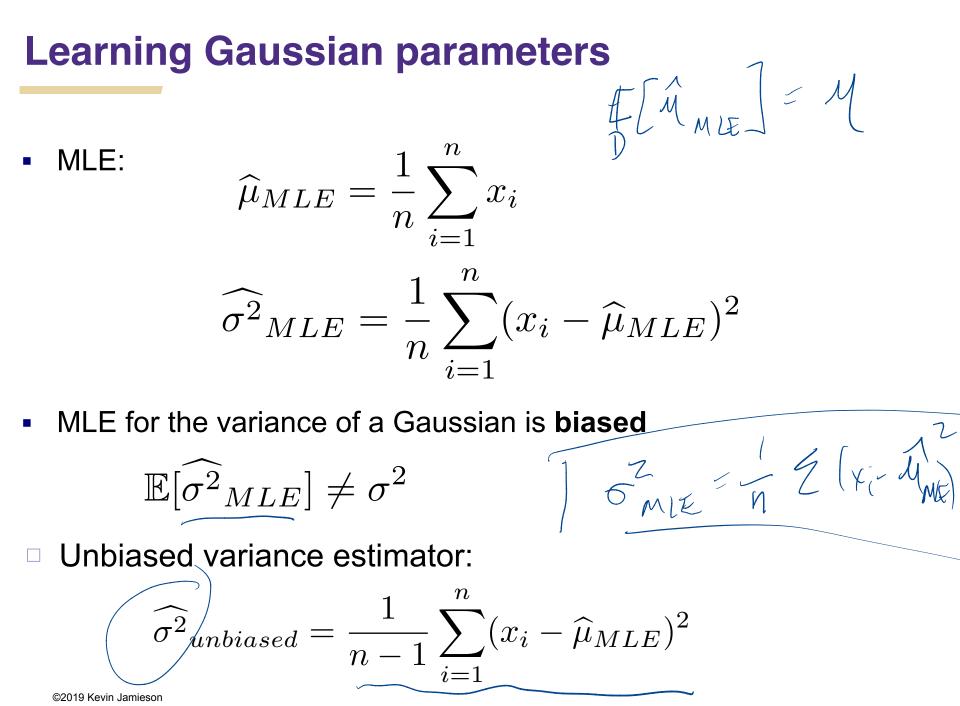
• What's MLE for mean?

$$\frac{d}{d\mu}\log P(\mathcal{D}|\boldsymbol{\mu},\sigma) = \frac{d}{d\mu} \left[-n\log(\sigma\sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(x_i - \boldsymbol{\mu})^2}{2\sigma^2} \right]$$

MLE for variance

• Again, set derivative to zero:

$$\frac{d}{d\sigma}\log P(\mathcal{D}|\mu,\sigma) = \frac{d}{d\sigma} \left[-n\log(\sigma\sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$



Maximum Likelihood Estimation

Observe X_1, X_2, \ldots, X_n drawn IID from $f(x; \theta)$ for some "true" $\theta = \theta_*$

Likelihood function $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

Log-Likelihood function $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

Maximum Likelihood Estimator (MLE) $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

Maximum Likelihood Estimation

Observe X_1, X_2, \ldots, X_n drawn IID from $f(x; \theta)$ for some "true" $\theta = \theta_*$

Likelihood function $L_n(\theta) = \prod_{i=1}^n f(X_i; \theta)$

Log-Likelihood function $l_n(\theta) = \log(L_n(\theta)) = \sum_{i=1}^n \log(f(X_i; \theta))$

Maximum Likelihood Estimator (MLE) $\hat{\theta}_{MLE} = \arg \max_{\theta} L_n(\theta)$

Properties (under benign regularity conditions—smoothness, identifiability, etc.):

- Asymptotically consistent and normal: $\frac{\widehat{\theta}_{MLE} \theta_*}{\widehat{se}} \sim \mathcal{N}(0, 1)$
- Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)

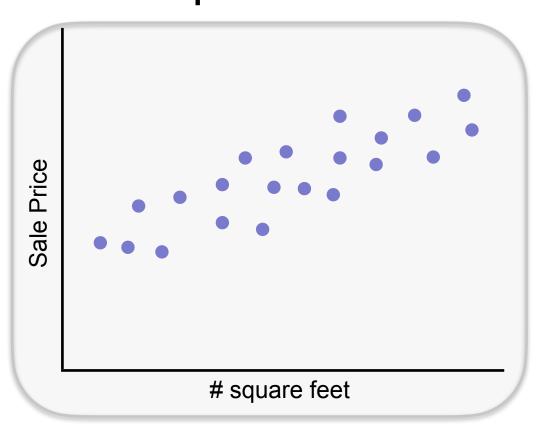
Recap

- Learning is...
 - Collect some data
 - E.g., coin flips
 - Choose a hypothesis class or model
 - E.g., binomial
 - Choose a loss function
 - E.g., data likelihood
 - Choose an optimization procedure
 - E.g., set derivative to zero to obtain MLE
 - □ Justifying the accuracy of the estimate
 - E.g., Hoeffding's inequality

Maximum Likelihood Estimation, cont.

Machine Learning – CSE446 Jamie Morgenstern University of Washington

Given past sales data on <u>zillow.com</u>, predict: y = House sale price from x = # sq. ft. Training Γ



Training Data:

$$\{(x_i, y_i)\}_{i=1}^n$$

Model:

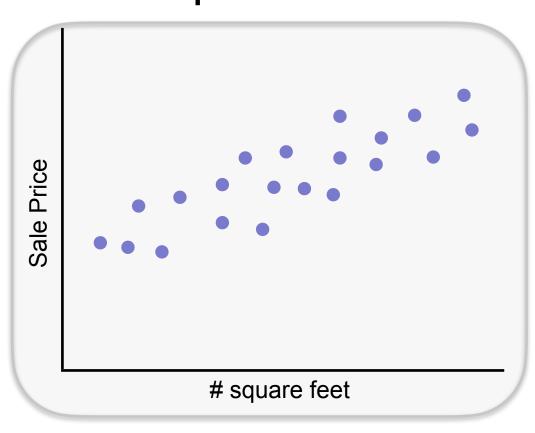
$$y_i = x_i w + b + \epsilon_i$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Linear model

Noise model

Given past sales data on <u>zillow.com</u>, predict: y = House sale price from x = # sq. ft. Training Γ



Training Data:

$$\{(x_i, y_i)\}_{i=1}^n$$

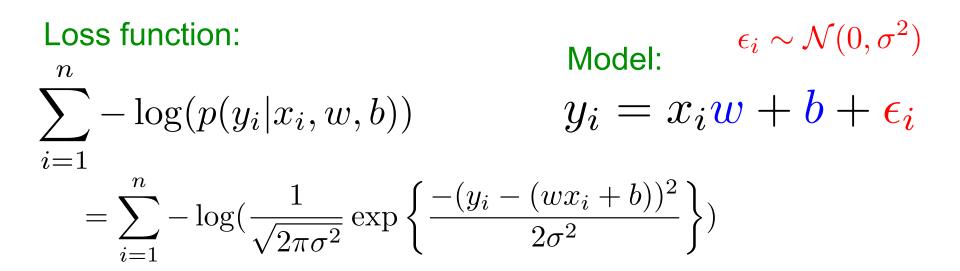
Model:

$$y_i = x_i w + b + \epsilon_i$$

 $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

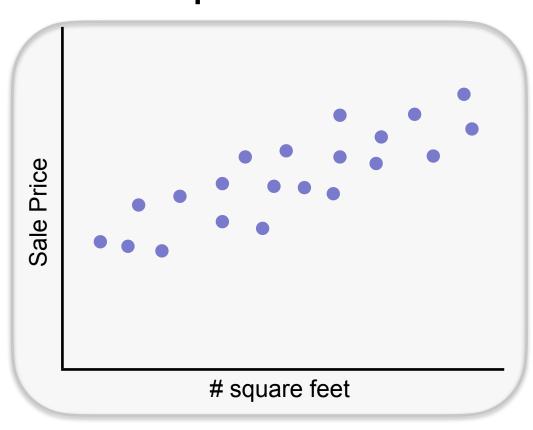
Loss function:

$$\sum_{i=1}^{n} -\log(p(y_i|x_i, w, b))$$



©2018 Kevin Jamieson

Given past sales data on <u>zillow.com</u>, predict: y = House sale price from x = # sq. ft. Training F



Training Data:

$$\{(x_i, y_i)\}_{i=1}^n$$

Model:

$$y_i = x_i w + b + \epsilon_i$$

 $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Loss function:

$$\sum_{i=1}^{n} (y_i - (wx_i + b))^2$$