
Mul$-layer	Neural	Network	- Binary	Classifica$on	in	{0,1}

𝑎(") = 𝑥
…

…

5

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝑔(𝑧) =
1

1 + 𝑒"#
Binary	Logis,c	Regression	
with	learned	feature	𝑎(")

This	is	a	5-dimensional	vector

Scalar	func*on	𝑔
is	applied	
coordinate-wise	

(Learned)	feature	representa9on	 Logis9c	
regression

𝐿-th layer plays the role of features, but trained instead of pre-determined

Θ(#) Θ(%) Θ(&'#)
Θ(")

Cross	entropy	loss:	

Mul$-layer	Neural	Network	- Binary	Classifica$on

𝑎(") = 𝑥
…

…

5

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝑔(𝑧) =
1

1 + 𝑒"#
Binary
Logis9c
Regression

(Learned)	feature	representa9on	 Logis9c
regression

• Why	is	ReLU	be<er	than	sigmoid?

ReLUSigmoid

Sigmoid

ReLU

Cross	entropy	loss:	

Θ(#) Θ(%) Θ(&'#)

Θ(")

Nonlinear activation function
• popular choices of activation function includes

• Why is ReLU better than Sigmoid?
• Why is ELU better than ReLU?

Mul9-class
Logis9c
Regression

𝐾-class	Classifica$on:	mul$ple	output	units

(Learned)	feature	representa9on	 Mul9-class	Logis9c	regression

Mul$-layer	Neural	Network	- Regression

𝑎(") = 𝑥
…

…

5

(Learned)	feature	representa9on	 Logis9c
regression

Square	loss:	

Linear	model

ℒ(𝑦, 𝑦
̂
) = (𝑦 − 𝑦

̂
)#

Training	Neural	Networks	

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)
𝑎(34") = 𝑔 𝑧(34")

…
… ℒ(𝑦, 𝑦

̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

5

𝑔(𝑧) =
1

1 + 𝑒"#

Gradient Descent: Θ(") ← Θ(") − 𝜂𝛻$(%)ℒ(𝑦, 𝑦
̂
)

Seems	simple	enough	- what	do	packages	like	PyTorch,	Tensorflow,	
Jax,	Theano,	Caffe,	MxNet	provide?

1. AutomaFc	differenFaFon	
1. Given	a	NN,	compute	the	gradient	automaFcally
2. Compute	the	gradient	efficiently

2. Convenient	libraries
1. Set-up	NN
2. Choose	algorithms	(SGD,Adam,etc.)	for	training
3. Hyper-parameter	tuning	

3. GPU	support
1. Linear	algebraic	operaFons

Gradient	Descent:
Θ(") ← Θ(") − 𝜂𝛻$(%)ℒ(𝑦, 𝑦

̂
)

Gradient Descent:

Seems	simple	enough,	why	are	packages	like	PyTorch,	Tensorflow,	Theano,	Cafe,	MxNet	synonymous	with	deep	learning?

1.	AutomaFc	differenFaFon	

2.	Convenient	libraries	

Gradient	Descent:

Common	training	issues

Neural networks are non-convex
- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize and batchsize have large impact on optimizing the
training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!

- Start from a code that someone else has tried and tested

Training is too slow:
- Use larger step sizes, develop step size reduction schedule
- Use GPU resources
- Change batch size
- Use momentum and more advanced optimizers (e.g., Adam)
- Apply batch normalization
- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other

hyperparameters

Common	training	issues

Back	Propaga5on

Gradient descent

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

5

𝑔(𝑧) =
1

1 + 𝑒"#

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

What	do	we	need	to	run	gradient	descent?

𝛻$ℒ(𝑦, 𝑦
̂
)

Need	to	know	𝑦̂

How	do	we	write	the	gradient	
for	each	layer’s	parameters?

Forward Propagation

5

𝑔(𝑧) =
1

1 + 𝑒"#

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

• We	are	not	wri9ng	the	intercept	at	each	layer	for	simplicity
• To	compute	gradients,	we	first	run	forward	pass	to	get	the
intermediate	representa9ons	{𝑎(&), … , 𝑎(')}

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

Backprop

𝑔(𝑧) =
1

1 + 𝑒!"

𝑎(#) = 𝑥 ∈ ℝ/

𝑧(%) = Θ(#)𝑎(#) ∈ ℝ0

𝑎(%) = 𝑔 𝑧(%)

𝑧(12#) = Θ(1)𝑎(1)

𝑎(12#) = 𝑔 𝑧(12#)

𝑦
̂
= 𝑎(#$%)

…
…

Θ&,(
(*) ← Θ&,(

(*) − 𝜂
𝜕ℒ(𝑦, 𝑦

̂
)

𝜕Θ&,(
(*)

Train	by	Stochas,c	Gradient	Descent:

• Parameters:	Θ(") ∈ ℝ$×&,	Θ('),⋯Θ(()") ∈ ℝ$×$
• Naive	implementa2on	takes	𝑂(𝐿#) 2me,	as	
each	layer	requires	a	full	forward	pass	(with	𝑂(𝐿) opera2ons)	
and	some	backward	pass

• Backprop	requires	only	𝑂(𝐿) opera2ons

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

Backprop

𝑔(𝑧) =
1

1 + 𝑒!"

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

Θ&,(
(*) ← Θ&,(

(*) − 𝜂
𝜕ℒ(𝑦, 𝑦

̂
)

𝜕Θ&,(
(*)

Train	by	Stochas,c	Gradient	Descent:

• Chain	rule	with	𝑧*
(ℓ,") = Θ*,.

(ℓ)𝑎.
(ℓ)

𝛿&
(*,-) ≜

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

Computed	
in	the	
forward	pass

Recursively
computed	in	
one	backward	pass

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

Backprop

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)
𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

𝑔(𝑧) =
1

1 + 𝑒!" 𝛿&
(*,-) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

𝛿&
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*) = ∑

.

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧.
(*,-)

⏟
0!
(ℓ$%)

⋅
𝜕𝑧.

(*,-)

𝜕𝑧&
(*)

⏟
Θ%,'
(()𝑔)(𝑧'

(())

𝑧.
(ℓ,-) = ∑

&4-

5
Θ.,&
(*)𝑔(𝑧&

(*))

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

Backprop

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

𝑔(𝑧) =
1

1 + 𝑒!"

= ∑
.
𝛿.
(*,-) ⋅ Θ.,&

(*)𝑔6(𝑧&
(*))

= 𝑎&
(*)(1 − 𝑎&

(*))∑
.
𝛿.
(*,-) ⋅ Θ.,&

(*)

𝑔$(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧))

Computed	
in	the	
forward	pass

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝛿&
(*,-) ≜

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

𝛿&
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*) = ∑

.

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧.
(*,-) ⋅

𝜕𝑧.
(*,-)

𝜕𝑧&
(*)

Backprop

𝑔(𝑧) =
1

1 + 𝑒!"

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

𝛿&
(*) = 𝑎&

(*)(1 − 𝑎&
(*))∑

.
𝛿.
(*,-) ⋅ Θ.,&

(*)

• We	can	recursively	compute	all	𝛿(ℓ)’s	in	a	single	backward	pass
• And	compute	all	gradients	via	

)ℒ(+,+
̂
)

)$",$
(&) =)ℒ(+,+

̂
)

)-"
(&()) ⋅

)-"
(&())

)$",$
(&) =:𝛿.

(/01) ⋅ 𝑎2
(/)

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝛿&
(*,-) ≜

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

Backprop

𝑔(𝑧) =
1

1 + 𝑒!"

𝛿*
(+,-) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧*
(+,-) =

𝜕

𝜕𝑧*
(+,-) 𝑦log(𝑔(𝑧

(+,-))) + (1 − 𝑦)log(1 − 𝑔(𝑧(+,-)))

= 𝑦 − 𝑔(𝑧(+,-)) = 𝑦 − 𝑎(+,-)

=
𝑦

𝑔(𝑧(+,-))
𝑔.(𝑧(+,-)) −

1 − 𝑦
1 − 𝑔(𝑧(+,-))

𝑔.(𝑧(+,-))

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎('())

…
…

𝛿&
(*) = 𝑎&

(*)(1 − 𝑎&
(*))∑

.
𝛿.
(*,-) ⋅ Θ.,&

(*)

𝑔$(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧))
𝑎('()) = 𝑔(𝑧('()))

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝛿&
(*,-) ≜

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

Backprop

𝑔(𝑧) =
1

1 + 𝑒!"

Recursive	Algorithm!

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)

𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
…

𝛿&
(*) = 𝑎&

(*)(1 − 𝑎&
(*))∑

.
𝛿.
(*,-) ⋅ Θ.,&

(*)

𝛿('()) = 𝑦 − 𝑎('())

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕Θ&,(
(*) =

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-) ⋅

𝜕𝑧&
(*,-)

𝜕Θ&,(
(*) =: 𝛿&

(*,-) ⋅ 𝑎(
(*)

ℒ(𝑦, 𝑦
̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

𝛿&
(*,-) ≜

𝜕ℒ(𝑦, 𝑦
̂
)

𝜕𝑧&
(*,-)

(𝑥3, 𝑦3)
𝑥'

Intercept	do	not	
have	regularizer

Average	loss	+	ℓ& regularizer
1
𝑛 ∑
341

5
𝐿(𝑦3, 𝑦

̂
) + 𝜆 ∥ Θ ∥&&

Convolu'onal	Neural	
Networks

Mul0-layer	Neural	Network

𝑎(") = 𝑥
𝑧(2) = Θ(")𝑎(")

𝑎(2) = 𝑔 𝑧(2)

𝑧(34") = Θ(3)𝑎(3)
𝑎(34") = 𝑔 𝑧(34")

𝑦
̂
= 𝑎(64")

…
… 𝐿(𝑦, 𝑦

̂
) = 𝑦log(𝑦

̂
) + (1 − 𝑦)log(1 − 𝑦

̂
)

5

𝑔(𝑧) =
1

1 + 𝑒"#
Binary
Logis9c
Regression

Neural Network Architecture

5

• The	neural	network	architecture	is	defined	by	
• the	number	of	layers	(depth	of	a	network),		
• the	number	of	nodes	in	each	layer	(width	of	a	layer),	
• and	also	by	allowable	edges	and	shared	weights.	

Neural Network Architecture

5

The	neural	network	architecture	is	defined	by	the	number	of	layers,	and	the	
number	of	nodes	in	each	layer,	and	also	by	allowable	edges	and shared	weights.	

We	say	a	layer	is	Fully	Connected	(FC)	if	all	linear	mappings	from	the	current	
layer	to	the	next	layer	are	permissible.	

A	lot	of	parameters!!

𝑛3 is	the	number	of	nodes	in	layer	𝑘

Neural Network Architecture
• Objects	in	an	image	are	oJen	
localized	in	space	so	to	find	the	
faces	in	an	image,	not	every	pixel	
is	important	for	classifica2on

• Makes	sense	to	drag	a	window	
across	an	image,	focusing	a	local	
region	at	a	2me

• Although	images	are	two-
dimensional,	we	use	one-
dimensional	examples	to	illustrate	
the	main	idea

• Similarly,	to	iden2fy	
edges	or	other	local	
structure,	it	makes	
sense	to	only	look	at	
local	informa;on	

vs.

This	is	a	
fully	connected	layer

This	has	sparse	and	
local	connec9ons

𝑎*
(%+,)

𝑎-
(%)

𝑎*
(%)

𝑎.
(%)

Finding	faces	require	only	local	paUerns

Neural Network Architecture

vs.

#	of	Parameters
in	this	layer:

𝑎*
(%+,)

𝑎-
(%)

𝑎*
(%)

𝑎.
(%)

Θ(") = Θ(") =

sparse	and	local	connec9onsFully	connected

Neural Network Architecture
Shi$	invariance:	A	local	pa1ern	
of	interest	can	appear	
anywhere	in	the	image

vs.

#	of	Parameters
in	this	layer:

Θ(") = Θ(") =

𝑎*
(%+,)

𝑎-
(%)

𝑎*
(%)

𝑎.
(%)

vs.

sparse	and	local	connec9onsFully	connected sparse	local	connec9ons	
and	shared	weights

𝑎*
(%+,)

𝑎-
(%)

𝑎*
(%)

𝑎.
(%)

Θ(") =

𝐚.
(301) = 𝑔(∑

246(761)/&

(761)/&
𝜃20(761)/&𝑎.0

(3

Neural Network Architecture

⋆=Convolu9on	

Fully	Connected	(FC)	Layer
Convolu,onal	(CONV)	Layer	(1	filter)

is	referred	to	as	a	“filter”

𝐚*
('+,) = 𝑔(∑

-./(0/,)/2

(0/,)/2
𝜃-+(0/,)/2𝑎*+-

(')) = 𝑔([𝜃 ⋆ 𝐚(

Filter	with	𝑚 = 3

𝑎!
(#$%)

𝑎'
(#)

𝑎!
(#)

𝑎(
(#)

𝑎*
(%+,)

𝑎*
(%)

Because	of	shi,	invariance	and	locality	of	computer	vision	tasks,	convolu8on	is	extremely	powerful

Example (1d convolution)

∈ ℝ*+,-.

𝜃: 𝜃1 𝜃&

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

2
𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

𝜃: 𝜃1 𝜃&

𝑖 = 1

• No9ce	that	the	indexing	of	the	convolu9on	is	
slightly	different	from	previous	slide

• There	are	many	different	ways	to	write	
the	same	convolu9on

𝑗 = 0 𝑗 = 1
𝑗 = 2

Example (1d convolution)

2 1

𝑖 = 2

𝜃: 𝜃1 𝜃&
𝑗 = 0 𝑗 = 1

𝑗 = 2

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

∈ ℝ*+,-.

𝜃: 𝜃1 𝜃&

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

Example (1d convolution)

2 11

𝑖 = 3

𝜃: 𝜃1 𝜃&
𝑗 = 0 𝑗 = 1

𝑗 = 2

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

𝜃: 𝜃1 𝜃&

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<

∈ ℝ*+,-.

• Each	filter	finds	a	specific	pattern	over	the	input

1d	convolu0on

𝑥1 𝑥& 𝑥; 𝑥" 𝑥<
-1 -1 -1 1 1 1 -1 -1 -1 -1

𝑥= 𝑥> 𝑥? 𝑥@ 𝑥1:

• We	use	many	such	convolu2onal	filters	per	layer	in	prac2ce
• Each	convolu2onal	filter	output	vector	(or	a	matrix	if	2D	convolu2on)	is	called	a	channel

Filter	1

-1 1
𝜃: 𝜃1

𝑥 ⋆ 𝜃 =

Filter	2

1 1
𝜃: 𝜃1

𝑥 ⋆ 𝜃 =

Convolution of images (2d convolution)

Convolution of images
• These	are	hand-crafted	filters,	
to	illustrate	what	the	weights	of	a	filter	mean

• Filter	in	a	Convolutional	Neural	Network	(CNN)
is	learned,	and	we	might	be	able	
to	interpret	what	we	learned	

©Kevin Jamieson

Stacking	convolved	images

6

6

3

27

27

1

• Input	is	a	mul2-array	or	a	tensor,	because	it	has	3	color	channels	

• If	we	use	a	convolu2onal	layer	with	1	filter	of	size	
m*m*r=6*6*3,	then	the	output	is	a	matrix	of	
dimension	(n+1-m)*(n+1-m)=27*27

𝐾 ∈ ℝ,×,×0

𝑥 ⋆ 𝐾 ∈ ℝ(*-.+,)×(*-.+,)

©Kevin Jamieson

Stacking	convolved	images

D=64	channels	(i.e.	filters)

6

6

3 27

27

Repeat	with	D	filters!

• Typical	convolu2onal	layer	has	mul2ple	filters	to	capture	mul2ple	pa[erns
• Each	one	is	called	a	channel
• Each	channel	has	a	filter	of	the	same	size	m*m*r	but	with	different	
weights

• Each	channel	outputs	a	matrix	of	dimension	(n+1-m)*(n+1-m)
• Put	together	the	output	is	a	tensor	of	dimension	(n+1-m)*(n+1-m)*D

𝑚

𝑚

𝑟

𝐾$
($) 𝐾%

($) 𝐾&
($) 𝐾'

($)

Max Pooling gives a summary of a region

Pooling	reduces	the	dimension	
and	can	be	interpreted	as	“This	
filter	had	a	high	response	in	
this	general	region”

27x27x64

14x14x64

Pooling Convolution layer

14x14x64

64	filters

6

6

3 27

27

MaxPool	with	
2x2	filters	and	
stride	2

Convolve
with	64	6x6x3	filters

64	channels

Flattening

14x14x64

64	filters

6

6

3 27

27

Convolve
with	64	6x6x3	filters

MaxPool	with	
2x2	filters	and	
stride	2

FlaUen	into	a	single
vector	of	size	
14*14*64=12544

Training	Convolu0onal	Networks

14x14x64

6

6

3 27

27

Recall:	ConvoluFonal	neural	
networks	(CNN)	are	just	regular	
fully	connected	(FC)	neural	
networks	with	some	connecFons	
removed	and	some	weights	
shared.	
Train	with	SGD!

reshape

output	layer

pool
CONV	hidden	layer FC	hidden	layer

©Kevin Jamieson

Training	Convolu0onal	Networks

14x14x64

6

6

3 27

27

reshape

output	layer

pool
CONV	hidden	layer FC	hidden	layer

Real	example	network:	LeNet

©Kevin Jamieson

Training	Convolu-onal	Networks

Real	example	network:	LeNet
Real	example	network:	LeNet

Real	networks

Data augmentation?
Batch norm?

RELU leakiness
slope

Learning rate schedule

Residual Network of
[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial
dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial
dimension

Reduce spatial
dimension

batchsizeModern networks have dozens
of parameters to tune.

©Kevin Jamieson

Remarks
• ConvoluFon	is	a	fundamental	operaFon	in	signal	processing.	
Instead	of	hand-engineering	the	filters	(e.g.,	Fourier,	Wavelets,	
etc.)	Deep	Learning	learns the	filters	and	CONV	layers	with	
back-propaga@on,	replacing	fully	connected	(FC)	layers	with	
convoluFonal	(CONV)	layers	

• Pooling is	a	dimensionality	reducFon	operaFon	that	
summarizes	the	output	of	convolving	the	input	with	a	filter

• Typically	the	last	few	layers	are	Fully	Connected	(FC),	with	the	
interpretaFon	that	the	CONV	layers	are	feature	extractors,	
preparing	input	for	the	final	FC	layers.	Can	replace	last	layers	
and	retrain	on	different	dataset+task.

• Just	as	hard	to	train	as	regular	neural	networks.	
• More	exoFc	network	architectures	for	specific	tasks	

Vision	transformers

©Kevin Jamieson

2d	Convolution	Layer

or	filteror	channels

