Multi-layer Neural Network - Binary Classification in {0,1} aQ‘*z‘*" )
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L-th layer plays the role of features, but trained instead of pre-deterrmlned

(Learned) feature representation  Logistic
This is a 5-dimensional vector /)eﬁ regression

Scalar function g H

is applied
coordinate-wise
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Multi-layer Neural Network - Binary Classification

e Why is ReLU better than sigmoid?

(Learned) feature representation Logistic
regression
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Cross entropy loss:

L,Y) = Ylog(y) + (1 = Ylog(1 - y)
o(z) = max{0, z} g(z) =

L ogistic
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Nonlinear activation function

* popular choices of activation function includes

Sigmoid | Leaky ReLU )
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* Why is ReLU better than Sigmoid? —> (e Y¢¥)

* Why is ELU better than RelLU?
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K -class Classification: multiple output units

/)
2
X

{

,\“(Q:o‘.: K Multi-class
i’f’é‘:‘é he (X) eR Logistic
LK .
A77 N\ Regression
25
(Learned) feature representation -class Logistic regression
We want:
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Multi-layer Neural Network - Regression

(Learned) feature representation Logistic

regression
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Training Neural Networks
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Gradient Descent: i \vd/
O « oW — V. L(y,y)

Seems simple enough - what do packages like PyTorch, Tensorflow,
Jax, Theano, Caffe, MxNet provide?

1. Automatic differentiation
1. Given a NN, compute the gradient automatically
2. Compute the gradient efficiently

2. Convenient libraries
1. Set-up NN
2. Choose algorithms (SGD,Adam,etc.) for training
3. Hyper-parameter tuning

3. GPU support
1. Linear algebraic operations




Gradient Descent:

Seems simple enough

1. Automatic differ

2. Convenient libra

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__dinit__()

# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.convl
self.conv2

nn.Conv2d(1, 6, 3)
nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b

self.fcl = nn.Linear(16 * 6 * 6, 120) # 6+6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.convl(x)), (2, 2))
# If the size is a square you can only specify a single number
.max_pool2d(F.relu(self.conv2(x)), 2)
.view(-1, self.num_flat_features(x))
.relu(self.fcl(x))
.relu(self.fc2(x))
= self.fc3(x)
return x

X X X X X
1
m T X M

LS

# create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

# in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update




Common training issues

Neural networks are non-convex

- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize and batchsize have large impact on optimizing the
training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!

- Start from a code that someone else has tried and tested




Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule

- Use GPU resources

- Change batch size

- Use momentum and more advanced optimizers (e.g., Adam)

- Apply batch normalization

- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other
hyperparameters




Back Propagation




What do we need to run gradient descent?

Gradient descent 7 £0.5) ;

A i K
Need to know y ~ I\ M
How do we write the gradient

ﬂ,(l) = X for each layer’s parameters?
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Forward Propagation

e \We are not writing the intercept at each layer for simplicity
e To compute gradients, we first run forward pass to get the

intermediate representations {a(?, ..., a(1)}
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Backprop

a(l) = X
Z(Z) — @(1)a(1)

Recursively Computed
computed in in the
one backward pass  forward pass

e Chain rule with Zi({)ﬂ) = G@a({))
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Backprop
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Backprop
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Backprop

a(l) = X
Z(Z) — @(1)a(1)
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e We can recursively compute all §@’sina single backward pass
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BaCkp rOp Recursive Algorithm!
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Backpropagatio .
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Set Ag-) =0 Vl1i,j (Used to accumulate gradient)
For each training instance ( @
Set a(l) = X
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Convolutional Neural
Networks




Multi-layer Neural Network

7,2 = @) (D)

a@ = g(z®)

N4
O
XN

9,

PN ‘\
> <
o

7

Z(l+1) — @(l)a(l)

a+D) = g(z+1))

; L(y,y) = ylog(y) + (1 —y)log(1 —y)
Binary

e

y = q@+D) 9@) =17 Lo

Regression




Neural Network Architecture

e The neural network architecture is defined by
e the number of layers (depth of a network),
e the number of nodes in each layer (width of a layer),
e and also by allowable edges and shared weights.




Neural Network Architecture

The neural network architecture is defined by the number of layers, and the
number of nodes in each layer, and also by allowable edges and shared weights.
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a( ) a( ) Ny is the number of nodes in layer k

We say a layer is Fully Connected (FC) if all linear mappings from the current
layer to the next layer are permissible.

alktl) — g(@a(k)) for any © € R™k+1 X7
nN1Ng2 +Nang + -+ + NN

A lot of parameters!!




Neural Network Architecture

Finding faces require only local patterns

‘ H
r
:
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e Objects in an image are often
localized in space so to find the
faces in an image, not every pixel
is important for classification

e Makes sense to drag a window
across an image, focusing a local
region at a time

e Although images are two-
dimensional, we use one-
dimensional examples to illustrate O
the main idea

e Similarly, to identify
edges or other local
structure, it makes
sense to only look at
local information

This is a This has sparse and
fully connected layer local connections




Neural Network Architecture

Fully connected sparse and local connections

VS.

k k+1
a(k) a (k+1)
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93 0 63 1 @3 2 93’3 63‘4 0 0 @3,2 @3,3 @3 4
94 0 64 1 (")4 2 94,3 64 4 0 0 0 @4,3 94 4
# of Parameters ;2 3n — 2
in this layer:
n—1




Neural Network Architecture

sparse and local connections

Fully connected

VS.

0® =[©00 ©01 ©02 O3 O k) =[©00 ©01 0 0 0
©10 011 ©12 O13 O14 ©10 ©11 ©12 O 0
O20 ©O21 Oz O3 Ogy 0 ©3;7 O32 O35 0
93,0 63,1 @3'2 93,3 93‘4 0 0 @3,2 @3,3 @3,4
1©40 ©41 ©Os2 Os3 O44 | 0 0 0 O13 Oua
# of Parameters ;2 3n — 2
in this layer:
n—1
(k+1) (k) (k+1)
a, =9 Z @,,Jaj a;

Shift invariance: A local pattern
of interest can appear
anywhere in the image

sparse local connections
and shared weights




Neural Network Architecture

Convolutional (CONV) Layer (1 filter)

lo«»*l
F|IterW|thm 3 (01 03
90 01 6, 0O
(k+1 91 0 0
0 01 0,

0 0 6 6,

Fully Connected (FC) Layer

(m-— 1)/2
a§k+1)

0+ (m- 1)/zal+] = g([0 *

J——(m 1)/2

*=Convolution
0 = (90, ce ,9m—1) € R™ js referred to as a “filter”

Because of shift invariance and locality of computer vision tasks, convolution is extremely powerful



e Notice that the indexing of the convolution is
slightly different from previous slide

e There are many different ways to write
the same convolution

Output 6 * x € RP—m+1




Example (1d convolution)

Y Xo. Xo X. X
L TVAl TP TRA | T
1(1]1]0]0]

- Input x € R"
(6 0;x; 4. a.
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Filter § € R™
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Example (1d convolution)

X4 Xo Xo 'X'4 X
T y po)

J

1,1/1/00

- Input x € R"
0* i — 9 141 n 0, 0,
(0 % x) 2 i Tit 9; 96 9{ ‘7K

Filter 0 € R™

;= 3

1{1(1]/0]0, 2 |1 s
6 61 62 Qutput 6 x x € RP—m+1
j=0.
j=1




1d convolution

e Each filter finds a specific pattern over the input

X1 X2 X2 Xa Xs Xg X7 Xg X9 X10
-1 1 -1 1 1 1 -1 -1 -1 -1

L rr
(1] 111

Filter 1 Filter 2
90 01 80 81
101 Y *x 0 = X *x0 =

i 1L
1

e We use many such convolutional filters per layer in practice
e Each convolutional filter output vector (or a matrix if 2D convolution) is called a cha




Convolution of images (2d convolution)

11,1 0,0
I+ K)Gg) =S N I +m,j+n)K(mn) ot
m n 00 1 1 0 1(0 |1
0j1]1]0]0 Filter K
Image I
14' 111010
o1l1j1][o]| [4
OxL 0,111
olol1]1]0
0O[1(1|0]|0
Image Convolved
Feature

I x K




Convolution of images

e These are hand-crafted filters, Operation Filter I Cﬁg‘;’;ed I« K
to illustrate what the weights of a filter mean

e Filter in a Convolutional Neural Network (CNN) [ (1) g ;]
is learned, and we might be able 10 1

to interpret what we learned
0 1 0
Edge detection [l 4 l] .

(I*K)(i,j) = ZZI i+m,j+n)K(m,n)
Image[

0 -1
Sharpen -1 5 -1
| 0 -1
1 11
Box blur 1[ ]
-1 1 1
(normalized) 9
1 11
G ian bl 1 Lo
a X) hon
. 1 2 1




Stacking convolved images

K = RmeXT

e |[f we use a convolutional layer with 1 filter of size
/ / m*m*r=6*6*3, then the output is a matrix of
27 dimension (n+1-m)*(n+1-m)=27%*27

6
\
6 7,-IJ

/‘——x x*xK € ]R(n+1—m)><(n+1—m)

e Input is a multi-array or a tensor, because it has 3 color channels

T E R’TLX’I’LX’I"




Stacking convolved images

e Typical convolutional layer has multiple filters to capture multiple patterns
e Each one is called a channel
e Each channel has a filter of the same size m*m™*r but with different

weights m .
K1(1) Kz(l) K3(1 o o o K1g1)
m
r

e Each channel outputs a matrix of dimension (n+1-m)*(n+1-m)
e Put together the output is a tensor of dimension (n+1-m)*(n+1-m)*D

2
32

’/‘>O COO00 Repeat with D filters!

27

N

D=64 channels (i.e. filters)




Max Pooling gives a summary of a region

Single depth slice

4
Pooling reduces the dimension x| | 1| 1|2 | 4 |
. el max pool with 2x2 filters
and can be interpreted as “This 5161 7| 8| andstide2 6| 8
filter had a high response in -
. s : ”p 3 | 2 |BiNED 3 4
this general region
12|34
=
27x27x64
14x14x64

- [Tiiffii]




Pooling Convolution layer

27 14x14x64
32
6 \
——
6@._/._>o 0000
3 27
P
_/32 64 channels
3 64 filters MaxPool with
2x2 filters and
Convolve

with 64 6x6x3 filters stride 2




Flattening

27 14x14%6
32
6 \
——
6@/._.—>o 000D
’ 27 I Flatten mtg a single
A vector of size
g 14*14*64=12544
64 filters MaxPool with
2x2 filters and
Convolve

with 64 6x6x3 filters stride 2




Training Convolutional Networks

CONV hidden layer

27
32

6@§>OOOO<D

L]
3 27

w|

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some connections
removed and some weights
shared.

Train with SGD!

reshape

pool

14x14x6.

/
32

FC hidden layer

output layer




Training Convolutional Networks

reshape FC hidden layer

CONV hidden layer
pool

/ 2Z 14x14x6

ejejelel);

output layer

vw
\[J ®

3 27

w|

Real example network: LeNet

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

-
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Real example network: LeNet

Convolution
+ RelU

Pooling

Convolution

A - . -

Pooling

Output
Layer

FC
Layer 2

FC
- - Layer 1

H

Convolution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer

Fully Fully
Connected Connected

Output Predictions

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)




Real networks

Modern networks have dozens
of parameters to tune.

Data augmentation?
Batch norm?

RELU leakiness
slope

Learning rate schedule

T

Residual Network of
[HeZhangRenSun'15]

batchsize —
cen R4 '~ P -

W] e L g -

Reduce spatial
dimension

[
[
I
I
[
Reduce spatial |
dimension I
|

|

l

[

[

I

|

n2 layers of 2 filters

3:3 conv, 256

\ 4
33 conv, 256

Reduce spatial
dimension

----------- ~ n3 layers of 3 filters
\ 4
3x3conv,512 |

72
t1 t3




Remarks

e Convolution is a fundamental operation in signal processing.
Instead of hand-engineering the filters (e.g., Fourier, Wavelets,
etc.) Deep Learning learns the filters and CONV layers with
back-propagation, replacing fully connected (FC) layers with
convolutional (CONV) layers

e Pooling is a dimensionality reduction operation that
summarizes the output of convolving the input with a filter

e Typically the last few layers are Fully Connected (FC), with the
interpretation that the CONV layers are feature extractors,
preparing input for the final FC layers. Can replace last layers
and retrain on different dataset+task.

e Just as hard to train as regular neural networks.
e More exotic network architectures for specific tasks




Vision transformers

Vision Transformer (ViT)

MLP

Ball < Head

Transformer Encoder

- 6 008 H0 8 65 &

* Extra learnable

[class) embedding Linear Projection of Flattened Patches

SHE |

[T T T T 1]
mER-— SRS

Transformer Encoder

L x

o=

MLP

4

Norm

(D—

Multi-Head
Attention

T

Norm

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).




2d Convolution Layer

# Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters
» Locally-connected, 400,000 hidden units 10x10 fields = 40

million params or channels or filter
» Local connections capture local dependencies




