Examples of popular Kernels

• Polynomials of degree exactly *k*

$$
K(x, x') = (x^T x')^k
$$

• Polynomials of degree up to *k*

$$
K(x, x') = (1 + xT x')k
$$

• Gaussian (squared exponential) kernel (a.k.a RBF kernel for Radial Basis Function)

$$
K(x, x') = \exp\left(-\frac{\|x - x'\|_2^2}{2\sigma^2}\right)
$$

$$
\Phi(x) = \exp^{-x^2/2\sigma^2} [1, \frac{1}{\sqrt{1!\sigma^2}} x, \frac{2\sigma^2}{\sqrt{2!\sigma^4}} x^2, \frac{1}{\sqrt{3!\sigma^6}} x^3, \ldots]^T
$$

• Sigmoid

$$
K(x, x') = \tanh(\gamma x^T x' + r)
$$

Predictor $f(x) = \sum_i \alpha_i K(x_i, x)$ is taking weighted sum of *n* kernel functions centered at each sample points *i*=1 $\sum \alpha_i K(x_i, x)$ is taking weighted sum of *n*

BBF Kernel
$$
k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}
$$

•
$$
\mathscr{L}(\alpha) = ||\mathbf{P}\alpha - \mathbf{y}||_2^2 + \lambda \alpha^T \mathbf{P} \alpha
$$

• The bandwidth σ^2 of the kernel regularizes the predictor, and the regularization coefficient λ also regularizes the predictor

RBF kernel for SVMs

Predictor $f(x) = \sum_i \alpha_i K(x_i, x)$ is taking weighted sum of *n* kernel functions centered at each sample points *i*=1 $\sum \alpha_i K(x_i, x)$ is taking weighted sum of *n*

BBF Kernel
$$
k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}
$$
 $\mathbf{P}_{ij} = K(x_i, x_j)$

•
$$
\mathscr{L}(\alpha) = ||\mathbf{P}\alpha - \mathbf{y}||_2^2 + \lambda \alpha^T \mathbf{P} \alpha
$$

• The bandwidth σ^2 of the kernel regularizes the predictor, and the regularization coefficient λ also regularizes the predictor

Confidence intervals

• Suppose you have training data $\{(x_i, y_i)\}_{i=1}^n$ drawn i.i.d. from some true distribution *Px*,*^y*

⋋

- We train a kernel ridge regressor, with some choice of a kernel $K: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}$, with $\mathbf{P}_{ij} = K(x_i, x_j)$ minmize_{*α*} $\|\mathbf{P}\alpha - \mathbf{y}\|_2^2 + \lambda \alpha^T \mathbf{P} \alpha$
- The resulting predictor is $f(x) = \sum K(x_i, x) \hat{\alpha}_i$ $\sum K(x_i, x)\hat{\alpha}_i$

 $i=1$

where

$$
\hat{\alpha} = (\mathbf{P} + \lambda \mathbf{I})^{-1} \mathbf{y} \in \mathbb{R}^n
$$

We wish to build a confidence interval for our predictor $f(x)$, using 5% and 95% percentiles

Confidence intervals

- Let's focus on a single $x \in \mathbb{R}^d$
- Note that our predictor $f(x)$ is a random variable, whose randomness comes from the training data $S_{\text{train}} = \{ (x_i, y_i) \}_{i=1}^n$
- If we know the statistics (in particular the CDF of the random variable $f(x)$) of the predictor, then the **confidence interval** with **confidence level 90%** is defined as

Confidence intervals

- Hypothetically, if we can sample as many times as we want, then we can train $B\in\mathbb{Z}^+$ i.i.d. predictors, each trained on n fresh samples to get empirical estimate of the CDF of $\hat{y}~=~f(x)$
- For $b=1,...,B$
	- Draw *n* fresh samples $\{(x_i^{(b)}, y_i^{(b)})\}_{i=1}^n$
	- Train a regularized kernel regression $\alpha^{*(b)}$

• Predict
$$
\hat{y}^{(b)} = \sum_{i=1}^{n} K(x_i^{(b)}, x) \alpha_i^{*(b)}
$$

Let the empirical CDF of those B predictors $\{\hat{y}^{(b)}\}_{b=1}^B$ be $\widehat{CDF}(\hat{y})$, defined as ̂

$$
\widehat{\text{CDF}}(\hat{y}) = \frac{1}{B} \sum_{b=1}^{B} \mathbf{I} \{ \hat{y}^{(b)} \le \hat{y} \}
$$

• Compute the confidence interval using $\overline{CDF}(\hat{y})$ ̂

Bootstrap

- As we cannot sample repeatedly (in typical cases), we use **bootstrap samples** instead
- Bootstrap is a general tool for assessing statistical accuracy
- We learn it in the context of confidence interval for trained models
- ^A**bootstrap dataset** is created from the training dataset by taking n (the same size as the training data) examples uniformly at random **with replacement** from the training data $\{(x_i, y_i)\}_{i=1}^n$
- For $b=1,...,B$
	- Create a bootstrap dataset $S_{\text{bootstrap}}^{(b)}$
	- Train a regularized kernel regression $\alpha^{*(b)}$

• Predict
$$
\hat{y}^{(b)} = \sum_{i=1}^{n} K(x_i^{(b)}, x) \alpha_i^{*(b)}
$$

• Compute the empirical CDF from the bootstrap datasets, and compute the confidence interval

Bootstrap

Figures from Hastie et al

Applications of Neural Networks

Self-driving cars Voice assistants Machine translation

Image generation *"a painting of a fox sitting in a field at sunrise in the style of Claude Monet*"

+ many more (images, text, audio)

BUT: Simple methods often still the best on tabular data.

- Origins: Algorithms that try to mimic the brain.
- Widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence from 2010s: state-of-the-art techniques for many applications:
	- Computer Vision (AlexNet 2012)
	- Natural language processing
	- Speech recognition
	- Decision-making / control problems (AlphaGo, Games, robots)
- Limited theory:
	- Why do we find good minima with SGD for Non-convex loss?
	- Why do we not overfit when $#$ of parameters p is much larger than # of samples n ?

Agenda:

1.Definitions of neural networks

2.Training neural networks: 1.Algorithm: back propagation 2.Putting it to work

3.Neural network architecture design: 1.Convolutional neural network

- **Neural Network** is a parametric family of functions from $x \in \mathbb{R}^d$ to $\hat{y} = h_\theta(x) \in \mathbb{R}^k$ with parameter $\theta \in \mathbb{R}^p$
- **• Computation graph** illustrates the sequence of operations to be performed by a neural network

Sequence of operations performed at a single node

 $\sigma(z) = \frac{1}{1+c}$

 $R(z) = max(0, z)$

- For a single node with input $x \in \mathbb{R}^d$, the node is defined by
	- Parameters $\theta \in \mathbb{R}^{d+1}$ (including the intercept/bias)
	- **• Activation function** *g* : ℝ → ℝ
		- \bullet A common choice is sigmoid function: $g(z) =$ 1 $1 + e^{-z}$
		- Another popular choice is Rectified Linear Unit (ReLU): $g(z) = \max\{0, z\}$

The node performs
$$
h_{\theta}(x) = g\left(\sum_{i=0}^{d} \theta_{i}x_{i}\right) = g(\theta^{T}x)
$$

\n"bias unit"
\n
$$
\begin{array}{ccc}\n\vdots \\
\left(\begin{array}{c}\n\overline{x_{0}}\n\end{array}\right)\left(\begin{array}{c}\nx_{0}\n\end{array}\right) & x = \begin{bmatrix}\nx_{0} \\
x_{1} \\
x_{2} \\
x_{3}\n\end{bmatrix} & \theta = \begin{bmatrix}\n\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}\n\end{bmatrix} \\
\hline\n\begin{array}{c}\n\overline{x_{1}}\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{2}}\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{3}}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{2}}\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{3}}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{2}}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\overline{x_{3}}\n\end{array}
$$
\n
$$
\begin{array
$$

Note that there is a one-to-one correspondence between a **linear classifier** and a **neural network with a single node** of the above form

What cannot be learned?

Neural Network composes simple functions to make complex functions

- Each layer performs simple operations
- Neural Network (with parameter $\theta = (\theta^{(1)}, \theta^{(2)})$) composes multiple layers of operations ($\sum_{i=1}^{3}$

 $a_j^{(j)}$ = "activation" of unit *i* in layer *j* Θ^(*j*) = weight matrix stores parameters from layer *j* to layer *j* + 1

$$
a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)
$$

\n
$$
a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)
$$

\n
$$
a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)
$$

\n
$$
b_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})
$$

If network has s_j units in layer *j and* s_{j+1} units in layer *j*+1, then $\Theta^{(j)}$ has dimension $s_{j+1} \times (s_j+1)$ ''

 $\Theta^{(1)} \in \mathbb{R}^{3 \times 4}$ $\Theta^{(2)} \in \mathbb{R}^{1 \times 4}$

Example of 2-layer neural network in action **Linear decision boundary**

1-layer neural networks only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2 formants (features)

A highly non-linear decision boundary can be learned from 2-layer neural networks

Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approximators). Let F be a continuous function on a bounded subset of D dimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximate F arbitrarily well. Namely, for all x in the domain of F, $|F(x) - \hat{F}(x)| < \epsilon$.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.

Multi-layer Neural Network - Binary Classification in {0,1}

L-th layer plays the role of features, but trained instead of pre-determined

Multi-layer Neural Network - Binary Classification

 $a^{(1)} = x$

• Why is ReLU better than sigmoid?

Nonlinear activation function

• popular choices of activation function includes

- Why is ReLU better than Sigmoid?
- Why is ELU better than ReLU?

K-class Classification: multiple output units

Multi-layer Neural Network - Regression

 $=\Theta^{(L)}a^{(L)}$ $\sigma(z)$

…

Linear model

Square loss:

$$
\hat{y} = \Theta^{(L)} a^{(L)} \qquad \qquad L(y, \hat{y}) = (y - \hat{y})^2
$$

$$
\sigma(z) = \max\{0, z\}
$$

Training Neural Networks

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$ $a^{(2)} = g(z^{(2)})$ $a^{(5)}$ $a^{(1)}$ $a^{(4)}$ **…** $a^{(3)}$ $a^{(2)}$ $z^{(l+1)} = \Theta^{(l)} a^{(l)}$ $a^{(l+1)} = g(z^{(l+1)})$ $L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$ **…**1 $= g(\Theta^{(L)} a^{(L)})$ \widehat{y} $g(z) =$ \mathcal{Y} $1 + e^{-z}$

Gradient Descent: $\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \widehat{y})$ $\forall l$

$\Theta^{(l)} \leftarrow \Theta^{(l)} - \eta \nabla_{\Theta^{(l)}} L(y, \hat{y}) \qquad \forall l$ Gradient Descent:

Seems simple enough - what do packages like PyTorch, Tensorflow, Jax, Theano, Caffe, MxNet provide?

- 1. Automatic differentiation
	- 1. Given a NN, compute the gradient automatically
	- 2. Compute the gradient efficiently
- 2. Convenient libraries
	- 1. Set-up NN
	- 2. Choose algorithms (SGD,Adam,etc.) for training
	- 3. Hyper-parameter tuning
- 3. GPU support
	- 1. Linear algebraic operations

Gradient Descent:

Theano, Cafe, MxNet states of $\frac{1}{2}$ self. fc3 = nn. Linear(84, 10)

class Net(nn.Module):

```
2. Convenient libra
```
def __init__(self):
super(Net, self). init () super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolu

kernel

aslarenced a sample for $2d(4, 6, 2)$ $self.comv1 = nn.Conv2d(1, 6, 3)$ self.conv2 = $nn.Cony2d(6, 16, 3)$ Seems simple enough,
Seems simple $\frac{4}{\pi}$ an affine operation: $y = Wx + b$
self.fc2 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84) $def forward(self, x)$: # Max pooling over a (2, 2) window $x = F.max_pool2d(F.relu(self.comv1(x)), (2, 2))$ **1. Automatic differ** $*$ If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2) $x = x \cdot view(-1, self.num_flat_features(x))$ $x = F$.relu(self.fc1(x)) $x = F$.relu(self.fc2(x)) $x = \text{self.fc3}(x)$ return x

```
# create your optimizer
optimizer = optim. SGD(net.parameters(), 1r=0.01)# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)loss = criterion(output, target)loss.backward()
optimizer.step()
                  # Does the update
```
Common training issues

Neural networks are **non-convex**

-For large networks, **gradients** can **blow up** or **go to zero**. This can be helped by **batchnorm** or **ResNet** architecture

- -**Stepsize** and **batchsize** have large impact on optimizing the training error *and* generalization performance
- -Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100% training accuracy even if test accuracy is just 80%

- Making the network *bigger* may make training *faster!*

-Start from a code that someone else has tried and tested

Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule
- Use GPU resources
- Change batch size
- Use momentum and more advanced optimizers (e.g., Adam)
- Apply batch normalization
- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low

- Try modifying all of the above, plus changing other hyperparameters

Back Propagation

Forward Propagation

 $\begin{array}{c} \end{array}$

- We are not writing the intercept at each layer for simplicity
- To compute gradients, we first run forward pass to get the intermediate representations $\{a^{(2)},...,a^{(L)}\}$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}}
$$

$$
a^{(1)} = x
$$

\n
$$
z^{(2)} = \Theta^{(1)} a^{(1)}
$$

\n
$$
a^{(2)} = g(z^{(2)})
$$

\n
$$
a^{(l)} = g(z^{(l)})
$$

\n
$$
z^{(l+1)} = \Theta^{(l)} a^{(l)}
$$

\n
$$
a^{(l+1)} = g(z^{(l+1)})
$$

\n
$$
\hat{y} = a^{(L+1)}
$$

 $a^{(1)} = x \in \mathbb{R}^d$

- $\textbf{Backprop}_{\textbf{...}}$ Parameters: $\Theta^{(1)} \in \mathbb{R}^{m \times d}, \Theta^{(2)}, \dots \Theta^{(L-1)} \in \mathbb{R}^{m \times m}$
	- Naive implementation takes $O(L^2)$ time, as each layer requires a full forward pass (with $O(L)$ operations) and some backward pass
	- \bullet Backprop requires only $O(L)$ operations
- $z^{(2)} = \Theta^{(1)} a^{(1)} \in \mathbb{R}^m$ $a^{(2)} = g(z^{(2)})$ $z^{(l+1)} = \Theta^{(l)} a^{(l)}$ $a^{(l+1)} = g(z^{(l+1)})$ $\hat{y} = a^{(L+1)}$ **……** $a^{(l)}=g(z^{(l)})$

 $\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta$ ∂*L*(*y*, *y*)̂ $\partial \Theta_{i,j}^{(l)}$ **Train by Stochastic Gradient Descent:**

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}}
$$

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$

 $a^{(2)} = g(z^{(2)})$

$$
a^{(l)} = g(z^{(l)})
$$

\n
$$
z^{(l+1)} = \Theta^{(l)} a^{(l)}
$$

\n
$$
a^{(l+1)} = g(z^{(l+1)})
$$

\n
$$
\hat{y} = a^{(L+1)}
$$

Recursively computed in the one backward pass forward pass of
$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$

\nTrain by Stochastic Gradient Descent:
\n
$$
\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}}
$$

\n
$$
\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}}
$$

\n
$$
\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}}
$$

\n
$$
\Theta_{i,j}^{(l)} \leftarrow \Theta_{i,j}^{(l)} - \eta \frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}}
$$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} \triangleq \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$ $a^{(2)} = g(z^{(2)})$ $z^{(l+1)} = \Theta^{(l)} a^{(l)}$ $a^{(l+1)} = g(z^{(l+1)})$ $\hat{y} = a^{(L+1)}$ $a^{(l)} = q(z^{(l)})$ **…**

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$
\n
$$
\delta_i^{(l)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l)}} = \sum_k \frac{\partial L(y, \hat{y})}{\partial z_k^{(l+1)}} \cdot \frac{\partial z_k^{(l+1)}}{\partial z_i^{(l)}}
$$
\n
$$
\sum_k \frac{\partial L(y, \hat{y})}{\partial z_k^{(l+1)}} = \sum_{i=1}^m \Theta_{k,i}^{(l)} g(z_i^{(l)})
$$
\n
$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$
\n
$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$ $a^{(2)} = g(z^{(2)})$ $z^{(l+1)} = \Theta^{(l)} a^{(l)}$ $a^{(l+1)} = g(z^{(l+1)})$ $\hat{y} = a^{(L+1)}$ $a^{(l)} = g(z^{(l)})$ **…**

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$
\n
$$
\delta_i^{(l)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l)}} = \sum_k \frac{\partial L(y, \hat{y})}{\partial z_k^{(l+1)}} \cdot \frac{\partial z_k^{(l+1)}}{\partial z_i^{(l)}}
$$
\n
$$
= \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)} g'(z_i^{(l)})
$$
\ncomputed in the formula forward pass

\n
$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$
\n
$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$
\n
$$
g'(z) = g(z)(1 - g(z))
$$

- $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$
- $a^{(2)} = g(z^{(2)})$

$$
a^{(l)} = g(z^{(l)})
$$

\n
$$
z^{(l+1)} = \Theta^{(l)} a^{(l)}
$$

\n
$$
a^{(l+1)} = g(z^{(l+1)})
$$

\n
$$
\hat{y} = a^{(L+1)}
$$

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$

$$
\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}
$$

- We can recursively compute all $\delta^{(\ell)}$'s in a single backward pass
- And compute all gradients via

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$

$$
a^{(2)}=g\left(z^{(2)}\right)
$$

 $z^{(l+1)} = \Theta^{(l)} a^{(l)}$

…

 $a^{(L+1)} = g(z^{(L+1)})$

 $a^{(l)} = g(z^{(l)})$

 $a^{(l+1)} = g(z^{(l+1)})$

 $\hat{y} = a^{(L+1)}$

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$

$$
\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}
$$

$$
\delta_i^{(L+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(L+1)}} = \frac{\partial}{\partial z_i^{(L+1)}} \left[y \log(g(z^{(L+1)})) + (1 - y) \log(1 - g(z^{(L+1)})) \right]
$$

$$
= \frac{y}{g(z^{(L+1)})} g'(z^{(L+1)}) - \frac{1 - y}{1 - g(z^{(L+1)})} g'(z^{(L+1)})
$$

$$
= y - g(z^{(L+1)}) = y - a^{(L+1)}
$$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$

$$
g'(z) = g(z)(1 - g(z))
$$

 $a^{(1)} = x$ $z^{(2)} = \Theta^{(1)} a^{(1)}$

 $a^{(2)} = g(z^{(2)})$

$$
a^{(l)} = g(z^{(l)})
$$

\n
$$
z^{(l+1)} = \Theta^{(l)} a^{(l)}
$$

\n
$$
a^{(l+1)} = g(z^{(l+1)})
$$

\n
$$
\hat{y} = a^{(L+1)}
$$

Recursive Algorithm!

$$
\delta^{(L+1)} = y - a^{(L+1)}
$$

$$
\delta_i^{(l)} = a_i^{(l)} (1 - a_i^{(l)}) \sum_k \delta_k^{(l+1)} \cdot \Theta_{k,i}^{(l)}
$$

$$
\frac{\partial L(y, \hat{y})}{\partial \Theta_{i,j}^{(l)}} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial \Theta_{i,j}^{(l)}} =: \delta_i^{(l+1)} \cdot a_j^{(l)}
$$

$$
L(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})
$$

$$
g(z) = \frac{1}{1 + e^{-z}} \qquad \delta_i^{(l+1)} = \frac{\partial L(y, \hat{y})}{\partial z_i^{(l+1)}}
$$

Backpropagation \blacksquare Backpropag

