Examples of popular Kernels

. Polynomials of degree exactly £

K(x, x") = (xTx)k
. Polynomials of degree up to k

Kx,x)=(+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
|| x —X/“z

—)
_ —x%/26% 1 201 2 1 3 T
. P(x) = exp [1]

) X X, X
v/ 162 vV 2!04 v/ 360

K(x,x') = exp(-

- Sigmoid
K(x,x") = tanh(yx'x' + r)

X — X Xy X
RBF kernel k(x;, x) = exp{ _ 16 . 12 } K()
samples {(x;, y,) }'_; 20 [

: : : ’.. : : bandwidth :\ o
1 6 i e /o

<
00 02 04
®

-0.4
l
Xal

r
)| T T
3 4 5 1 2 /\
: \
i : f(z) =a0+), 0;K(z,z))
le—)H § \ _//
: S
"-:» e] . ~~
8 - : 8 o
~ . ~ .
8 w._ . R - I8
< - . ‘
o | .]
o . . <
+ it 4 Ll S - 9 1 T L1 — -
-2 -1 0 1 2 -2 -1 0 1 2
T xIr

predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points

RBF kernel k(x, x) = exp{ -

Z(a) = |Pa—yl|5 + la'Pa

The bandwidth ¢ of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor

o=10"3\x=10"*

—— True f(x)

Fitted f(x)
. Data

2
loc; — 12 }

20?2

c=10"°\X=10"%

c=10"2 A=10"*

—— True f(x)
Fitted f(x)

60 : : .
55 ﬁ
50 ’

a5

c=10"1 Ax=10"*

—— True f(x)
Fitted f(x)

J

—— True f(x)

Fitted f(x)
. Data

N
c=10"1 A=10""°
) —— True f(x)
. Fitted f(x)
. Data
flx) = a; K(x;,x) S
1=1

/
.
. ‘-
02 04 06 08 10
x1

RBF kernel for SVMs

W = argmin —ZmaX{O l—y(b+w x)} + /I||w||2

b n
W 11

N\

a,b = arg min max{0,1 —y(b+) aK(x;,x))} + 1 ;o K(x;, x;
& aERnan (0,1 — y(JZI, (%))} %}1 K (x;, X))

Bandwidth o is Iarge enough Bandwidth o is small

Bootstrap

X — X Xy X
RBF kernel k(x;, x) = exp{ _ 16 . 12 } K()
samples {(x;, y,) }'_; 20 [

: : : ’.. : : bandwidth :\ o
1 6 i e /o

<
00 02 04
®

-0.4
l
Xal

r
)| T T
3 4 5 1 2 /\
: \
i : f(z) =a0+), 0;K(z,z))
le—)H § \ _//
: S
"-:» e] . ~~
8 - : 8 o
~ . ~ .
8 w._ . R - I8
< - . ‘
o | .]
o . . <
+ it 4 Ll S - 9 1 T L1 — -
-2 -1 0 1 2 -2 -1 0 1 2
T xIr

predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points

RBF kernel k(x, x) = exp{ -

ZL(a) =

|IPa —yl|l5 + ia'Pa

2
loc; — 12 }

20?2

Pij = K(xia x])

The bandwidth ¢ of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor

o=10"3\x=10"*

—— True f(x)

Fitted f(x)
. Data

0_100A—104

c=10"2 A=10"*

—— True f(x)
Fitted f(x)

\ A
\v / \v/

80 \ ; , + Data
55
50 '

c=10"1 Ax=10"*

—— True f(x)
Fitted f(x)

\/ \/

—— True f(x)

Fitted f(x)
+ Data

a_1mﬂA_100

—— True f(x)
Fitted f(x)

A Data

/
.
02 04 06 08 10
x1

Confidence intervals

Suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

We train a kernel ridge regressor, with some choice of a kernel
K : R*™ > R, with P; = K(x;, x))

. . Example of 5% and 95% percentile
minmize, ||Pa —y||5 + 1a' Pa P ° ° P

curves for predictor f(x)

The resulting pr[edictor IS 0
J&x) = 2 K(x;, x)a,, N 1\
l=1 ™ - ° q/./.\\o \\
where AN
o = (P + AI)_ly e R” o~ //‘\\\ o ‘///// '\
- l/ o \\\\ﬂ,\\ ?/// \‘.
. . . . J, //.;‘. - \\ .//// \
We wish to build a confidence interva S e S \
. . o 4 \\ . "o" |
for our predictor f(x), using ; . % |
5% and 95% percentiles - N

Confidence intervals

e Let's focus on asingle x € R4

e Note that our predictor f(x) is a random
variable, whose randomness comes

from the training data S,,;, = {(x;, ¥},

e |f we know the statistics

(in particular the CDF of the

random variable f(x)) of the predictor,
then the confidence interval with
confidence level 90% is defined as

0.90

v 0.05--

A

1 0.95 -

A

CDE(f(x))

I
5% percentile

95% percentile

if we know the distribution of our predictor f(x),

the green line is the expectation E[f(x)]
and the black dashed lines are the
5% and 95% percentiles in the figure above

e As we do not have the cumulative distribution function (CDF),
we need to approximate them

9

Confidence intervals

Hypothetically, if we can sample as many times as we want,
then we can train B € Z* i.i.d. predictors, each trained on 7 fresh samples to get

empirical estimate of the CDF of y = f(x)

1.0

For b=1,...,B
o Draw n fresh samples {(xl.(b), yl.(b))}?:1 08

CDF ($)

CDF(§) —_,

e Train a regularized kernel
. *k
regression a (b)

n
, Predict O = ZK(xi(b),x)ai*(b)

i=1 02

Probability
o
()]

o
'S
T

Let the empirical CDF of those B predictors = 2 a4 o1 2
{)Ai(b)}f=1 be CDF (9), defined as

CDF () = Ezl{y(b)Sy}
b=1

—_—

Compute the confidence interval using CDF (y)

<>

Bootstrap

* As we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

e Bootstrap is a general tool for assessing statistical accuracy
e We learn it in the context of confidence interval for trained models

e A bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }'_,

e Forb=1,...,B

. Create a bootstrap dataset S ®)
bootstrap

e Train a regularized kernel regression o (b)

n
Predict $¥) = ZK(xi(b),x)ai*(b)
i=1

 Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

Bootstrap

multiple bootstrapped

training a single predictor predictors

90% confidence interval

wn - 1) - . 1o} - .
< < A < A 17\
/o
/ \
™ A ‘ of° o i N ™ "/./'\' \
° °* i ®e\\
. 4 () s/ \
(3] 1 o | o~ N ’ \\ I/l \
9 . > .) // \ ‘//l ‘1 1
.] / \ o N \ .
- | . - | % R L) - 1 T ST~ Y \
TN . = J 7R\ N) \
. ° . r'} ° . 7 \ 9/
4 L4 ® L) i e AN |
(=} . . o 7% N . o A '- - YO\ ~:’/ |
.] | \ o/ |
. . ! N 70
- n > - L) ~— LI /
' ° ' n LX) -1 e
00 05 10 15 20 25 3.0 00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
X X X

Figures from Hastie et al

Neural Networks

Applications of Neural Networks

Self-driving cars Voice assistants Machine translation

Image generation
“a painting of a fox sitting in a field at
sunrise in the style of Claude Monet’

+ many more (images, text, audio)

BUT: Simple methods often still
the best on tabular data.

Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 2010s: state-of-the-art techniques for many
applications:
e Computer Vision (AlexNet 2012)
e Natural language processing
e Speech recognition
e Decision-making / control problems (AlphaGo, Games, robots)
e Limited theory:
e Why do we find good minima with SGD for Non-convex loss?

e Why do we not overfit when # of parameters p is much larger
than # of samples n?

Neural Networks

Agenda:

1.Definitions of neural networks

2.Training neural networks:
1.Algorithm: back propagation

2.Putting it to work

3.Neural network architecture design:
1.Convolutional neural network

Neural Networks

e Neural Network is a parametric family of functions from x € R? to y = hy(x) € R* with

parameter 0 € R?
e Computation graph illustrates the sequence of operations to be performed by a neural network
Input Intermediate Layers Output
Layer

Layer 2 Layer 3

Input x € R4 @ _é 4 i Output y € R

(@)
r \
d nodes Link: maps output of Neuron:
each representing a neuron to input of 1. Input: weighted sum of previous layer
a scalar value of a neuron of the next layer, 2. Apply scalar activation function

each coordinate of x each link has a scalar weight 3. Output: links to the next layer

Sequence of operations performed at a single node

e For a single node with input x € R? the node is defined by e

e Parameters 0 € R%*! (including the intercept/bias)
e Activation functiong : R - R

1
Il +e%
e Another popular choice is Rectified Linear Unit (ReLU): g(z) = max{0,z}

« A common choice is sigmoid function: g(z) =

d
, The node performs hy(x) = g(Z Ql-xl-) = g(0'x)

“bias unit” L0 zo
iy T
‘ QZ‘O \ ZI?() =1 = 6 = 1
L2 02
\90 i I3 i i 93 i

92 / —he((6)

(x)
@/ (T e—9T for sigmoid)

Q

Toy example: What can be represented by a single node with g(z) = sign(z)?

x[1] x[2] y
. 0 O O
. 0 1 O
. 1 0 O
. 1 1 1
What should be the weights?
fo(x) = sign(6, + 0,x[1] + 6,x[2]) fo(x) = sign(6, + 0,x[1] + 6,x[2])

Note that there is a one-to-one correspondence between
a linear classifier and a neural network with a single node of the above form

What cannot be learned?

Neural Network composes simple functions
to make complex functions

e Each layer performs simple operations

e Neural Network (with parameter 8 = (01, 0®)) composes multiple layers of operations

3
Layer 1 has al(z) — g(Z gl(_l)xi >
l
parameter 8 € R4 i=0

(2) Layer 2 has

a
0 \\\ parameter ¥ € R*
\
ANG)
CL§2) 9(2\)\9()
1 \
— h@ (X)
a? o 3
0 hy(x) = 8(Z 6;"a;” >
i=0
o
Layer 1 Layer 2 Layer 3 thicis called

(Input Layer) (Hidden Layer) (Output Layer) a 2-layer Neural Network

(2)
al) = “activation” of unit i in layer

OV = weight matrix stores parameters
from layer J to layerj + 1

(2) g(@(l)az —|—@()21 —I—@()2 —|—@%)37)

= g(08)z0 + Wz, + 02, + 0 25)

@ = (0% z0 + O3 x1 + O3z + O3 5)
ho(x) =) = g(02a® 1+ 0P + 0@,® | (2@

If network has s; units in layer j and s;,; units in layer j+1,
then ©U) has dimension s;,; % (s+1)

@(1) c R3X4 @(2) c Rlxél

22

Example of 2-layer neural network in action

Linear decision boundary
]

1-layer neural networks RN/l
only represents linear classifiers il i

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

A highly non-linear decision boundary can be learned from 2-layer neural networks

a head
anhid

+ hod

* had

¢ hawed
1 » heard
o heed
< hud

3 who'd
~ hoed

Output
head hid laye ‘ who’d hood
= D

Q 500 1000 1400

Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a

finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F, |F(x) — F(x)| <.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.

Multi-layer Neural Network - Binary Classification in {0,1 }

L-th layer plays the role of features, but trained instead of pre-determined

(Learned) feature representation Logistic
This is a 5-dimensional vector regression

a) = x
a@ = g(@M M)

Scalar function g H

is applied
coordinate-wise

a(F) = g(@W g0
5 Cross entropy loss:
7= g(0F) q(F)) L(y,y) =ylog(y) + (1 = ylog(l —)

g(z) = : Binary Logistic Regression

1 +e% with learned feature ¢

Multi-layer Neural Network - Binary Classification

(Learned) feature representation Logistic

a(l) = X regression

0@ = (0 ()

Cross entropy loss:

L(y,y) = ylog(y) + (1 — y)log(l —)

1 Binary
ATn— -‘ | o(2) =max{0,z} g(z)= Logistic
e Why is ReLU better than sigmoid? Il +e2 Regression

Nonlinear activation function

* popular choices of activation function includes

Sigmoid | Leaky RelLU)
0(T) = {7e== ‘ max(0.1z,)
tanh exﬁéhx 1
tanh(x) = X" A
RelLU ELU |
max (0, x) {m z >0
. ale*—1) z<0 - - o

 Why is ReLU better than Sigmoid?
* Why is ELU better than ReLU?

K-class Classification: multiple output units

Multi-class
K
he (X) SHIN Logistic

Regression
(Learned) feature representation ogistic regression
We want:

[1] [0] [0] [0]

0 1 0 0

he (X) ~ 0 he (X) ~ 0 he (X) ~ 1 he (X) ~ 0
| 0] | 0 | | 0 | 1]

when pedestrian when car when motorcycle when truck

Multi-layer Neural Network - Regression

(Learned) feature representation Logistic
regression

a'V = x
0@ = (0 g1

v
\’«lw‘@"/
N\, = AN

ot = g(0WqW) a@ 3B

Square loss:

o(z) = max{0, z}

7= L)L)

Linear model

Training Neural
Networks

a) = x
,@ — @y

a® = g (z®)

Z(l+1) — D40
al+) = g (Z(z+1))

7= g(O®aD)

L(y,y) =ylog(y)+ (1 — y)log(l — y)
1
1l +e%

g(z) =

Gradient Descent: O%) « @) _ nVew L(y,) \vai

Gradient Descent: @(l) — @(l) — UV@(Z)L(Q, Z/U\) \4/

Seems simple enough - what do packages like PyTorch, Tensorflow,
Jax, Theano, Caffe, MxNet provide?

1. Automatic differentiation
1. Given a NN, compute the gradient automatically
2. Compute the gradient efficiently

2. Convenient libraries
1. Set-up NN
2. Choose algorithms (SGD,Adam,etc.) for training
3. Hyper-parameter tuning

3. GPU support
1. Linear algebraic operations

Gradient Descent:

Seems simple enough,
Theano, Cafe, MxNet ¢

1. Automatic differ

2. Convenient Iibra‘

class Net(nn.Module):

def

def

__init__(self):

super(Net, self).__init__()

1 input image channel, 6 output channels, 3x3 square convolution
kernel

self.convl = nn.Conv2d(1, 6, 3)

self.conv2 = nn.Conv2d(6, 16, 3)

an affine operation: y = Wx + b

self.fcl = nn.Linear(16 * 6 * 6, 120) # 6#6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):

Max pooling over a (2, 2) window

x = F.max_pool2d(F.relu(self.convli(x)), (2, 2))

If the size is a square you can only specify a single number
F.max_pool2d(F.relu(self.conv2(x)), 2)

x.view(-1, self.num_flat_features(x))

F.relu(self.fcl(x))

F.relu(self.fc2(x))

self.fc3(x)

return x

X X X X X
n

create your optimizer

optimizer = optim.SGD(net.parameters(), 1lr=0.01)

in your training loop:

optimizer.zero_grad() # zero the gradient buffers

output = net(input)

loss = criterion(output, target)
loss.backward()

optimizer.step() # Does the update

Common training issues

Neural networks are non-convex

- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize and batchsize have large impact on optimizing the
training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!

- Start from a code that someone else has tried and tested

Common training issues

Training is too slow:

- Use larger step sizes, develop step size reduction schedule

- Use GPU resources

- Change batch size

- Use momentum and more advanced optimizers (e.g., Adam)

- Apply batch normalization

- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other
hyperparameters

Back Propagation

Forward Propagation

e \WWe are not writing the intercept at each layer for simplicity
e To compute gradients, we first run forward pass to get the

a') = x
-2 — @M

a® = g (z®)

intermediate representations {a®, ..., a'l}

QX
X)

AN, j\ /‘é‘
X _+#
/22 \y/

: 5
oD =g(zM) %(/,*

‘ (4)
L) — @0, @) bt a

D) = g (z(+D)

L(y, y) = ylog(y) + (1 — y)log(l —)
1

1+ e=

5 = qL+D 8() =

BaCkprOp e Parameters: @) ¢ R4 @() ...~ g grmxm

e Naive implementation takes O(L?) time, as

each layer requires a full forward pass (with O(L) operations)
a(l) —x e R4 and some back-ward pass |
e Backprop requires only O(L) operations

7@ = @) g pm

at” = J (Z(Z)> Train by Stochastic Gradient Descent:
| 00 « @V —y oL(y,)
o) = g(2\V) v 00"
7+ — @by 0
a0+ = g (Z(l+1)> L(y,y) = yllog(’y‘) + (1 — y)log(1 — 3)
g(z) = -
j;\ — g(L+D

Backprop

a'V) = x
-2 — @M

a® = g (z@)

a) — g(z(l))
+D) — @Dg0
a+D) = ¢ (z(l“))

5 = a@tD

Recursively Computed
computed in in the
one backward pass forward pass

« Chain rule with z“*! = @fi)](f)

(I+1)
oL(y,y) _OL(,y) 9z~ _ s+ . 40
90! ozt o0 T

l,] l L,J

Train by Stochastic Gradient Descent:

oL(y, y
@a) - @UJ) . O ly)
’ 00"

L(y,y) = ylog(y) + (1 — y)log(1 — ¥)

1 sU+D A oL(y, y)
l +e= I (I+1)
0z,

g(z) =

Backprop

a) = x
,@ — @y

a® = g (z@)

a® — g(zO)
+D) — @hg0

a+D = ¢ (Z(z+1)>

5 _ D)

aL(ya 3}\) . OL(ya :/y\)) aZi(H_l) —- 5(l+1) . Cl(l)

0o oD el T

s _ OLO-3) _ 3 L0 y) oy

T T T ATy T
(Z+1) ,)
) 1 60 g0
Z+1) _ () (1)
4 = Z ®k,i 8(z")
i=1

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 5(14.1) _ 0L(y9 37\)
1+ e i PECS)
l

g(z) =

Backprop
a) = x

@ = @M
a® =g (z@)

a) — g(z(l))
+D) — @Dg0

al+) = g (Z(l+1))

3;\ — qL+D

oL(y,) _ oL(y,y) oz _. 5D . 4O

00} ozt 000

s _ L0 Y) _ Y oL(y,5) og'*"

i 370 ~ " oD oD

_ I+ . @ /(-1
= 2 5, @k. g'(z")

0]
k
Computed — D1 _ D (+1) . @
in the =4 (1-gq)25k O
k

forward pass

L(y,y) =ylog(y) + (1 = y)log(1 - y)
1 N
- SU+D) _ dL(y,y)
l +e= i 07D

g'(z) = g1 — g(2)

g(z) =

Backprop
oL(y.9) _oL(y.9) oz .
= : =: 0, - a!

,@ — @y

a® = g (z@)

D — D1 = 40 I+ . O
51‘ = 4 (1 4,)25k ®k,i
k

e We can recursively compute all 5@ s in a single backward pass

(l) _ (l) e And compute all gradients via
a = < 5 9
g() OL(y,y) _ oL(y,y) az{"*V SV ()

7D = @0g® 00 el
alth = ¢ (Z(l+1))

L(y, y) = ylog(y) + (1 — y)log(1l —)

1 5(14.1) _ 0L(y, 3}\)
| + ez i PECS)
l

’y\ — gL+ 8(z) =

Backprop

a) = x
-2 — @M

a® = g (z@)

l

a) — g(z(l))
+D) — @Dg0

al+) = g (Z(l+1))

a(L+1) — g(Z(LH))
5)\ — CZ(L+1)

aL(ya 3}\) . aL(ya :/y\)) azi(l+1) —- 5(l+1) . Cl(l)

0o oD el T

D — D1 = 40 I+ . O
51' = 4 (1 4,)25k ®k,i
k

oL(y, y) 0
o= az(L+1) N az(L+1) [y log(g(z(L+1))) + (1 —y)log(l - g(Z(LH)))]
l l 1 _ y
— 7 (LD _ 10 (L+1)
gy §) T T Ty $ 6

=y — g(zI*D) = y — g+

L(y, y) = ylog(y) + (1 — y)log(1l — y)

g(Z) — 1 5(l+1) — 0L(y9 3)\)
1+e2 i 07D
8'(2) = g(2)(1 — g(2))

Recursive Algorithm!
Backprop
SLAD = y _ @+D
a) = x
Z(2) — D40 50 = a(1 - a,-(”)Z 5]§l+1) . @](czz
k

qa® = g (2(2))
: oL(y,y) _oL(y,Y) oz _. st 0

(0) (I+1) (0) i j

a) — g(z(l)) 00! oz, 00! J

+D) — @Dg0

(+1) — (I+1)
“ T8 E)[15, 9) = y1oa(9) + (1 - tog -

1 5(14.1) _ 0L(y, 3)\)
] + e i PRCEY
l

_ a(.L+1) 8(z) =

y

Backpropagation

Set Ag? =0 Vi, (Used to accumulate gradient)
For each training instance (x;,y;)

Set all) = x

Compute {a®, ... all)} via forward propagation

Compute 65 = all) — y,

Compute errors {§(2=1 ... §(2)}

Compute gradients A() _ — Ag) —- a§l)5(l+1)

AY 120 if j#0

Compute ave regularized gradient D(l-) =
P 58 5 “J { A(otherwise

3|H3|'—‘

Average loss + £, regularizer

—2L<yk,)+ Aol
k=1

Intercept do not
have regularizer

