
• Polynomials of degree exactly  
 

• Polynomials of degree up to  
 

• Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function) 
 

•

• Sigmoid 
 

k

K(x, x′) = (xT x′)k

k

K(x, x′) = (1 + xT x′)k

K(x, x′) = exp(−
∥x − x′ ∥2

2

2σ2)
ϕ(x) = exp−x2/2σ2[1, 1

1!σ2
x, 1

2!σ4
x2, 1

3!σ6
x3, …]T

K(x, x′) = tanh(γxT x′ + r)

Examples of popular Kernels

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

2

y
xi

bandwidth : σ

K(xi, x)

x

samples {(xi, yi)}n
i=1

• predictor is taking weighted sum of kernel functions

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

•

• The bandwidth of the kernel regularizes the predictor, and the regularization
coefficient also regularizes the predictor

ℒ(α) = ∥Pα − y∥2
2 + λαTPα

σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y

RBF kernel for SVMs
̂w = arg min

w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

Bandwidth is large enoughσ Bandwidth is smallσ

 
Bootstrap

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

6

y
xi

bandwidth : σ

K(xi, x)

x

samples {(xi, yi)}n
i=1

• predictor is taking weighted sum of kernel functions

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

•

• The bandwidth of the kernel regularizes the predictor, and the regularization
coefficient also regularizes the predictor

ℒ(α) = ∥Pα − y∥2
2 + λαTPα

σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y

Pij = K(xi, xj)

Confidence intervals

• Suppose you have training data drawn i.i.d. from some true
distribution

• We train a kernel ridge regressor, with some choice of a kernel
, with  

• The resulting predictor is  

 ,  

where  

• We wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ Pij = K(xi, xj)
minmizeα ∥Pα − y∥2

2 + λαTPα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (P + λI)−1y ∈ ℝn

f(x)

Example of 5% and 95% percentile 
curves for predictor f(x)

Confidence intervals
• Let's focus on a single

• Note that our predictor is a random  
variable, whose randomness comes  
from the training data

• If we know the statistics  
(in particular the CDF of the  
random variable) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as

• As we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

9

f (x)

CDF(f (x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f (x)
𝔼[f (x)]

0.90

Confidence intervals
• Hypothetically, if we can sample as many times as we want,  

then we can train i.i.d. predictors, each trained on fresh samples to get
empirical estimate of the CDF of

• For b=1,…,B

• Draw fresh samples

• Train a regularized kernel  
regression

• Predict

• Let the empirical CDF of those B predictors 
 be , defined as  

 

• Compute the confidence interval using

B ∈ ℤ+ n
̂y = f (x)

n {(x(b)
i , y(b)

i)}n
i=1

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i

{ ̂y(b)}B
b=1

̂CDF (̂y)

̂CDF (̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y }

̂CDF (̂y)

̂y

CDF(̂y)

̂CDF (̂y)

Bootstrap
• As we cannot sample repeatedly (in typical cases), we use bootstrap

samples instead

• Bootstrap is a general tool for assessing statistical accuracy

• We learn it in the context of confidence interval for trained models

• A bootstrap dataset is created from the training dataset by  
taking (the same size as the training data) examples uniformly at
random with replacement from the training data  

• For b=1,…,B

• Create a bootstrap dataset

• Train a regularized kernel regression

• Predict

• Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i

Bootstrap

12

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval

 
Neural Networks

Applications of Neural Networks

Self-driving cars Voice assistants Machine translation

Image generation
“a painting of a fox sitting in a field at
 sunrise in the style of Claude Monet”

+ many more (images, text, audio)

BUT: Simple methods often still
 the best on tabular data.

Neural Networks

• Origins: Algorithms that try to mimic the brain.
• Widely used in 80s and early 90s; popularity diminished in late 90s.
• Recent resurgence from 2010s: state-of-the-art techniques for many

applications:
• Computer Vision (AlexNet 2012)
• Natural language processing
• Speech recognition
• Decision-making / control problems (AlphaGo, Games, robots)

• Limited theory:
• Why do we find good minima with SGD for Non-convex loss?
• Why do we not overfit when # of parameters is much larger

than # of samples ?
p

n

Neural Networks

Agenda:

1.Definitions of neural networks

2.Training neural networks:
1.Algorithm: back propagation
2.Putting it to work

3.Neural network architecture design:
1.Convolutional neural network

Neural Networks
• Neural Network is a parametric family of functions from to with

parameter
• Computation graph illustrates the sequence of operations to be performed by a neural network

x ∈ ℝd ̂y = hθ(x) ∈ ℝk

θ ∈ ℝp

 nodes
each representing
a scalar value of
each coordinate of

d

x

Input
Layer

Input x ∈ ℝd

x1

x2

xd

x3

Neuron/node/unit
Intermediate Layers Output

Layer
Layer 2 Layer 3

Output ̂y ∈ ℝk

Link: maps output of
a neuron to input of
a neuron of the next layer,
each link has a scalar weight

Neuron:
1. Input: weighted sum of previous layer
2. Apply scalar activation function
3. Output: links to the next layer

Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X

• For a single node with input , the node is defined by
• Parameters (including the intercept/bias)
• Activation function

• A common choice is sigmoid function:

• Another popular choice is Rectified Linear Unit (ReLU):

• The node performs

x ∈ ℝd

θ ∈ ℝd+1

g : ℝ → ℝ

g(z) =
1

1 + e−z

g(z) = max{0,z}

hθ(x) = g(
d

∑
i=0

θixi) = g(θT x)

Sequence of operations performed at a single node

g(⋅) (for sigmoid)

Toy example: What can be represented by a single node with ?g(z) = sign(z)

 x[1] x[2] y

• 0 0 0

• 0 1 1

• 1 0 1

• 1 1 1

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

 x[1] x[2] y

• 0 0 0

• 0 1 0

• 1 0 0

• 1 1 1

θ0

θ1

θ2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network with a single node of the above form

fθ(x) = sign(θ0 + θ1x[1] + θ2x[2]) fθ(x) = sign(θ0 + θ1x[1] + θ2x[2])

h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

Neural Network composes simple functions  
to make complex functions

Layer 1 has
parameter θ(1) ∈ ℝ3×4

θ(1)
10

θ(1)
11

θ(1)
12

θ(1)
13

a(2)
1 = g(

3

∑
i=0

θ(1)
1i xi)

• Each layer performs simple operations
• Neural Network (with parameter) composes multiple layers of operationsθ = (θ(1), θ(2))

Layer 2 has
parameter θ(2) ∈ ℝ4

θ(2)
0θ(2)

1

θ(2)
2

θ(2)
3 hθ(x) = g(

3

∑
i=0

θ(2)
i a(2)

i)

This is called
a 2-layer Neural Network

14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)
x0 a (2)

0

22

Example of 2-layer neural network in action
1-layer neural networks
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

A highly non-linear decision boundary can be learned from 2-layer neural networks

Linear decision boundary

Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.

Multi-layer Neural Network - Binary Classification in {0,1}

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L)) L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) =
1

1 + e−z
Binary Logistic Regression
with learned feature a(4)

This is a 5-dimensional vector

Scalar function
is applied
coordinate-wise

g

(Learned) feature representation Logistic
regression

-th layer plays the role of features, but trained instead of pre-determinedL

Θ(1) Θ(2) Θ(L−1)

Θ(L)

Cross entropy loss:

Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

g(z) =
1

1 + e−z

Binary
Logistic
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

(Learned) feature representation Logistic
 regression

• Why is ReLU better than sigmoid?

ReLUSigmoid

Sigmoid

ReLU

Cross entropy loss:

Θ(1) Θ(2) Θ(L−1)

Θ(L)

Nonlinear activation function
• popular choices of activation function includes

• Why is ReLU better than Sigmoid?

• Why is ELU better than ReLU?

Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class
Logistic
Regression

-class Classification: multiple output unitsK

(Learned) feature representation Multi-class Logistic regression

Multi-layer Neural Network - Regression

a(1) = x
…

…

5

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

(Learned) feature representation Logistic
 regression

Square loss:

Linear model

Training Neural
Networks

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) =
1

1 + e−z

⇥(l) ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))

⇥(l) ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough - what do packages like PyTorch, Tensorflow,
Jax, Theano, Caffe, MxNet provide?

1. Automatic differentiation
1. Given a NN, compute the gradient automatically
2. Compute the gradient efficiently

2. Convenient libraries
1. Set-up NN
2. Choose algorithms (SGD,Adam,etc.) for training
3. Hyper-parameter tuning

3. GPU support
1. Linear algebraic operations

Gradient Descent:

Gradient Descent:
⇥(l) ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow,
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation

2. Convenient libraries

Gradient Descent:

Common training issues

Neural networks are non-convex
- For large networks, gradients can blow up or go to zero.
This can be helped by batchnorm or ResNet architecture

- Stepsize and batchsize have large impact on optimizing the
training error and generalization performance

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can
significantly improve training

-Overfitting is common and not undesirable: typical to achieve 100%
training accuracy even if test accuracy is just 80%

- Making the network bigger may make training faster!

- Start from a code that someone else has tried and tested

Training is too slow:
- Use larger step sizes, develop step size reduction schedule
- Use GPU resources
- Change batch size
- Use momentum and more advanced optimizers (e.g., Adam)
- Apply batch normalization
- Make network larger or smaller (# layers, # filters per layer, etc.)

Test accuracy is low
- Try modifying all of the above, plus changing other

hyperparameters

Common training issues

Back Propagation

Forward Propagation

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) =
1

1 + e−z

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

• We are not writing the intercept at each layer for simplicity
• To compute gradients, we first run forward pass to get the

intermediate representations {a(2), …, a(L)}

Backprop

g(z) =
1

1 + e−z

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x ∈ ℝd

z(2) = Θ(1)a(1) ∈ ℝm

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y)
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:

• Parameters: ,
• Naive implementation takes time, as

each layer requires a full forward pass (with operations)
and some backward pass

• Backprop requires only operations

Θ(1) ∈ ℝm×d Θ(2), ⋯Θ(L−1) ∈ ℝm×m

O(L2)
O(L)

O(L)

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i ≜

∂L(y, ̂y)
∂z(l+1)

i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l)) Θ(l)
i, j ← Θ(l)

i, j − η
∂L(y, ̂y)

∂Θ(l)
i, j

Train by Stochastic Gradient Descent:

• Chain rule with z(ℓ+1)
i = Θ(ℓ)

i, j a(ℓ)
j

Computed
in the
forward pass

Recursively
computed in
one backward pass

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y)
∂z(l)

i
= ∑

k

∂L(y, ̂y)
∂z(l+1)

k

δ(ℓ+1)
k

⋅
∂z(l+1)

k

∂z(l)
i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))
Θ(l)

k,i g′ (z(l)
i)

z(ℓ+1)
k =

m

∑
i=1

Θ(l)
k,i g(z(l)

i)

Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
… g(z) =

1
1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y)
∂z(l)

i
= ∑

k

∂L(y, ̂y)
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

= ∑
k

δ(l+1)
k ⋅ Θ(l)

k,i g′ (z(l)
i)

= a(l)
i (1 − a(l)

i)∑
k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(l) = g(z(l))

g′ (z) = g(z)(1 − g(z))

Computed
in the
forward pass

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
• We can recursively compute all ’s in a single backward pass
• And compute all gradients via

δ(ℓ)

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

δ(L+1)
i =

∂L(y, ̂y)
∂z (L+1)

i
=

∂
∂z (L+1)

i
[y log(g(z(L+1))) + (1 − y)log(1 − g(z(L+1)))]

= y − g(z(L+1)) = y − a(L+1)

=
y

g(z(L+1))
g′ (z(L+1)) −

1 − y
1 − g(z(L+1))

g′ (z(L+1))

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

g′ (z) = g(z)(1 − g(z))
a(L+1) = g(z(L+1))

Backprop

g(z) =
1

1 + e−z δ(l+1)
i =

∂L(y, ̂y)
∂z(l+1)

i

Recursive Algorithm!

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i)∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

δ(L+1) = y − a(L+1)

∂L(y, ̂y)
∂Θ(l)

i, j
=

∂L(y, ̂y)
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

Backpropaga1on'

44'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reachedD(l) is'the'matrix'of'par1al'deriva1ves'of'J(Θ)'''

Based'on'slide'by'Andrew'Ng'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(Used'to'accumulate'gradient)'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(xk, yk)
xk

Intercept do not
have regularizer

Average loss + regularizer ℓ2
1
n

n

∑
k=1

L(yk, ̂y) + λ∥Θ∥2
2

