
• Polynomials of degree exactly  
 
                              

• Polynomials of degree up to  
 
                              

• Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function) 
 

                               

•

• Sigmoid 
 
                               

k

K(x, x′ ) = (xT x′ )k

k

K(x, x′ ) = (1 + xT x′ )k

K(x, x′ ) = exp( −
∥x − x′ ∥2

2

2σ2 )
ϕ(x) = exp−x2/2σ2[1, 1

1!σ2
x, 1

2!σ4
x2, 1

3!σ6
x3, …]T

K(x, x′ ) = tanh(γxT x′ + r)

Examples of popular Kernels



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

2

y
xi

bandwidth : σ

K(xi, x)

x

samples {(xi, yi)}n
i=1

• predictor  is taking weighted sum of  kernel functions 

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

• 


• The bandwidth  of the kernel regularizes the predictor, and the regularization 
coefficient  also regularizes the predictor

ℒ(α) = ∥Pα − y∥2
2 + λαTPα

σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y



RBF kernel for SVMs
̂w = arg min

w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

Bandwidth  is large enoughσ Bandwidth  is smallσ



 
Bootstrap



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

6

y
xi

bandwidth : σ

K(xi, x)

x

samples {(xi, yi)}n
i=1

• predictor  is taking weighted sum of  kernel functions 

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n



RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

• 


• The bandwidth  of the kernel regularizes the predictor, and the regularization 
coefficient  also regularizes the predictor

ℒ(α) = ∥Pα − y∥2
2 + λαTPα

σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y

Pij = K(xi, xj)



Confidence intervals

• Suppose you have training data  drawn i.i.d. from some true 
distribution 


• We train a kernel ridge regressor, with some choice of a kernel
, with  

       

• The resulting predictor is  

       ,  

where  
         


• We wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles 

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ Pij = K(xi, xj)
minmizeα ∥Pα − y∥2

2 + λαTPα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (P + λI)−1y ∈ ℝn

f(x)

Example of 5% and 95% percentile 
curves for predictor f(x)



Confidence intervals
• Let's focus on a single 


• Note that our predictor  is a random  
variable, whose randomness comes  
from the training data 


• If we know the statistics  
(in particular the CDF of the  
random variable ) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as 


• As we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

9

f (x)

CDF( f (x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f (x)
𝔼[ f (x)]

0.90



Confidence intervals
• Hypothetically, if we can sample as many times as we want,  

then we can train  i.i.d. predictors, each trained on  fresh samples to get 
empirical estimate of the CDF of 


• For b=1,…,B


• Draw  fresh samples 


• Train a regularized kernel  
regression 


• Predict 


• Let the empirical CDF of those B predictors 
 be , defined as  

 

     


• Compute the confidence interval using 

B ∈ ℤ+ n
̂y = f (x)

n {(x(b)
i , y(b)

i )}n
i=1

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i

{ ̂y(b)}B
b=1

̂CDF ( ̂y)

̂CDF ( ̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y }

̂CDF ( ̂y)

̂y

CDF( ̂y)

̂CDF ( ̂y)



Bootstrap 
• As we cannot sample repeatedly (in typical cases), we use bootstrap 

samples instead 

• Bootstrap is a general tool for assessing statistical accuracy

• We learn it in the context of confidence interval for trained models


• A bootstrap dataset is created from the training dataset by  
taking  (the same size as the training data) examples uniformly at 
random with replacement from the training data  

• For b=1,…,B


• Create a bootstrap dataset 


• Train a regularized kernel regression 


• Predict    


• Compute the empirical CDF from the bootstrap datasets, and compute 
the confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i



Bootstrap 

12

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval



 
Neural Networks 



Applications of Neural Networks

Self-driving cars Voice assistants Machine translation

Image generation 
“a painting of a fox sitting in a field at  
 sunrise in the style of Claude Monet”

+ many more (images, text, audio)

BUT: Simple methods often still    
          the best on tabular data.



Neural Networks

• Origins: Algorithms that try to mimic the brain. 
• Widely used in 80s and early 90s; popularity diminished in late 90s. 
• Recent resurgence from 2010s: state-of-the-art techniques for many 

applications:  
• Computer Vision (AlexNet 2012) 
• Natural language processing 
• Speech recognition  
• Decision-making / control problems (AlphaGo, Games, robots)  

• Limited theory:  
• Why do we find good minima with SGD for Non-convex loss? 
• Why do we not overfit when # of parameters  is much larger  

than # of samples ? 
p

n



Neural Networks

Agenda: 

1.Definitions of neural networks 

2.Training neural networks: 
1.Algorithm: back propagation 
2.Putting it to work 

3.Neural network architecture design: 
1.Convolutional neural network 



Neural Networks
• Neural Network is a parametric family of functions from  to  with 

parameter  
• Computation graph illustrates the sequence of operations to be performed by a neural network

x ∈ ℝd ̂y = hθ(x) ∈ ℝk

θ ∈ ℝp

 nodes 
each representing  
a scalar value of  
each coordinate of  

d

x

Input 
Layer

Input x ∈ ℝd

x1

x2

xd

x3

Neuron/node/unit
Intermediate Layers Output 

Layer
Layer 2 Layer 3

Output ̂y ∈ ℝk

Link: maps output of  
a neuron to input of  
a neuron of the next layer,  
each link has a scalar weight

Neuron:  
1. Input: weighted sum of previous layer 
2. Apply scalar activation function 
3. Output: links to the next layer



Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X

• For a single node with input , the node is defined by 
• Parameters  (including the intercept/bias) 
• Activation function  

• A common choice is sigmoid function:  

• Another popular choice is Rectified Linear Unit (ReLU):  

• The node performs 

x ∈ ℝd

θ ∈ ℝd+1

g : ℝ → ℝ

g(z) =
1

1 + e−z

g(z) = max{0,z}

hθ(x) = g(
d

∑
i=0

θixi) = g(θT x)

Sequence of operations performed at a single node

g( ⋅ ) ( for sigmoid )



Toy example: What can be represented by a single node with ?g(z) = sign(z)

    x[1] x[2]  y 

• 0     0     0

• 0     1     1

• 1     0     1

• 1     1     1  

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

    x[1] x[2]  y 

• 0     0     0

• 0     1     0

• 1     0     0

• 1     1     1  

θ0

θ1

θ2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network with a single node of the above form

fθ(x) = sign(θ0 + θ1x[1] + θ2x[2]) fθ(x) = sign(θ0 + θ1x[1] + θ2x[2])



h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

Neural Network composes simple functions  
to make complex functions

Layer 1 has  
parameter θ(1) ∈ ℝ3×4

θ(1)
10

θ(1)
11

θ(1)
12

θ(1)
13

a(2)
1 = g(

3

∑
i=0

θ(1)
1i xi )

• Each layer performs simple operations 
• Neural Network (with parameter ) composes multiple layers of operationsθ = (θ(1), θ(2))

Layer 2 has  
parameter θ(2) ∈ ℝ4

θ(2)
0θ(2)

1

θ(2)
2

θ(2)
3 hθ(x) = g(

3

∑
i=0

θ(2)
i a(2)

i )

This is called  
a 2-layer Neural Network



14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)
x0 a (2)

0
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Example of 2-layer neural network in action
1-layer neural networks  
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2 
formants (features) 

A highly non-linear decision boundary can be learned from 2-layer neural networks 

Linear decision boundary



Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.



Multi-layer Neural Network - Binary Classification in {0,1}

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L)) L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) =
1

1 + e−z
Binary Logistic Regression  
with learned feature a(4)

This is a 5-dimensional vector

Scalar function   
is applied  
coordinate-wise 

g

(Learned) feature representation Logistic  
regression

-th layer plays the role of features, but trained instead of pre-determinedL

Θ(1) Θ(2) Θ(L−1)

Θ(L)

Cross entropy loss: 



Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) =
1

1 + e−z

Binary 
Logistic 
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

(Learned) feature representation Logistic 
 regression

• Why is ReLU better than sigmoid?

ReLUSigmoid

Sigmoid

ReLU

Cross entropy loss: 

Θ(1) Θ(2) Θ(L−1)

Θ(L)



Nonlinear activation function
• popular choices of activation function includes

• Why is ReLU better than Sigmoid?

• Why is ELU better than ReLU?



Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class 
Logistic 
Regression

-class Classification: multiple output unitsK

(Learned) feature representation Multi-class Logistic regression



Multi-layer Neural Network - Regression

a(1) = x
…

…

5

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

(Learned) feature representation Logistic 
 regression

Square loss: 

Linear model



Training Neural 
Networks 



a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))



⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough - what do packages like PyTorch, Tensorflow, 
Jax, Theano, Caffe, MxNet provide?

1. Automatic differentiation  
1. Given a NN, compute the gradient automatically 
2. Compute the gradient efficiently 

2. Convenient libraries 
1. Set-up NN 
2. Choose algorithms (SGD,Adam,etc.) for training 
3. Hyper-parameter tuning  

3. GPU support 
1. Linear algebraic operations

Gradient Descent:



Gradient Descent:
⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

Gradient Descent:



Common training issues

Neural networks are non-convex
- For large networks, gradients can blow up or go to zero. 
This can be helped by batchnorm or ResNet architecture  

- Stepsize and batchsize have large impact on optimizing the 
training error and generalization performance 

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can 
significantly improve training 

-Overfitting is common and not undesirable: typical to achieve 100% 
training accuracy even if test accuracy is just 80% 

- Making the network bigger may make training faster! 

- Start from a code that someone else has tried and tested



Training is too slow: 
- Use larger step sizes, develop step size reduction schedule 
- Use GPU resources  
- Change batch size 
- Use momentum and more advanced optimizers (e.g., Adam) 
- Apply batch normalization 
- Make network larger or smaller (# layers, # filters per layer, etc.) 

Test accuracy is low 
- Try modifying all of the above, plus changing other 

hyperparameters 

Common training issues



Back Propagation



Forward Propagation

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

• We are not writing the intercept at each layer for simplicity 
• To compute gradients, we first run forward pass to get the 

intermediate representations {a(2), …, a(L)}



Backprop

g(z) =
1

1 + e−z

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x ∈ ℝd

z(2) = Θ(1)a(1) ∈ ℝm

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y )
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:

• Parameters: ,  
• Naive implementation takes  time, as  

each layer requires a full forward pass (with  operations)  
and some backward pass 

• Backprop requires only  operations

Θ(1) ∈ ℝm×d Θ(2), ⋯Θ(L−1) ∈ ℝm×m

O(L2)
O(L)

O(L)



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i ≜

∂L(y, ̂y )
∂z(l+1)

i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l)) Θ(l)
i, j ← Θ(l)

i, j − η
∂L(y, ̂y )

∂Θ(l)
i, j

Train by Stochastic Gradient Descent:

• Chain rule with z(ℓ+1)
i = Θ(ℓ)

i, j a(ℓ)
j

Computed  
in the  
forward pass

Recursively 
computed in  
one backward pass



Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y )
∂z(l)

i
= ∑

k

∂L(y, ̂y )
∂z(l+1)

k

δ(ℓ+1)
k

⋅
∂z(l+1)

k

∂z(l)
i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(l) = g(z(l))
Θ(l)

k,i g′ (z(l)
i )

z(ℓ+1)
k =

m

∑
i=1

Θ(l)
k,i g(z(l)

i )



Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
… g(z) =

1
1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y )
∂z(l)

i
= ∑

k

∂L(y, ̂y )
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

= ∑
k

δ(l+1)
k ⋅ Θ(l)

k,i g′ (z(l)
i )

= a(l)
i (1 − a(l)

i )∑
k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(l) = g(z(l))

g′ (z) = g(z)(1 − g(z))

Computed  
in the  
forward pass



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
• We can recursively compute all ’s in a single backward pass 
• And compute all gradients via  

            

δ(ℓ)

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(L+1)
i =

∂L(y, ̂y )
∂z (L+1)

i
=

∂
∂z (L+1)

i
[y log(g(z(L+1))) + (1 − y)log(1 − g(z(L+1)))]

= y − g(z(L+1)) = y − a(L+1)

=
y

g(z(L+1))
g′ (z(L+1)) −

1 − y
1 − g(z(L+1))

g′ (z(L+1))

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

g′ (z) = g(z)(1 − g(z))
a(L+1) = g(z(L+1))



Backprop

g(z) =
1

1 + e−z δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

Recursive Algorithm!

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

δ(L+1) = y − a(L+1)

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j



Backpropaga1on'

44'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reachedD(l) is'the'matrix'of'par1al'deriva1ves'of'J(Θ)'''

Based'on'slide'by'Andrew'Ng'
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n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached
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Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
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Set a(1) = xi
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(l)
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Compute avg regularized gradient D(l)
ij =
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1
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(l)
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(Used'to'accumulate'gradient)'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

(xk, yk)
xk

Intercept do not 
have regularizer

Average loss +  regularizer ℓ2
1
n

n

∑
k=1

L(yk, ̂y ) + λ∥Θ∥2
2


