Kernels

What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

e Use features, for example,
X = (xl,xz) e R? ¢ ¢3(X)
5 4 TTTT—, X

b2

$hr(x)

Can you suggest some features
¢h1(x1, Xp), Pr(x1, X5), P3(x1, X5) such that this data is
linearly separable in this 3-dimensional space?
e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

This data is not linearly
separable

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

Example

4
3 _ -
i - - -

— 1 = e #

X 0 - + :. -+#
-1 - = +_+ +
DY - +
-3

-5 -4 -3 -2 -1 O

data: x in 2-dimensions, y in {+1,-1}

features: polynomials

x[1]

1 2

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features

ho (CIJ) =
hi(x) = z[1]
ho(x) = z[2]
hs(x) = z[1]?
ha(x) = x[2]?

’U]Qho(x) -+ wlhl(x) -+ wghQ(ZE‘) -+ ..

5

Learned decision boundary

Flw) ="wo + wiz[1] + wyw(2) :
: \ - - -
| i oF g 0 . Y
| | -_ 1 - ey s
A -2~ - ¥
CB[Q] “ | 35 1 0 1 2
‘ ! -5 -4 -3 -2 -
| T|1] x(1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth

Learned decision boundary

* \\\»—\\ : a - 4

' ‘ -:—f?'"::

: { 7 7 ; : 1 . + == #
' : 57 ' . 0 - + + =

x[2]

1 e X
. - +
| -3
. -5 -4 -3 -2 -1 0 1 2
wll] X[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

s *® Simple classifier models have smooth

Learned decision boundary

4
y | 1| - +
~ e -
% 0 - * + = .p.
1 e X
-3 - +
o b =353 3 2 -1 0 1 2
.33[1] x[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

. * Simple classifier models have smooth

Adding quadratic features

4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

x[1]

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models

8

e Decision boundary becomes more complex

Adding quadratic features

4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

x[1]

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models

9

e Decision boundary becomes more complex

Adding quadratic features

4
3 _ -
, - - -
g ; - -+-I t"'""
. - B4 7
Y - + +
25 4 -3 2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
hi(x) x[1] 1.39
ha(x) x[2] -0.59
hs(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96

hs(x) x[1]x[2] Omuitted

e Adding more features gives more complex models

., * Decision boundary becomes more complex

Addlng hlgher degree polynomial features

Overfitting leads to
non-generalization

\

-3

-5 -4 -3 -2 -1 0 1 2

ho(x) 1 .

h(x) x[1]
ha(x) x[2]
hs(x) (x[1])?
ha(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x) (x[2])?
h11(x) (x[1])® 0.8
hio(x) (x[2])8 -8.6

Coefficient values
getting large

Adding higher degree polynomial features

. Overfitting leads to
A = T non-generalization

4
3 - -
- -
2 - -
—
E 0 - + + .
- | . -h +-+ +
‘ . ‘ . : a8, . 5 1 _ + +
oefficien —3
e | vae | SR SR I
:fi:: X[L ' Coefficient values x[1]
ha() x[2] getting large

hs(x) (x[1])?
h(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x) (x[2])?
h11(x) (x[1]) 0.8
hio(x) (x[2])8 -8.6

Adding higher degree polynomial features

Overfitting leads to
non-generalization

4
3 — - —
2 — —
% 0 o - = .
1 - =4 4t
A\ . \ 1 +
. : .) . . " -2 -
ho(x) 1 216 o x[1]
) (1] _ Coefficient values
hs(x) x(2] . getting large
hs(x) (x[1])? .
ha(x) (x[2])? :
hs(x) (x[1]) .
he(x) (x[2])? :
hy(x) (x[1])* .
hg(x) — (x[2])* :
EURE e Qverfitting leads to very large values of
h11(x) (x[1])® 0.8 _— e o o
o w0 f(z) = woho(x) +wihi(z) + waha(x) +

Creating Features

e Feature mapping ¢ : RY - RP maps original data

into a rich and high-dimensional feature space (usually d < p)

g
For example, for d>1,

one can generate vectors

For example, in d=1, one can use

¢1(x> M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
¢k()€) N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p

Creating Features

e Feature mapping ¢ : RY - RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use . J
one can generate vectors {uj}jzl CR

¢1(x> M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
¢k()€) N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})
and if we can find a kernel for our feature map such that

K(x.x) = ¢(x) - p(x')

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})

and if we can find a kernel for our feature map such that
K, x') = ¢@) - ()

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data

An example of a kernel

An example of a kernel xc K zﬂ(%)éﬁg

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§X1X22, x23)

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§X1X22, x23)

e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

/ ’3 12 712
Well, ¢p(x) - p(x') = (xf,\/gxlzxz, \/gxlxzz, x;) - (x] ,\/_x1 X5, \/_xlx2 ,x57)

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

3 2 2
Well, ¢p(x) - p(x') = (xf,\/_xlzxz, \/_xlxzz, 5) - (] \/_x{ X5, \/_xixé ,x57)
= - x> +/3072 V3P + V303 - V/3ains 4 g

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

— (3 2 2 .3 3 2 2
Well, ¢p(x) - p(x') = (xl,\/_x1 X5, \/_xlxz,x) - (x ,\/_xi X5, \/_xixé ,x57)
= x1 S 4 @ X5 @c{zxé + x1x22 . {xéz + x2 x§3

— 13 12 1 2712 /3
=Xj * X 3 4 3x7 X1 x5 + 3x,x5%1 %57 + X5 - X

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

— (3 2 2 .3 3 2 2
Well, p(x) - p(x') = (xl,\/_x1 X, \/_xlxz, 5) - (¢ \/_x{ X5, \/_xixé ,x2
=} - +\/_ xiy - /3507 +4/3xpx7 -/ 3xixg” + x5 - xp]
& X - 3 4 3x; 2, 25 + 3x1x22x{x52 +x; - x5

\)— ((x, xz)T(xl, x}))3

An example of a kernel

e Suppose we have the map ¢(x) = (x13, \/gxlzxz, \/§x1x22, x23)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

3 2 2
Well, ¢p(x) - p(x') = (xf,\/_xlzxz, \/_xlxzz, 5) - (] \/_x{ X5, \/_xixé ,x57)
= - x> +/3072 V3P + V303 - V/3ains 4 g

— 13 12 1 2712 /3
= X; X7+ 3x7 X1 x5 + 3x,x5%1 %57 + X5 - X

= (03], 1)) |
ey = k(x, X>

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

3 2 2
Well, ¢p(x) - p(x') = (xf,\/_xlzxz, \/_xlxzz, 5) - (] \/_x{ X5, \/_xixé ,x57)
= - x> +/3072 V3P + V303 - V/3ains 4 g
=x; - X7+ 3x; 2, 25 + 3x1X5 2x! x5 + X; - x5
T
— ((-xla-XZ) (x17x2))3

— (xTx/)3

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

Well, p(x) - p(x') = (xf,ﬁx%xz, V3x,x3, x3) - (%, 4/3x07x5, v/ 3x0x5%, x77)
=2 1 /30y - /37 + V3 - 3 4 g g
= x; -x1 + 3x; x2x12x§+ 3x1x22x{x52+x2 xé3

= ((x, %) ' (x], 63))°

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

Well, p(x) - p(x') = (X13, \/§x12x2, \/§x1x22, x3) ' (xiBa \/_xizxé’ \/_xixéz’ x2
= x7 - xp? +/3x2x, - /3175 + V/3x,x2 - /3x057 + x5 - x5

— 13 12 1 2712 /3
= X; X7+ 3x7 X1 x5 + 3x,x5%1 %57 + X5 - X

= ((x, %) ' (x], 63))°

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!
(There is always a kernel, the question is whether it can be computed more efficiently
than explicitly going through this dot product calculation).

An example of a kernel

e Suppose we have the map ¢(x) = (x1 , \/_x1 Xy, \/_x1x2,
e Mapping 2-d vector into 3-d, with a degree-3 polynomlal
e Does this map have a kernel?

o IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x") for all x, x'?

Well, p(x) - p(x') = (X13, \/§x12x2, \/§x1x22, x3) ' (xiBa \/_xizxé’ \/_xixéz’ x2
= x7 - xp? +/3x2x, - /3175 + V/3x,x2 - /3x057 + x5 - x5

— 13 12 1 2712 /3
= X; X7+ 3x7 X1 x5 + 3x,x5%1 %57 + X5 - X

= ((x, %) ' (x], 63))°

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!
(There is always a kernel, the question is whether it can be computed more efficiently
than explicitly going through this dot product calculation).

Kernel (i.e., dot-product) of polynomial features

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k
X1

, Px) = [x] fork = 1and d = 2, then K(x, x') = xx] + x,x5

2

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

e Px) =

P(x) =

X

xp

x3

X1Xo

_x2x1 |

1 / f :
%, fork =1andd = 2, then K(X,)C) = X1X + X2 Xo

fork =2andd = 2,

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

e Px) =

P(x) =

X

xp

x3

X1Xo

1 / f :
%, fork =1andd = 2, then K(X,)C) = X1X + X2 Xo

fork =2andd = 2,

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*

e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)
takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by
only computing the kernel, then computing { K(x;, x;) };_, takes memory/time dn

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) };?:1 takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Ridge Linear Regression as Kernels

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + lllwll%
weR

e As an exercise, we will represent prediction with w using linear kernel

defined as K(x, x') = x'x’

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with w using linear kernel

i@

(V.9

defined as K(x, x") = xlx’ C\”"’é {ofw
e Training: W = (X'X + 1L,) X'y A7
= X'XX? + 1,)ty (when n < d via linear algebra)

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’

e Training: w

(when n < d via linear algebra)

e Prediction:(x,.,,

A —
ynew —

— T(XXT + I

) - Xxnew

< =

nxn

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — leI% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)

e Prediction: x,,., € R?

/\T

y\new = W X
=y'XX? + 1,)" Xx, .,

e Hence, to make prediction on any future data points, all we need to know is

new

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)
e Prediction: x,,., € R?

ynew= wo X

Mknow is
K(xl,xl) K(xl,xZ) ee

K(x,,x) K(x,x,)

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg min ||y — Xw||2 + /1||w||2
weR?

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
. Training@ = (X'X + I,) X'y
= X'XX? + 1,)ty (when n < d via linear algebra)
e Prediction: x,,., € R?

/\T

yIICW= wo X

ncw
= y!XXT+ AL,)" Xx, .,
e Hence, to make predictionon any future data points, all we need to know is
K(xl, neW) K(xl, Xy) K(xl, X5) |
XX o = : € R", and XX’ = : : e R™"
o _K(xn, xnew)_ _K(xn, X;) K(xn, X5)]

e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to

access the features via kernel K(x;, x;) and K(x) and not the features ¢ (x;)

l’ 1’1€W

The Kernel Trick

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

The Kernel Trick
. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a_choice of\a loss, use a linear predictor of the form

n a
W = Z a.x;| for some@= : | € R"to be learned
i=1

a,

n
Predictionis y .o, = W " Xpow = Z A; X; Xpew
i=1

The Kernel Trick
. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a choice of a loss, use a linear predictor of the form
n a1
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
Predictionis y .o, = W " Xpow = Z A; X; Xpew
i=1

2. Design an algorithm that finds a while accessing the data only via {xiTx]-}

The Kernel Trick
. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a choice of a loss, use a linear predictor of the form
n a1
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
Predictionis y .o, = W " Xpow = Z A; X; Xpew
i=1

2. Design an algorithm that finds a while accessing the data only via {xiTx]-}

3| Substitute xiTx]- with K(x;, x]-), and find a|using the above algorithm from step 2.

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

- RY%x RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n

Predictionis y .o, = W " Xpow = Z A; X; Xpew

i=1

2. Design an algorithm that finds a while accessing the data only via {xiij}

3.

n
4. Make prediction with y .. = Z a,K(x;, x,

Substitute xiij with K(x;, xj), and find a

i=1

. T .
(replacing x; X, with K(x;, X,..,))

using the above algorithm from step 2.

ew)

4

The Kernel Trick for regularized least squares

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

(Step 1. Use a linear predictor)

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

mn
There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1

The Kernel Trick for regularized least squares

S

W = argmln Z(y, wlx)* + Allwll3
=1

T

here exists an a« € R": w = g O T

i=1 j=1 i=1 j=1 OFLM(
I

(Step 1. Use a linear predictor)

The Kernel Trick for regularized least squares

S

W o= argmln Z(y, wix)® + Allwll;
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zoz] Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of)

:argmmg E a; K(xi,x;)) +)\§ E a0 K (i, z5)
1=1

1=1 5=1

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) +)\E E a0 K (i, z5)
1=1

1=1 5=1

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) —I—)\E E a0 K (i, z5)
1=1

1=1 5=1

(Step 3. Switch inner product with kernel)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) —I—)\E E a0 K (i, z5)
1=1

1=1 5=1

(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = (¢(x)), p(x,))

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zoz] Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) —I—)\E E a0 K (i, z5)
1=1

1=1 5=1

(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = (¢(x)), p(x,))

(Solve for &y orner)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) +)\E E a0 K (i, z5)
1=1

1=1 5=1

(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = ($(x;), ¢(x)))

(Solve for &y orner)

Th us, akemel (P ~+ ﬂIan) Yy

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of)

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

_) 2 T
= argmin, | |y @l 5 +4a Pa Where P; = K(x;, x;) = ((x,), Pp(x))

(Solve for &y orner)

Th us, akemel (P ~+ ﬂIan) Yy

Examples of popular Kernels

. Polynomials of degree exactly k

K(x,x') = (x"x)*
. Polynomials of degree up to k&

K(x,x)=(1+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

| x — x,”%)

K(x,x") = exp(~ T

- Sigmoid
K(x,x") = tanh(yx’x' 4 r)

