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What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)




What if the data is not linearly separable?

e Use features, for example,
X = (xl,xz) e R? ¢ ¢3(X)
5 4 TTTT—, X

b2

$hr(x)

Can you suggest some features
¢h1(x1, Xp), Pr(x1, X5), P3(x1, X5) such that this data is
linearly separable in this 3-dimensional space?
e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

This data is not linearly
separable

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features
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: adding more polynomial features

Polynomial
features

ho (CIJ) =
hi(x) = z[1]
ho(x) = z[2]
hs(x) = z[1]?
ha(x) = x[2]?
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Learned decision boundary
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Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth
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Adding quadratic features
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ho(x)
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h3(x)
ha(x)
hs(x)

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models
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e Decision boundary becomes more complex
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Adding quadratic features
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Addlng hlgher degree polynomial features

Overfitting leads to
non-generalization
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Adding higher degree polynomial features

. Overfitting leads to
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Adding higher degree polynomial features

Overfitting leads to
non-generalization
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Creating Features

e Feature mapping ¢ : RY - RP maps original data

into a rich and high-dimensional feature space (usually d < p)

g
For example, for d>1,

one can generate vectors

For example, in d=1, one can use

_¢1(x>_ M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
_¢k()€)_ N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p
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How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})
and if we can find a kernel for our feature map such that

K(x.x) = ¢(x) - p(x')



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})

and if we can find a kernel for our feature map such that
K, x') = ¢@) - ()

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data



An example of a kernel
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Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5
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2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) };?:1 takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient
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Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg min ||y — Xw||2 + /1||w||2
weR?

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
. Training@ = (X'X + I, ) X'y
= X'XX? + 1, )ty (when n < d via linear algebra)
e Prediction: x,,., € R?

/\T

yIICW= wo X

ncw
= y!XXT+ AL, )" Xx, .,
e Hence, to make predictionon any future data points, all we need to know is
K(xl, neW) K(xl, Xy) K(xl, X5) |
XX o = : € R", and XX’ = : : e R™"
o _K(xn, xnew)_ _K(xn, X;) K(xn, X5) ]

e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to

access the features via kernel K(x;, x;) and K(x ) and not the features ¢ (x;)

l’ 1’1€W
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The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

- RY%x RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n

Predictionis y .o, = W " Xpow = Z A; X; Xpew

i=1

2. Design an algorithm that finds a while accessing the data only via {xiij}

3.

n
4. Make prediction with y .. = Z a,K(x;, x,

Substitute xiij with K(x;, xj), and find a

i=1

. T .
(replacing x; X, with K(x;, X,..,))

using the above algorithm from step 2.

ew)
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The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of )

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

_ ) 2 T
= argmin, | |y @l 5 +4a Pa Where P; = K(x;, x;) = ((x,), Pp(x))

(Solve for &y orner)

Th us, akemel (P ~+ ﬂIan) Yy



Examples of popular Kernels

. Polynomials of degree exactly k

K(x,x') = (x"x)*
. Polynomials of degree up to k&

K(x,x)=(1+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

| x — x,”% )

K(x,x") = exp( ~ T

- Sigmoid
K(x,x") = tanh(yx’x' 4 r)



