Kernels

What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

e Use features, for example,
x = (x,%,) € R? b P3(x)

ST x X
X v
 EnSe
. fly * 11;1 1:2
X ¢1(x)
¢2(x)

This data is not linearly
separable

Can you suggest some features
d1(x1, X5), Pr(x1, X5), P5(x1, X5) such that this data is
linearly separable in this 3-dimensional space?

e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

Example

4
3 - -
i - T -

—_ 1} = e

X 0 - + :. -+#
. - TRy 7

- -+ +

_2 Ja=)
-3

-5 -4 -3 -2 -1 0O

x[1]

1 2

data: x in 2-dimensions, y in {+1,-1}

features: polynomials

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features
ho(iIZ) —
hi(z) = x[1]
ho(x) = x|2]
hs(x) = z[1)?
hy(z) = x[2]?

woho(z) + wihi(x) +waha(x) + - -

5

Learned decision boundary

f(x) :wo+ wiz|l] + wex|2) ;
: \ - - -
| U 7 l X 0 - + -
j ‘ : 1 . + + +
| | 2| - T
33[2] © I -3 R
| ! ~5 -4 -3 -2 -1
T|1] x(1]

Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth

6

Learned decision boundary

Flay o + wiz)] + wsal)

' 4
. . / 3 -
_— . - 2 - e
‘ _,,:—_'7": .
¥ ';" , ,’ 7 . { 1
S L 0

x[2]

1 - TR 7
Ll - +
.4 -3
. -5 -4 -3 -2 -1 0 1 2
wll] X[1]

Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth

7

Learned decision boundary

f(x) = wo—l—wlx[l]—i—wgscz[Q] . ;
| " , Y -
y = -
~ s = -
< 0 - *+ 4 = #
1 e I
._.2 - — +
! 352 -3 =2 -1 0 1 2
&[] x[1]

Coefficient

ho(x) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth

8

Adding quadratic features

F p

]

|
" |
/
4
f
o
7
J
J
J
I -
!

4

3 -

. - = -
1 -t

0 - +I -+#
. I
N - + +
-3

-5 -4 -3 -2 -1 0 1 2

x[1]

Coefficient

ho(X)
hi(x)
ha(X)
h3(x)
ha(x)
hs(x)

1
x[1]
x[2]

(x[1]1)?
(x[2])?
x[1]x[2]

e Adding more features gives more complex models
e Decision boundary becomes more complex

1.68
1.39
-0.59
-0.17
-0.96
Omitted

Adding quadratic features

9

4

3 - =

, - - -

3 - %3 Ted

. - B

ol - + +

35 -4 -3 -2 -1 0 1 2 3

x[1]

ho(x) 1 1.68
h1(x) x[1] 1.39
ha(x) x[2] -0.59
h3(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted

e Adding more features gives more complex models
e Decision boundary becomes more complex

10

e Adding more features gives more complex models
e Decision boundary becomes more complex

Adding quadratic features ,
, - - -
5 10 - - Ty g
< 0 - + 4 =
. - B
ol = + +
35 -4 -3 -2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
h1(x) x[1] 1.39
ho(x) x[2] -0.59
hs(x) (x[1])2 0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted

Addlng hlgher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hg(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[21)

21.6
= Coefficient values

getting large

x[2]

Overfitting leads to
non-generalization

\

4

3 - -
’ - = | =
1 = -

0 - -+: b
. - =g st
INE - + +
-3

-5 -4 -3 -2 -1 0 1 2

Adding higher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hg(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?

(x[2])?

(x[1])3

(x[2])?

(x[1])*

(x[2])*

(x[1])®

(x[2])®

(x[1])®

(x[21)

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization

4

3 -

: - = | =
1 I

0 - +I --+".
1 - =4 4t
Ll - + +
-3

Adding higher degree polynomial features

Coefficient
Value
learned

ho(x)
h(x)
ha(x)
hs(x)
ha(x)
hs(x)
he(x)
h7(x)
hg(x)
h(x)
hig(x)
h11(x)
h1,(x)

1
x[1]
x[2]

(x[1])?
(x[2])?
(x[1])3
(x[2])?
(x[1])*
(x[2])*
(x[1])®
(x[2])®
(x[1])®
(x[2])®

21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization

* Qverfitting leads to very large values of
f(il?) — woho(ZE) + wlhl(x) + thQ(Qj) 4+ ...

Creating Features

e Feature mapping ¢ : RY — R” maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use
one can generate vectors

451(36) [x| et

_ || _ x? and detine Teatures:

(/)(X) - a k ¢j(x) — COS(uij)
¢k(x) | X" | o = (uij)Z

Pjx) = 1 + exp(u x)

» Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials

for x = (x,...,x;) € R4?
At a first glance, it seems inevitable that we need memory (to store

the features{@(x;) € R”}") and run-time that increases with p where
l i=1 P

d<n<p

Creating Features

e Feature mapping ¢ : RY — R” maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use) ;
one can generate vectors {u;j}i—; CR

451(36) [x| et

_ || _ x? and detine Teatures:

(/)(X) - a k ¢j(x) — COS(uij)
¢k(x) | X" | o = (uij)Z

Pjx) = 1 + exp(u x)

» Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials

for x = (x,...,x;) € R4?
At a first glance, it seems inevitable that we need memory (to store

the features{ ¢(x;) € RP}’__) and run-time that increases with p where

d<n<p

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x")})
and if we can find a kernel for our feature map such that

Kx.x) = ¢(x) - p(x)

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x")})

and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x)

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data

An example of a kernel

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, x;)

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

/ /3 /2 / / /2
Well, p(x) - p(x') = (xf,\/gxlzxz, \/gxlxzz, xg) - (% ,\/_x1 X5, \/_x1x2 ,x2

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x') = (3, 0/3x%5,, /33,52, x3) - ()%, 0/3x 2 /342 x57)
= - x>+ /3070 - V3P + VB - VBapas a1

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x') = (3, 0/3x%5,, /33,52, x3) - ()%, 0/3x 2 /342 x57)
= - x>+ /3070 - V3P + VB - VBapas a1

— 43 12 1 2. 712 '3
= X; X+ 3x 7] x5 + 3x,5X1%57 4 x5 - X

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x') = (3, 0/3x%5,, /33,52, x3) - ()%, 0/3x 2 /342 x57)
= - x> /3002 V320 + /303 - V3 4 g - g
= x; -xl + 3x; x2x12x§+ 3x1x22xix§2+x2 xés

= ((xq, xz)T(xla xz))3

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x') = (3, 0/3x%5,, /33,52, x3) - ()%, 0/3x 2 /342 x57)
= - x> /3002 V320 + /303 - V3 4 g - g
= x; -xl + 3x; x2x12x§+ 3x1x22xix§2+x2 xés
T
— ((x19x2) (x19x2))3

— (xTx/)3

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x') = (3, 0/3x%5,, /33,52, x3) - ()%, 0/3x 2 /342 x57)
= - x> /3002 V320 + /303 - V3 4 g - g
= x; -xl + 3x; x2x12x§+ 3x1x22xix§2+x2 xés
T
— ((x19x2) (x19x2))3

— (xTx/)3

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, () - px') = 0 V3700, V3205, 33) - (077, V35, V300,)
=2)+ V30 V3 /3 3 4 gy
= x; -xl + 3x; x2x12x§+ 3x1x22xix§2+x2 xés

= ((xq, xz)T(xla xz))3

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x) = (67, /3x2x5,4/3x1x2, 53) - (], 4/3x]2x5,4/3 %1257, x57)
= x7 - xp? 4+ V/3x2xy - /3x;7x) + V/3x,x2 - /3x1x57 + x5 - x5

— 13 12 1 2. 712 '3
= X; X+ 3x 7] x5 + 3x,5X1%57 4 x5 - X

= ((xq, xz)T(xla xz))3

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!
(There is always a kernel, the question is whether it can be computed more efficiently
than explicitly going through this dot product calculation).

An example of a kernel

e Suppose we have the map ¢(x) = (xf, \/gxlzxz, \/gxlxzz, xg)
e Mapping 2-d vector into 3-d, with a degree-3 polynomial
e Does this map have a kernel?
e IE, does there exists a K : R? X R? such that K(x, x") = ¢(x) - ¢p(x’) for all x, x'?

Well, p(x) - p(x) = (67, /3x2x5,4/3x1x2, 53) - (], 4/3x]2x5,4/3 %1257, x57)
= x7 - xp? 4+ V/3x2xy - /3x;7x) + V/3x,x2 - /3x1x57 + x5 - x5

— 13 12 1 2. 712 '3
= X; X+ 3x 7] x5 + 3x,5X1%57 4 x5 - X

= ((xq, xz)T(xla xz))3

— (xTx/)3

So yes, there is a kernel, which is efficiently computable!
(There is always a kernel, the question is whether it can be computed more efficiently
than explicitly going through this dot product calculation).

Kernel (i.e., dot-product) of polynomial features

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

, Px) = [] fork = 1and d = 2, then K(x, x’) = x;x; + X,x;

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

. Px) =

Pp(x) =

xp

X3

X1Xo

.szl

X1 / ! !
Xy fork = 1andd = 2, then K(x, x") = xx; + X%,

fork =2andd =2,

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L Px) = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

xp

2
dx)=| *2 [fork=2andd =2,
. X142

.szl

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*
e Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L Px) = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

xp

2
dx)=| *2 [fork=2andd =2,
. X142

.szl

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*
e Note that for a data point x;, explicitly computing the feature ¢(x;)
takes memory/time p = d*
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) }}Ll takes memory/time dn

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L Px) = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

xp

2
dx)=| *2 [fork=2andd =2,
. X142

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*
e Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) }}Ll takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Ridge Linear Regression as Kernels

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg minld ly — lel% + lell%
we

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel

defined as K(x, x") = x'x’

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

y new = W xl’lCW

= y!XXT"+ A1,)" Xx, .,

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

ynewzwx

= y!XXT"+ A1,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is

new

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

y new = W xIlCW

= y!XXT"+ A1,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x, Xpey) K(xy,x)) K(xq,x,)
XX = : € R", and XX’ = : :
K(x,, x

c Ran

new) _K(xn’ xl) K(xna X2)

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

y new = W xIlCW

= y!XXT"+ A1,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x, Xpey) K(xy,x)) K(xq,x,)
XX = : € R", and XX’ = : :
K(x,, x

E Rl’lx}’l

[J
new)

_K(xn, x) K(x,, x,)
e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to
) and not the features ¢ (x;)

access the features via kernel K(x;, x;) and K(x;, X,

The Kernel Trick

The Kernel Trick

. Given data {(x;,y;)}"_,, pick a kernel K : RY%x RY > R

The Kernel Trick

. Given data {(x;,y;)}"_,, pick a kernel K : RY%x RY > R

The Kernel Trick

. Given data {(x;,y;)}"_,, pick a kernel K : RY%x RY > R

1. For a choice of a loss, use a linear predictor of the form

n
W = Z a.x;| for some a =
i=1

q
: | € R"to be learned
al/l

n
. LA T _ T
Predictionis y joy = W " Xpow = Z A Xi Xnew
1

1=

The Kernel Trick
. Given data {(x;,y;)}"_,, pick a kernel K : RY%x RY > R

1. For a choice of a loss, use a linear predictor of the form
o

n
W = Z a.x;| forsomea = | ¢ | € R"to be learned
i=1

a,

n
. LA T _ T
Predictionis y joy = W " Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

The Kernel Trick
. Given data {(x;,y;)}"_,, pick a kernel K : RY%x RY > R

1. For a choice of a loss, use a linear predictor of the form
o

n
W = Z a.x;| forsomea = | ¢ | € R"to be learned
i=1

a,

n
. LA T _ T
Predictionis y joy = W " Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

3.|Substitute xiij with K(x;, xj), and find ar|using the above algorithm from step 2.

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

‘RYx RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = Z a.x;| forsomea = | ¢ | € R"to be learned
i=1

a,

n
. LA T _ T
Predictionis y joy = W " Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

3.

n
4. Make prediction with y ., = Z a.K(x;, x,

Substitute xiij with K(x;, xj), and find a

1
(replacing xiTxneW with K(xi’ xtllew))

using the above algorithm from step 2.

ew)

The Kernel Trick for regularized least squares

The Kernel Trick for regularized least squares

n
W = argmin Z (v; = wix)? + Allwll3
w
i=1

The Kernel Trick for regularized least squares

n
W = argmin Z (v; = wix)? + Allwll3
w
i=1

(Step 1. Use a linear predictor)

The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)C,-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1

The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)CZ-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1

a = arg moin Z(yz — Z (T, m;))* +)\Z Z ;0 (X, 25)
i=1 j=1

i=1 j=1

The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)CZ-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

The Kernel Trick for regularized least squares

N~

w = argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
~ . 2
Q :arng}nZ(yi —Zozj<xj,a:7;>) +)\ZZaiaj Ti,T;)
=1 7=1 1=1 j5=1

(Step 2. Write an algorithm in terms of &)

n n
:argmoinZ(yi —ZajK(xi,xj —I—)\ZZ%O@ (24, 5)
i=1 j=1

=1 7=1

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — arng}nE :(y’& o E :OéjK(ﬁU,i,CEj + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = (¢(x,), P(x)))

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — arng}nE :(y’& o E :OéjK(ﬁU,i,CEj + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = (¢(x,), P(x)))

(Solve for @yq)

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

Where P;; = K(x;, x;) = (¢(x,), P(x)))

(Solve for @yq)

ThUS akemel (P + /11an) Yy

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

_ . _ 2 T
= argmin,| |y — Pa| |5 + Aa"Pa Where P, = K(x;, x;) = (¢ (x)), p(x)

(Solve for @yq)

ThUS akemel (P + /11an) Yy

Examples of popular Kernels

- Polynomials of degree exactly k

K(x,x') = (x"x)*
. Polynomials of degree up to k£

K(x,x)=(+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
l|x — x'“z)

K(x,x") = exp(B

- Sigmoid
K(x,x") = tanh(yx'x" + r)

X — X Xy X
RBF kernel k(x;, x) = exp{ _ 16 . 12 } K()
samples {(x;, y,) }'_; 20 [

: : : ’.. : : bandwidth :\ o
1 6 i e /o

<
00 02 04
®

-0.4
l
Xal

r
)| T T
3 4 5 1 2 /\
: \
i : f(z) =a0+), 0;K(z,z))
le—)H § \ _//
: S
"-:» e] . ~~
8 - : 8 o
~ . ~ .
8 w._ . R - I8
< - . ‘
o | .]
o . . <
+ it 4 Ll S - 9 1 T L1 — -
-2 -1 0 1 2 -2 -1 0 1 2
T xIr

predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points

RBF kernel k(x, x) = exp{ -

Z(a) = |Pa—yl|5 + la'Pa

The bandwidth ¢ of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor

o=10"3\x=10"*

—— True f(x)

Fitted f(x)
. Data

2
loc; — 12 }

20?2

c=10"°\X=10"%

c=10"2 A=10"*

—— True f(x)
Fitted f(x)

60 : : .
55 ﬁ
50 ’

a5

c=10"1 Ax=10"*

—— True f(x)
Fitted f(x)

J

—— True f(x)

Fitted f(x)
. Data

N
c=10"1 A=10""°
) —— True f(x)
. Fitted f(x)
. Data
flx) = a; K(x;,x) S
1=1

/
.
. ‘-
02 04 06 08 10
x1

RBF kernel for SVMs

W = argmin —ZmaX{O l—y(b+w x)} + /I||w||2

b n
W 11

N\

a,b = arg min max{0,1 —y(b+) aK(x;,x))} + 1 ;o K(x;, x;
& aERnan (0,1 — y(JZI, (%))} %}1 K (x;, X))

Bandwidth o is Iarge enough Bandwidth o is small

Bootstrap

Confidence intervals

Suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

We train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmize ||Pa _ y”2 + laTPa Example of 5% and 95% percentile
a 2 curves for predictor f(x)
The resulting pr[edictor IS o - .
f@) =) K0, . -
l=1 _) ® ,//.o\o \\
where ° yFAOAN
a = P+iDy eR” e o
/ \ é/ 1)
- 1/ e 8\\.,,\\ ?/// \‘
We wish to build a confidence interva AN N A
for our predictor f(x), using ° 1! N A ‘,‘
5% and 95% percentiles - N

Confidence intervals

e Let's focus on asingle x € R4

e Note that our predictor f(x) is a random
variable, whose randomness comes

from the training data S,,;, = {(x;, ¥},

e |f we know the statistics

(in particular the CDF of the

random variable f(x)) of the predictor,
then the confidence interval with
confidence level 90% is defined as

0.90

v 0.05--

A

1 0.95 -

A

CDE(f(x))

I
5% percentile

95% percentile

if we know the distribution of our predictor f(x),

the green line is the expectation E[f(x)]
and the black dashed lines are the
5% and 95% percentiles in the figure above

e As we do not have the cumulative distribution function (CDF),
we need to approximate them

27

Confidence intervals

Hypothetically, if we can sample as many times as we want,
then we can train B € Z* i.i.d. predictors, each trained on 7 fresh samples to get

empirical estimate of the CDF of y = f(x)

1.0

For b=1,...,B
o Draw n fresh samples {(xl.(b), yl.(b))}?:1 08

CDF ($)

CDF(§) —_,

e Train a regularized kernel
. *k
regression a (b)

n
, Predict O = ZK(xi(b),x)ai*(b)

i=1 02

Probability
o
()]

o
'S
T

Let the empirical CDF of those B predictors = 2 a4 o1 2
{)Ai(b)}f=1 be CDF (9), defined as

CDF () = Ezl{y(b)Sy}
b=1

—_—

Compute the confidence interval using CDF (y)

<>

Bootstrap

* As we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

e Bootstrap is a general tool for assessing statistical accuracy
e We learn it in the context of confidence interval for trained models

e A bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }'_,

e Forb=1,...,B

. Create a bootstrap dataset S ®)
bootstrap

e Train a regularized kernel regression o (b)

n
Predict $¥) = ZK(xi(b),x)ai*(b)
i=1

 Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

bootstrap

multiple bootstrapped

training a single predictor predictors

90% confidence interval

n - 1) - . 1o} - .
< < A < 17\
/o
[/ \
o i . e o | . y LN U q/'/.\\. \\
° °* i ®e\\
. 4 . s/ \
o L} N - N ’ \\ I/l \
o | > y . N I/ . ‘/I/ ‘l {
L4 1] / \ o N \ L]
- ¢ N *e'e . y 4 ! e eN. v~ N Y \
P . . - . % 5 . - / /,-‘Q . \\ C///’ \
o.. . % 4 o® LN 0 (s \Q N //./ ‘l
=) < % o 4 7 > % o 1 - \\ . N'vl |
.] | \ o/ |
. .o ! N 70
- _ > - L) - LN /
' ° ' n LX) -1 e
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
X X X

Figures from Hastie et al

