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What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)




What if the data is not linearly separable?

e Use features, for example,
x = (x,%,) € R? b P3(x)
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This data is not linearly
separable

Can you suggest some features
d1(x1, X5), Pr(x1, X5), P5(x1, X5) such that this data is
linearly separable in this 3-dimensional space?

e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features
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: adding more polynomial features

Polynomial
features
ho(iIZ) —
hi(z) = x[1]
ho(x) = x|2]
hs(x) = z[1)?
hy(z) = x[2]?

woho(z) + wihi(x) +waha(x) + - -
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Learned decision boundary
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Coefficient

ho(X) 1 0.23
hi(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth
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Learned decision boundary
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Learned decision boundary
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Adding quadratic features
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e Adding more features gives more complex models
e Decision boundary becomes more complex
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Adding quadratic features
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ho(x) 1 1.68
h1(x) x[1] 1.39
ha(x) x[2] -0.59
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e Adding more features gives more complex models
e Decision boundary becomes more complex
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e Adding more features gives more complex models
e Decision boundary becomes more complex

Adding quadratic features ,
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x[1]
ho(x) 1 1.68
h1(x) x[1] 1.39
ho(x) x[2] -0.59
hs(x) (x[1])2 0.17
ha(x) (x[2])2 -0.96
hs(x) x[1]x[2] Omitted



Addlng hlgher degree polynomial features

fficien
Feature Value Coefficient
learned

ho(x)
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(x[21)
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= Coefficient values
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non-generalization
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Adding higher degree polynomial features
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Adding higher degree polynomial features

Coefficient
Value
learned

ho(x)
h(x)
ha(x)
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h1,(x)

1
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(x[2])?
(x[1])*
(x[2])*
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21.6

Coefficient values
getting large

xX[2)

Overfitting leads to
non-generalization

* Qverfitting leads to very large values of
f(il?) — woho(ZE) + wlhl(x) + thQ(Qj) 4+ ...




Creating Features

e Feature mapping ¢ : RY — R” maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use
one can generate vectors

_451(36)_ [ x| et

_ || _ x? and detine Teatures:

(/)(X) - a k ¢j(x) — COS(uij)
_¢k(x)_ | X" | o = (uij)Z

Pjx) = 1 + exp(u x)

» Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials

for x = (x,...,x;) € R4?
At a first glance, it seems inevitable that we need memory (to store

the features{@(x;) € R”}" ) and run-time that increases with p where
l i=1 P

d<n<p
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the features{ ¢(x;) € RP}’__ ) and run-time that increases with p where
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How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)
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How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.
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e So, if we can represent our
e training algorithms and
e decision rules for prediction
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and if we can find a kernel for our feature map such that

Kx.x) = ¢(x) - p(x)



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x")})

and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x)

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data



An example of a kernel
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Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L Px) = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

xp

2
dx)=| *2 [fork=2andd =2,
. X142

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*
e Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) }}Ll takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient
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= X'XXT+ 1, )y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

y new = W xIlCW

= y!XXT"+ A1, )" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x, Xpey) K(xy,x)) K(xq,x,)
XX = : € R", and XX’ = : :
K(x,, x

E Rl’lx}’l

[ J
new)

_K(xn, x) K(x,, x,)
e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to
) and not the features ¢ (x;)

access the features via kernel K(x;, x;) and K(x;, X,
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1. For a choice of a loss, use a linear predictor of the form

n
W = Z a.x;| for some a =
i=1

q
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n
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The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

‘RYx RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = Z a.x;| forsomea = | ¢ | € R"to be learned
i=1

a,

n
. LA T _ T
Predictionis y joy = W " Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

3.

n
4. Make prediction with y ., = Z a.K(x;, x,

Substitute xiij with K(x;, xj), and find a

1
(replacing xiTxneW with K(xi’ xtllew))

using the above algorithm from step 2.

ew)



The Kernel Trick for regularized least squares



The Kernel Trick for regularized least squares

n
W = argmin Z (v; = wix)? + Allwll3
w
i=1



The Kernel Trick for regularized least squares

n
W = argmin Z (v; = wix)? + Allwll3
w
i=1

(Step 1. Use a linear predictor)



The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)C,-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1



The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)CZ-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1

a = arg moin Z(yz — Z (T, m;))* + )\Z Z ;0 (X, 25)
i=1 j=1

i=1 j=1



The Kernel Trick for regularized least squares

N~

n
w = argmin Z (y; — WT)CZ-)2 + /1||W||%
w
i=1

n
There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T, )% + A Z Z ;o (Ti, T )
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)



The Kernel Trick for regularized least squares

N~

w = argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
~ . 2
Q :arng}nZ(yi —Zozj<xj,a:7;>) +)\ZZaiaj Ti,T;)
=1 7=1 1=1 j5=1

(Step 2. Write an algorithm in terms of &)

n n
:argmoinZ(yi —ZajK(xi,xj —I—)\ZZ%O@ (24, 5)
i=1 j=1

=1 7=1
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The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. Use a linear predictor)
i=1
n n mn mn
a = arg min Z(yz - Z (T, )% + A Z Z ;o (Ti, T )
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

_ . _ 2 T
= argmin,| |y — Pa| |5 + Aa"Pa Where P, = K(x;, x;) = (¢ (x)), p(x)

(Solve for @yq )

ThUS akemel (P + /11an) Yy



Examples of popular Kernels

- Polynomials of degree exactly k

K(x,x') = (x"x)*
. Polynomials of degree up to k£

K(x,x)=(+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
l|x — x'“z )

K(x,x") = exp( B

- Sigmoid
K(x,x") = tanh(yx'x" + r)



X — X Xy X
RBF kernel k(x;, x) = exp{ _ 16 . 12 } K( )
samples {(x;, y,) }'_; 20 [
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predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points



RBF kernel k(x, x) = exp{ -

Z(a) = |Pa—yl|5 + la'Pa

The bandwidth ¢ of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor

o=10"3\x=10"*

—— True f(x)

Fitted f(x)
. Data

2
loc; — 12 }

20?2

c=10"°\X=10"%

c=10"2 A=10"*

—— True f(x)
Fitted f(x)

60 : : .
55 ﬁ
50 ’

a5

c=10"1 Ax=10"*

—— True f(x)
Fitted f(x)

J

—— True f(x)

Fitted f(x)
. Data

N
c=10"1 A=10""°
) —— True f(x)
. Fitted f(x)
. Data
flx) = a; K(x;,x) S
1=1

/
.
. ‘-
02 04 06 08 10
x1




RBF kernel for SVMs

W = argmin —ZmaX{O l—y(b+w x)} + /I||w||2

b n
W 11

N\

a,b = arg min max{0,1 —y(b+ ) aK(x;,x))} + 1 ;o K(x;, x;
& aERnan (0,1 — y( JZI, (%))} %}1 K (x;, X))

Bandwidth o is Iarge enough Bandwidth o is small




Bootstrap




Confidence intervals

Suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

We train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmize ||Pa _ y”2 + laTPa Example of 5% and 95% percentile
a 2 curves for predictor f(x)
The resulting pr[edictor IS o - .
f@) = ) K0, . -
l=1 _ ) ® ,//.o\o \\
where ° yFAOAN
a = P+iDy eR” e o
/ \ é/ 1)
- 1/ e 8\\.,,\\ ?/// \‘
We wish to build a confidence interva AN N A
for our predictor f(x), using ° 1! N A ‘,‘
5% and 95% percentiles - N




Confidence intervals

e Let's focus on asingle x € R4

e Note that our predictor f(x) is a random
variable, whose randomness comes

from the training data S,,;, = {(x;, ¥},

e |f we know the statistics

(in particular the CDF of the

random variable f(x)) of the predictor,
then the confidence interval with
confidence level 90% is defined as

0.90

v 0.05--

A

1 0.95 -

A

CDE(f(x))

I
5% percentile

95% percentile

if we know the distribution of our predictor f(x),

the green line is the expectation E[ f(x)]
and the black dashed lines are the
5% and 95% percentiles in the figure above

e As we do not have the cumulative distribution function (CDF),
we need to approximate them

27



Confidence intervals

Hypothetically, if we can sample as many times as we want,
then we can train B € Z* i.i.d. predictors, each trained on 7 fresh samples to get

empirical estimate of the CDF of y = f(x)

1.0

For b=1,...,B
o Draw n fresh samples {(xl.(b ), yl.(b))}?:1 08

CDF ($)

CDF(§) —_,

e Train a regularized kernel
. *k
regression a (b)

n
, Predict O = ZK(xi(b),x)ai*(b)

i=1 02

Probability
o
()]

o
'S
T

Let the empirical CDF of those B predictors = 2 a4 o1 2
{)Ai(b)}f=1 be CDF (9), defined as

CDF () = Ezl{y(b)Sy}
b=1

—_—

Compute the confidence interval using CDF (y)

<>



Bootstrap

* As we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

e Bootstrap is a general tool for assessing statistical accuracy
e We learn it in the context of confidence interval for trained models

e A bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }'_,

e Forb=1,...,B

. Create a bootstrap dataset S ®)
bootstrap

e Train a regularized kernel regression o (b)

n
Predict $¥) = ZK(xi(b),x)ai*(b)
i=1

 Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval



bootstrap

multiple bootstrapped

training a single predictor predictors

90% confidence interval

n - 1) - . 1o} - .
< < A < 17\
/o
[ / \
o i . e o | . y LN U q/'/.\\. \\
° °* i ®e\\
. 4 . s/ \
o L} N - N ’ \\ I/l \
o | > y . N I/ . ‘/I/ ‘l {
L4 1 ] / \ o N \ L]
- ¢ N *e'e . y 4 ! e eN. v~ N Y \
P . . - . % 5 . - / /,-‘Q . \\ C///’ \
o.. . % 4 o® LN 0 (s \Q N //./ ‘l
=) < % o 4 7 > % o 1 - \\ . N'vl |
. ] | \ o/ |
. .o ! N 70
- _ > - L) - LN /
' ° ' n LX) -1 e
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
X X X

Figures from Hastie et al



