Support Vector Machines

W



Logistic regression for binary classification

.DataD = {(x; e Ry, € {—1,+ 1},
. Model: = xTw + b
. Loss function: logistic loss (9, y) = log(1 4+ e™?)
 Optimization: solve for i
(/b\, W) = arg min 2 log(1 + e‘yi(b”iTW))
bw o

 As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wix+b=0
using gradient descent T » \
. Prediction: sign(b + x'w) . .,.'°.§::
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How do we choose the best linear classifier?

» |Informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

e For linearly separable datasets, maximum margin classifier is a natural
choice

e |Large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points
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Geometric margin
Given a set of training examples {(x;, y,)}'_;, withy, € {—1, + 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the hyperplane orthogonal to w with a shift of b
we define margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y,) to the
decision boundary, which is

w'x; + b) i
Yi =i )
lwll> :

(The proof is on the next slide)
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Geometric margin

e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows:
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e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows: —

e We know that if you move from x;

in the negative direction of w by Iengt@
you arrive at the line, which can be written as

w o -
<xl-— yi)lsm{xlw x+ b =0} -
lwll>
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Geometric margin

e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows:

e We know that if you move from x;

in the negative direction of w by length y,,
you arrive at the line, which can be written as

/7//<Xi ”W“ )iin{x|wa+b=O} -
2

e SO we can plug the point in the formula: )

[ @ Iw ||/’ @ j -

which

B {x|wlx+b=0)
. = 0 ,
and hence
W /b)

Vi =
lwll>
We multiply the formula by y; so that for negative samples we use the
opposite direction of —w instead of w
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Maximum margin classifiers

* The margin with respect to a set w

IS defined as
c/_\/} )

_ , (wai+b) -
min y; = |miny; ) -
ie{1,...,n} i W, -

— i /_\’/_/& )

e Among all linear classifiers,
we would like to find one that has -
the maximum margin {x|wlx+b=0)}

* We will derive an algorithm that finds the maximum margin
classifier, by transforming a difficult to solve optimization into an
efficient one
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(we transform the optimization into an efficient one)

 We propose the following optimization problem:

maximize = O
weRdpeR,yeR ¥ (maximize the margin)

, ( :5wa,— + b 2) .
subject to >y foralli € {1,...,n} (s.t. y is a lower bound on

wll2 = the margin)
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(we transform the optimization into an efficient one)

We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)
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The above optimization looks difficult, so we transform it using reparametrization

maximize,erd peR yeR Y Vs
w!x; + b) . +
subject to % l >y foralli € {1,...,n} - +
Il -
wlly == - ; +
)4 -

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w||,,
and only depends on the direction of w
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. maximize,,crd peR yeR ¥
’ ’ ——

subject to ! >y foralli € {1,...,n}

/——
 The above optimization

MaximIZe,,cRrd peR (maximize the margin)

—
. i(wai .
subject to foralli € {1,...,n}(now plays the role of
Iwll, Iwll, [wll>
__— a lower bound

on the margin)
which simplifies to

minimize,,crd per ||W||%

subjectto  y,(wlx;+b) > 1 foralli € {1,...,n}
<




. maximize,,crd peR yeR ¥

. )’i(WTxi + D) :
subject to >y foralli € {1,...,n}
Iwll>
Wl =~
Y
 The above optimization stillllooks difficult, but can be transformed into

MaximIZe,,cRrd peR (maximize the margin)

Iwlla

(wlx, + b) 1 ,
Y l > foralli € {1,...,n}(now
Iwll, Iwll2 1wl
a lower bound
on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,crdper  ||W|5

subjectto  y,(wlx;+b) > 1 foralli € {1,...,n}

* This is a quadratic program with linear constraints, which can be easily solved



maximizeweRd,beR,yeR 4

. )’i(WTxi + D) :
subject to >y foralli € {1,...,n}
Iwll>
wll, =—
Y
The above optimization stillllooks difficult, but can be transformed into

MaximIZe,,cRrd peR (maximize the margin)

Iwlla

T
w'x;+ b 1
I i +5) > foralli € {1,...,n}(now

wih, vl Il
Iwll, 2 a lower bound

on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,crdper  ||W|5

subjectto  y,(wlx;+b) > 1 foralli € {1,...,n}

This is a quadratic program with linear constraints, which can be easily solved

Once the optimal solution is found, the margin of that classifier (w, b) is T
Wiz
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S sl
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Two Issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |+
+ \ +
- - + - +
- + T B
o\ + - T+
- + R




What if the data is not separable?

{x|wlx+b=0)

e x|wix+b=-1)}



What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wai +b) > 1-¢




What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wal- +b) > 1-¢

e x|wix+b=-1)}

e This gives a new optimization problem W|th some positive constant ¢ € R

minimize,,crd per 5€Rn ‘+ C Z &;

subject to yl-(w x;+b)>1-¢

l
/\ —

foralli € {1,...,n}




What if the data is not separable?

T —
{(x|wix+b =0} e We introduce slack so that

some points can violate the

\ , @ margin condition
' @ ® O T b > 1
® ‘\\ ' o yl(W Xl + ) dll - 5l
N \\‘
O 9
O
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What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wal- +b) > 1-¢

e x|wix+b=-1)}

e This gives a new optimization problem wj;ch some positive constant ¢ € R
mMinimize,yerd peR R ||w||% +c Z E;
i=1
subjectto y(wlx;+b)>1—¢& forallie {1,...,n)
& >0 foralie {l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations
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e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c Z E;
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e So one can write
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e For the optimization problem

minimizs, e pencene IWIE+c Y&
i=1

subject to yl-(wal-+b) >1-¢  forallie {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

e So one can write
T . .
e £ =max{0,1 —y,(w" x;+ b)}, which giv

ZmaX{O 1 —yl(w x;,+b)}

=1 _—

minimize,,crd per ;”W“%




Recall: we were looking for a loss function

« We want a loss function that
- approximates (captures the flavor of) the 0-1 loss
 can be easily optimized (e.g. convex and/or non-zero derivatives)
* More formally, we want a loss function
with £(y, —1) small when y < 0 and larger when y > 0
with ¢(9,1) small when ¢ > 0 and larger when g < 0

which has other nice characteristics, e.g., differentiable or convex
« We now have a new loss function from the SVM optimization problem:

minimize itz y — T
weR4,beR ||W||2 + max{0,1 —y(w'x; + b)}
C

i=1
30 30

) . 0O >0

+1 §>0 +1 §<0
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Logistic loss (9, y) = log(1 + e™?)

A

09, —1) = log(1 + €¥) 0y, +1) = log(1 +e77)

/30

25 1

2.0 1

15 1

) N

true y true 7

e Differentiable and convex in y
e Approximation of 0-1 loss
* Most popular choice of a loss function for classification problems
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e SVM is the solution of

n
. LT T
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Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,,crd per —||w||% + 2 max{0,1 — y.(w'x; + b)}
C
i=1
As it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
dwf(wal- +b,y;,) = I{yi(wal— +b) < 1}(=yx;)
and apply

- 2
WD e w® = (Y T Ov )+ b0) < 1) (=yp) + Zw)
C
nl=1

pD — b0 -y N Ly (W) x; +b) < D} (=)
i=1



Kernels




What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)




What if the data is not linearly separable?

e Use features, for example,
X = (xl,xz) (S R?2 d) ¢3(X)

/—\\\ o x
b2 X
. x x /~ - o
xil R
X ¢ (x)
¢2(X)

This data is not linearly

Can you suggest some features
separable

¢h1(x1, Xp), Pr(x1, X5), P3(x1, X5) such that this data is
linearly separable in this 3-dimensional space?

e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features
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Example

4
3 _ -
i - - -

— 1 = e #

X 0 - + :. -+#
-1 - = +_+ +
DY - +
-3

-5 -4 -3 -2 -1 O

data: x in 2-dimensions, y in {+1,-1}

features: polynomials

x[1]

1 2

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features

ho (CIJ) =
hi(x) = z[1]
ho(x) = z[2]
hs(x) = z[1]?
ha(x) = x[2]?

’U]Qho(x) -+ wlhl(x) -+ wghQ(ZE‘) -+ ..
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Learned decision boundary

Flw) ="wo + wiz[1] + wyw(2) :
: \ - - -
| i oF g 0 . Y
| | -_ 1 - ey s
A -2~ - ¥
CB[Q] “ | 35 1 0 1 2
‘ ! -5 -4 -3 -2 -
| T|1] x(1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth



Learned decision boundary

* \\\,_\\ : a ) 4
' ‘ -:—f?'"::
' : 57 ' . 0 - + + =

x[2]

1 e X
_2 - +
4 -3
. -5 -4 -3 -2 -1 0 1 2
wll] X[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(X) x[2] -1.07

e Simple regression models had smooth

-, * Simple classifier models have smooth



Learned decision boundary

4
y | 1| - +
~ e -
% 0 - * + = .p.
1 e X
-3 - +
o b =353 3 2 -1 0 1 2
.33[1] x[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

0o ® Simple classifier models have smooth



Adding quadratic features

4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

x[1]

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models
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e Decision boundary becomes more complex
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4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

x[1]

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models
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Adding quadratic features

4
3 _ -
, - - -
g ; - -+-I t"'""
. - B4 7
Y - + +
25 4 -3 2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
hi(x) x[1] 1.39
ha(x) x[2] -0.59
hs(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96

hs(x) x[1]x[2] Omuitted

e Adding more features gives more complex models

.- * Decision boundary becomes more complex



Addlng hlgher degree polynomial features

Overfitting leads to
non-generalization

\

-3

-5 -4 -3 -2 -1 0 1 2

ho(x) 1 .

h(x) x[1]
ha(x) x[2]
hs(x) (x[1])?
ha(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x)  (x[2])?
h11(x) (x[1])® 0.8
hio(x)  (x[2])8 -8.6

Coefficient values
getting large




Adding higher degree polynomial features

. Overfitting leads to
A = T non-generalization

4
3 - -
- -
2 - -
—
E 0 - + + .
- | . -h +-+ +
‘ . ‘ . : a8, . 5 1 _ + +
oefficien —3
e | vae | SR SR I
:fi:: X[L ' Coefficient values x[1]
ha() x[2] getting large

hs(x) (x[1])?
h(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x)  (x[2])?
h11(x) (x[1]) 0.8
hio(x)  (x[2])8 -8.6




Adding higher degree polynomial features

Overfitting leads to
non-generalization

4
3 — - —
2 — —
% 0 o - = .
1 - =4 4t
A\ . \ 1 +
. : . ) . . " -2 -
ho(x) 1 216 o x[1]
) (1] _ Coefficient values
hs(x) x(2] . getting large
hs(x)  (x[1])? .
ha(x)  (x[2])? :
hs(x)  (x[1]) .
he(x)  (x[2])? :
hy(x) (x[1])* .
hg(x) — (x[2])* :
EURE e Qverfitting leads to very large values of
h11(x) (x[1])® 0.8 _— e o o
o w0 f(z) = woho(x) +wihi(z) + waha(x) +




Creating Features

e Feature mapping ¢ : RY - RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use
one can generate vectors

_¢1(x>_ M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
_¢k()€)_ N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p



Creating Features

e Feature mapping ¢ : RY - RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use . J
one can generate vectors {uj}jzl CR

_¢1(x>_ M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
_¢k()€)_ N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p



How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)
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How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})

and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x')

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data
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Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — leI% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al )~ ' X'y
= X'XX? + 1, )ty (when n < d via linear algebra)

e Prediction: x,,., € R?

/\T

y new = W 'XIICW

=y'XX? + 1, )" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x{, Xpew) K(x;,x;) K(xq,x,)
XXpew = : € R", and XX’ = : :
K(x,, x

new) _K(xna x]) K(xna -x2)



Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg min ||y — Xw||2 + /1||w||2
weR?

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al )~ ' X'y
= X'XX? + 1, )ty (when n < d via linear algebra)
e Prediction: x,,., € R?

/\T

yIICW= wo X

ncw
= y!XXT+ AL, )" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(xl, neW) K(xl, Xy) K(xl, X5) |
XX o = : € R", and XX’ = : : e R™"
o _K(xn, xnew)_ _K(xn, X;) K(Xn, X5) ]

e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to

access the features via kernel K(x;, x;) and K(x ) and not the features ¢ (x;)

l’ I’IGW
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, Px) = [x ] fork = 1and d = 2, then K(x, x') = xx] + x,x5
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e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142
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Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) };?:1 takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient
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The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

- RY%x RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n

Predictionis y .o, = W " Xpow = Z A; X; Xpew

i=1

2. Design an algorithm that finds a while accessing the data only via {xiij}

3.

n
4. Make prediction with y .. = Z a,K(x;, x,

Substitute xiij with K(x;, xj), and find a

i=1

. T .
(replacing x; X, with K(x;, X,..,))

using the above algorithm from step 2.

ew)
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The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
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The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of )

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

= argmin ||y — Ka/| |§ + ' Ko Where K;; = K(x;, x;) = (P (x), gb(xj))

(Solve for &y orner)

ThUS, &\kemel = (K + ﬂIan)_ly



Examples of popular Kernels

. Polynomials of degree exactly k

K(x, x) = (xTx)k
. Polynomials of degree up to k&

Kx,x)=(1+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
|lx — x’”z )

K(x,x") = exp( ~ T

- Sigmoid
K(x,x") = tanh(yx'x" + r)



”x. —AX | | ; \ K, x
RBF kernel k(x;, x) = exp{ _ 2 } /i) (X, )

K(z,z;)
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n
predictor f(x) = Z a;K(x;, x) is taking weighted sum of n kernel functions

centered at each ’s:almple points




2
||Xi — x“z }

RBF kernel (x, x) = exp{
2062
e« ZL(a) = ||Ka—y||% + la'Ka

e The bandwidth 67 of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor
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RBF kernel for SVMs

W = argmin —Zmax{O 1—yb+wix)} + /1||W||2

wb N z |
n
a,b = arg arerl[é?b - Z max{0,1 —y(b + Zl a;K(x;, x,))} + /1. 12 1()tl-ozjK(xl-, X;)
J= i=1,j=
Bandwidth o is Iarge enough Bandwidth o is small




Bootstrap




Confidence intervals

Suppose you have training data { (x;, ;) }'_, drawn i.i.d. from some true
distribution Px,y

We train a kernel ridge regressor, with some choice of a kernel
K:R™>d R

minmize , ||Ka — y”% + 1a’Ka Example of 5% and 95% percentile
a curves for predictor f(x)

The resulting pr[edictor IS o -
f@ = ) Kx,0a, « -
=1 - ‘ '//.“' |
where ™ e\
a = (K+AD'ly eR” RS
/ \ ¢/ ' )
- e ’I ¥\\"‘\ ’/// ‘\
We wish to build a confidence interva AR AN \‘
for our predictor f(x), using ° 7 Y J/ \_
5% and 95% percentiles - NS




Confidence intervals

o Let's focus on a single x € R?

» Note that our predictor f(x) is a random
variable, whose randomness comes . PR

from the training data S, = {(x;, )}, o et
* If we know the statistics > 1/ A
(in particular the CDF of the DA /A
random variable f(x)) of the predictor, TR |
then the confidence interval with | R 2 '.
confidence level 90% is defined as - - :

A CDF(f(X)) 010 0i5 1.0 1i5 2j0 2i5 3i0

A . x
0.95 if we know the distribution of our predictor f(x),
the green line is the expectation E[ f(x)]
0.90 and the black dashed lines are the
5% and 95% percentiles in the figure above
v 0.05 -
| g f (x)

5% percentile 95% percentile

e As we do not have the cumulative distribution function (CDF),

. we need to approximate them



Confidence intervals

e Hypothetically, if we can sample as many times as we want,
then we can train B € Z7 i.i.d. predictors, each trained on n fresh samples to get

empirical estimate of the CDFof y = f(x)

1.0

e Forb=1,...B o | |

b) (b
« Draw n fresh samples {(xl.( ),yl.( ))}?=1

e Train a regularized kernel
. %k
regression b)

n
Predict )A/(b) = ZK(xi(b),x)a:(b)

i=1

CDF (5)

Probability
o
()]

o
»
T

([ ]
0.2+

» Let the empirical CDF of those B predictors = -2 T 0

—_—

{)A/(b)}lg=1 be CDF (), defined as
P 1 & )
CDF (y) = — E I{ 3 <3

) 5 ~ {(yYW<y}

A

e Compute the confidence interval using CDF ()

<>



Bootstrap

* As we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

e Bootstrap is a general tool for assessing statistical accuracy
e We learn it in the context of confidence interval for trained models

A bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }'_,

e Forb=1,...,B

o Create a bootstrap dataset S (b)
bootstrap

e Train a regularized kernel regression o (b)

n
Predict §©) = ZK(xl.(b),x)ai*(b)
i=1

e« Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval



bootstrap

multiple bootstrapped

training a single predictor 90% confidence interval
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Figures from Hastie et al



