Support Vector Machines

W

Logistic regression for binary classification

.DataD = {(x; e Ry, € {—1,+ 1},
. Model: = xTw + b
. Loss function: logistic loss (9, y) = log(1 4+ e™?)
 Optimization: solve for i
(/b\, W) = arg min 2 log(1 + e‘yi(b”iTW))
bw o

 As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wix+b=0
using gradient descent T » \
. Prediction: sign(b + x'w) . .,.'°.§::
CU[Q] ’ . ST e o
-2 1 A
.3 L] e L]
4 ~. _-1

How do we choose the best linear classifier?

» |Informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

e For linearly separable datasets, maximum margin classifier is a natural
choice

e |Large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points

Geometric margin

{x|wlx+b=0)}

Geometric margin
» Given a set of training examples {(x;, y;)}._;, withy, € {—1, + 1}

{x|wlx+b=0)

Geometric margin
» Given a set of training examples {(x;, y;)}._;, withy, € {—1, + 1}
e and a linear classifier (w, b) € RYx R

{x|wlx+b=0)

Geometric margin
Given a set of training examples {(x;, y,)}'_;, withy, € {—1, + 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the hyperplane orthogonal to w with a shift of b

{x|wlx+b=0)}

Geometric margin
Given a set of training examples {(x;, y,)}'_;, withy, € {—1, + 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the hyperplane orthogonal to w with a shift of b
we define margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y,) to the
decision boundar ich is

{x|wlx+b=0)

Geometric margin
Given a set of training examples {(x;, y,)}'_;, withy, € {—1, + 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the hyperplane orthogonal to w with a shift of b
we define margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y,) to the
decision boundary, which is

w'x; + b) i
Yi =i)
lwll> :

(The proof is on the next slide)

{x|wlx+b=0)}

Geometric margin

x|wlx+b=0)

Geometric margin

e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows:

x|wlx+b=0)

Geometric margin

Al

e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows: —

e We know that if you move from x;

in the negative direction of w by Iengt@
you arrive at the line, which can be written as

w o -
<xl-— yi)lsm{xlw x+ b =0} -
lwll>

~— —— XL -

x|wlx+b=0)

Geometric margin

e The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows:

e We know that if you move from x;

in the negative direction of w by length y,,
you arrive at the line, which can be written as

/7//<Xi ”W“)iin{x|wa+b=O} -
2

e SO we can plug the point in the formula:)

[@ Iw ||/’ @ j -

which

B {x|wlx+b=0)
. = 0 ,
and hence
W /b)

Vi =
lwll>
We multiply the formula by y; so that for negative samples we use the
opposite direction of —w instead of w

Maximum margin classifiers

{x|wlx+b=0)

Maximum margin classifiers

* The margin with respect to a set w
Is defined as
Y
, , (wai + b)
y = mn ¥ = miny,
ie{1,...,n} i W,

{x|wlx+b=0)

Maximum margin classifiers

* The margin with respect to a set w
Is defined as
Y
, , (wai + b)
y = mn ¥ = miny,
ie{1,...,n} i W,

{x|wlx+b=0)

Maximum margin classifiers

* The margin with respect to a set w
Is defined as
i Y
, , (wai + b) -
y = mn ¥ = miny,) y
ie{1,...,n} i W, -

e Among all linear classifiers,
we would like to find one that has -
the maximum margin {x|wlx+b=0)}

Maximum margin classifiers

* The margin with respect to a set w
Is defined as
i Y
, , (wai + b) -
y = mn ¥ = miny,) y
ie{1,...,n} i W, -

e Among all linear classifiers,
we would like to find one that has -
the maximum margin {x|wlx+b=0)}

Maximum margin classifiers

* The margin with respect to a set w

IS defined as
c/_\/})

_ , (wai+b) -
min y; = |miny;) -
ie{1,...,n} i W, -

— i /_\’/_/&)

e Among all linear classifiers,
we would like to find one that has -
the maximum margin {x|wlx+b=0)}

* We will derive an algorithm that finds the maximum margin
classifier, by transforming a difficult to solve optimization into an
efficient one

Maximum margin classifier

(we transform the optimization into an efficient one)

(maximize the margin)

(s.t. y is a lower bound on
the margin)

Maximum margin classifier

(we transform the optimization into an efficient one)

 We propose the following optimization problem:

maximize = O
weRdpeR,yeR ¥ (maximize the margin)

, (:5wa,— + b 2) .
subject to >y foralli € {1,...,n} (s.t. y is a lower bound on

wll2 = the margin)

Maximum margin classifier

(we transform the optimization into an efficient one)

 We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

Maximum margin classifier

(we transform the optimization into an efficient one)

 We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

o If we fix (w, b), the optimal solution of the optimization is the margin

Maximum margin classifier

(we transform the optimization into an efficient one)

 We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

o If we fix (w, b), the optimal solution of the optimization is the margin

e Together with (w, b), this finds the classifier with the maximum margin

Maximum margin classifier

(we transform the optimization into an efficient one)

We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

If we fix (w, b), the optimal solution of the optimization is the margin
Together with (w, b), this finds the classifier with the maximum margin

Note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

Ly

Maximum margin classifier

(we transform the optimization into an efficient one)

We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

If we fix (w, b), the optimal solution of the optimization is the margin
Together with (w, b), this finds the classifier with the maximum margin

Note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

The above optimization looks difficult, so we transform it using reparametrization

maximize,erd peR yeR Y Vs
w!x; + b) . +
subject to % l >y foralli € {1,...,n} - +
Iwll -
wlly == - ; +

Maximum margin classifier

(we transform the optimization into an efficient one)

We propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

If we fix (w, b), the optimal solution of the optimization is the margin
Together with (w, b), this finds the classifier with the maximum margin

Note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

The above optimization looks difficult, so we transform it using reparametrization

maximize,erd peR yeR Y Vs
w!x; + b) . +
subject to % l >y foralli € {1,...,n} - +
Il -
wlly == - ; +
)4 -

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w||,,
and only depends on the direction of w

(maximize the margin)

plays the role of
wll,

a lower bound
on the margin)

maximizeweRd,beR,yeR 4

.)’i(WTxi+b) :
subject to >y foralli € {1,...,n}
Iwll,

wlly =~

(maximize the margin)

plays the role of
wll,

a lower bound
on the margin)

. maximize,,crd peR yeR ¥
’ ’ ——

subject to ! >y foralli € {1,...,n}

/——
 The above optimization

MaximIZe,,cRrd peR (maximize the margin)

—
. i(wai .
subject to foralli € {1,...,n}(now plays the role of
Iwll, Iwll, [wll>
__— a lower bound

on the margin)
which simplifies to

minimize,,crd per ||W||%

subjectto y,(wlx;+b) > 1 foralli € {1,...,n}
<

. maximize,,crd peR yeR ¥

.)’i(WTxi + D) :
subject to >y foralli € {1,...,n}
Iwll>
Wl =~
Y
 The above optimization stillllooks difficult, but can be transformed into

MaximIZe,,cRrd peR (maximize the margin)

Iwlla

(wlx, + b) 1 ,
Y l > foralli € {1,...,n}(now
Iwll, Iwll2 1wl
a lower bound
on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,crdper ||W|5

subjectto y,(wlx;+b) > 1 foralli € {1,...,n}

* This is a quadratic program with linear constraints, which can be easily solved

maximizeweRd,beR,yeR 4

.)’i(WTxi + D) :
subject to >y foralli € {1,...,n}
Iwll>
wll, =—
Y
The above optimization stillllooks difficult, but can be transformed into

MaximIZe,,cRrd peR (maximize the margin)

Iwlla

T
w'x;+ b 1
I i +5) > foralli € {1,...,n}(now

wih, vl Il
Iwll, 2 a lower bound

on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,crdper ||W|5

subjectto y,(wlx;+b) > 1 foralli € {1,...,n}

This is a quadratic program with linear constraints, which can be easily solved

Once the optimal solution is found, the margin of that classifier (w, b) is T
Wiz

What if the data is not separable?

{x|w'x+b =0}
minimize,.criper |IWIl3

1

l/ [[wl]2
m;f?"gm\{xlex+b=+ 1)

S sl

[Jwl]2

x|wix+b=-1)

subjectto y(w'x;+b)>1 forallie {1,...

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

1
. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w|, = — s

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

x|wix+b=-1)

Two Issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |+
+ \ +
- - + - +
- + T B
o\ + - T+
- + R

What if the data is not separable?

{x|wlx+b=0)

e x|wix+b=-1)}

What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wai +b) > 1-¢

What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wal- +b) > 1-¢

e x|wix+b=-1)}

e This gives a new optimization problem W|th some positive constant ¢ € R

minimize,,crd per 5€Rn ‘+ C Z &;

subject to yl-(w x;+b)>1-¢

l
/\ —

foralli € {1,...,n}

What if the data is not separable?

T —
{(x|wix+b =0} e We introduce slack so that

some points can violate the

\ , @ margin condition
' @ ® O T b > 1
® ‘\\ ' o yl(W Xl +) dll - 5l
N \\‘
O 9
O

\ / x|wix+b=+1)}
e x|wix+b=-1)}

e This gives a new optimization problem wj;ch some positive constant ¢ € R

minimizeweRd,beR’feRn “W”% + c Z 51’
i=1
subjectto y(wlx;+b)>1—¢& forallie {1,...,n)

§& >0 forallie {1,...,n)

What if the data is not separable?

Lelwlx+b=0) e We introduce slack so that
some points can violate the
margin condition

yl-(wal- +b) > 1-¢

e x|wix+b=-1)}

e This gives a new optimization problem wj;ch some positive constant ¢ € R
mMinimize,yerd peR R ||w||% +c Z E;
i=1
subjectto y(wlx;+b)>1—¢& forallie {1,...,n)
& >0 foralie {l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

Support Vector Machine

e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c Z E;
i=1

subjectto y:(w'x, +b) > 1—¢

1

foralli € {1,...

Support Vector Machine

e For the optimization problem .
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

Support Vector Machine

e For the optimization problem .
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

Support Vector Machine

e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy

Support Vector Machine

e For the optimization problem .
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy

¢, = 0if margin is big enough yl-(wal- +b) > 1,0r

Support Vector Machine

e For the optimization problem .
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

Support Vector Machine

e For the optimization problem .
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+ by>1-¢& foralli e {l,...,n}

& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

Support Vector Machine

e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+b) >1-¢ forallie {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

e SO one can write

Support Vector Machine

e For the optimization problem

n
minimize,,crd per ccr” ”W”% +c Z éi
i=1
subjectto y(wlx;+b)>1—¢& foralli € {1,...,n)
& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

e So one can write
T . .
e &, =max{0,1 —y,(w'x;+ b)}, which gives

Support Vector Machine

e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c Z E;

i=1
subject to yl-(wal-+b) >1-¢ forallie {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &;'s satisfy

¢, = 0if margin is big enough yl-(wal- +b) > 1,0r

o &= 1 — (w!lx, 4+ b), if the example is within the margin y-(wa- +b)<1
l yl l l l

-

e So one can write
T . .
* fi = max{0,1 — yl-(w X; + b)}, which gives

Support Vector Machine

e For the optimization problem

minimizs, e pencene IWIE+c Y&
i=1

subject to yl-(wal-+b) >1-¢ forallie {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

e So one can write
T . .
e £ =max{0,1 —y,(w" x;+ b)}, which giv

ZmaX{O 1 —yl(w x;,+b)}

=1 _—

minimize,,crd per ;”W“%

Recall: we were looking for a loss function

« We want a loss function that
- approximates (captures the flavor of) the 0-1 loss
 can be easily optimized (e.g. convex and/or non-zero derivatives)
* More formally, we want a loss function
with £(y, —1) small when y < 0 and larger when y > 0
with ¢(9,1) small when ¢ > 0 and larger when g < 0

which has other nice characteristics, e.g., differentiable or convex
« We now have a new loss function from the SVM optimization problem:

minimize itz y — T
weR4,beR ||W||2 + max{0,1 —y(w'x; + b)}
C

i=1
30 30

) . 0O >0

+1 §>0 +1 §<0

20 1 20

151 15 1

101 10

0.5 1 05 4

0.0

T T 0.0 T T T T
-3 -2 -1 0 -3 -2 -1 0 1 2

prediction g

1 prédictBion 0
true y true y

Logistic loss (9, y) = log(1 + e™?)

A

09, —1) = log(1 + €¥) 0y, +1) = log(1 +e77)

/30

25 1

2.0 1

15 1

) N

true y true 7

e Differentiable and convex in y
e Approximation of 0-1 loss
* Most popular choice of a loss function for classification problems

Sub-gradient descent for SVM

Sub-gradient descent for SVM

e SVM is the solution of

n
. LT T
minimize,,crd per Iwll5 + E max{0,1 —y,(w'x;+ D)}
C
i=1

Sub-gradient descent for SVM

e SVM is the solution of

1 n
minimize,,crd per —||w||% + 2 max{0,1 — y.(w'x; + b)}
C
i=1
* As it is non-differentiable, we solve it using sub-gradient descent

Sub-gradient descent for SVM

e SVM is the solution of

1 n
minimize,,crd per —||w||% + 2 max{0,1 — y.(w'x; + b)}
C
i=1
* As it is non-differentiable, we solve it using sub-gradient descent
* which is exactly the same as gradient descent, except when we are at a

non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,,crd per —||w||% + 2 max{0,1 — y.(w'x; + b)}
C
i=1
As it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
dwf(wal- +b,y;,) = I{yi(wal— +b) < 1}(=yx;)
and apply

- 2
WD e w® = (Y T Ov)+ b0) < 1) (=yp) + Zw)
C
nl=1

pD — b0 -y N Ly (W) x; +b) < D} (=)
i=1

Kernels

What if the data is not linearly separable?

Some points do not satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

e Use features, for example,
X = (xl,xz) (S R?2 d) ¢3(X)

/—\\\ o x
b2 X
. x x /~ - o
xil R
X ¢ (x)
¢2(X)

This data is not linearly

Can you suggest some features
separable

¢h1(x1, Xp), Pr(x1, X5), P3(x1, X5) such that this data is
linearly separable in this 3-dimensional space?

e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

19

Example

4
3 _ -
i - - -

— 1 = e #

X 0 - + :. -+#
-1 - = +_+ +
DY - +
-3

-5 -4 -3 -2 -1 O

data: x in 2-dimensions, y in {+1,-1}

features: polynomials

x[1]

1 2

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features

ho (CIJ) =
hi(x) = z[1]
ho(x) = z[2]
hs(x) = z[1]?
ha(x) = x[2]?

’U]Qho(x) -+ wlhl(x) -+ wghQ(ZE‘) -+ ..

20

Learned decision boundary

Flw) ="wo + wiz[1] + wyw(2) :
: \ - - -
| i oF g 0 . Y
| | -_ 1 - ey s
A -2~ - ¥
CB[Q] “ | 35 1 0 1 2
‘ ! -5 -4 -3 -2 -
| T|1] x(1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth

Learned decision boundary

* \\\,_\\ : a) 4
' ‘ -:—f?'"::
' : 57 ' . 0 - + + =

x[2]

1 e X
_2 - +
4 -3
. -5 -4 -3 -2 -1 0 1 2
wll] X[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(X) x[2] -1.07

e Simple regression models had smooth

-, * Simple classifier models have smooth

Learned decision boundary

4
y | 1| - +
~ e -
% 0 - * + = .p.
1 e X
-3 - +
o b =353 3 2 -1 0 1 2
.33[1] x[1]

Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

0o ® Simple classifier models have smooth

Adding quadratic features

4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

x[1]

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models

23

e Decision boundary becomes more complex

Adding quadratic features

4

3 _ -
: - = -
1= R

0 +I -+¢
. s 7
N - + +
-3

-5 -4 -3 -2 -1 0 1 2 3

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

x[1]

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models

24

e Decision boundary becomes more complex

Adding quadratic features

4
3 _ -
, - - -
g ; - -+-I t"'""
. - B4 7
Y - + +
25 4 -3 2 -1 0 1 2 3
x[1]
ho(x) 1 1.68
hi(x) x[1] 1.39
ha(x) x[2] -0.59
hs(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96

hs(x) x[1]x[2] Omuitted

e Adding more features gives more complex models

.- * Decision boundary becomes more complex

Addlng hlgher degree polynomial features

Overfitting leads to
non-generalization

\

-3

-5 -4 -3 -2 -1 0 1 2

ho(x) 1 .

h(x) x[1]
ha(x) x[2]
hs(x) (x[1])?
ha(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x) (x[2])?
h11(x) (x[1])® 0.8
hio(x) (x[2])8 -8.6

Coefficient values
getting large

Adding higher degree polynomial features

. Overfitting leads to
A = T non-generalization

4
3 - -
- -
2 - -
—
E 0 - + + .
- | . -h +-+ +
‘ . ‘ . : a8, . 5 1 _ + +
oefficien —3
e | vae | SR SR I
:fi:: X[L ' Coefficient values x[1]
ha() x[2] getting large

hs(x) (x[1])?
h(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x) (x[2])?
h11(x) (x[1]) 0.8
hio(x) (x[2])8 -8.6

Adding higher degree polynomial features

Overfitting leads to
non-generalization

4
3 — - —
2 — —
% 0 o - = .
1 - =4 4t
A\ . \ 1 +
. : .) . . " -2 -
ho(x) 1 216 o x[1]
) (1] _ Coefficient values
hs(x) x(2] . getting large
hs(x) (x[1])? .
ha(x) (x[2])? :
hs(x) (x[1]) .
he(x) (x[2])? :
hy(x) (x[1])* .
hg(x) — (x[2])* :
EURE e Qverfitting leads to very large values of
h11(x) (x[1])® 0.8 _— e o o
o w0 f(z) = woho(x) +wihi(z) + waha(x) +

Creating Features

e Feature mapping ¢ : RY - RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use
one can generate vectors

¢1(x> M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
¢k()€) N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p

Creating Features

e Feature mapping ¢ : RY - RP maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use . J
one can generate vectors {uj}jzl CR

¢1(x> M d define f
|| X2 and define features:
p(x) = : N fk Px) = Cos(uij)
X
¢k()€) N _ ¢J(x) — (I/leX)2

Pjlx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k polynomials

forx = (x;,...,x;) € RY?
« At a first glance, it seems inevitable that we need memory (to store

the features{¢(x;) € R”}’_,) and run-time that increases with p where

d<n<p

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our
e training algorithms and
e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})
and if we can find a kernel for our feature map such that

K(x.x) = ¢(x) - p(x')

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,2") = ¢(z) - ¢(z') for all z, 2’

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x')})

and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x')

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data

Ridge Linear Regression as Kernels

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + /1||w||%
weR

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + lllwll%
weR

e As an exercise, we will represent prediction with w using linear kernel

defined as K(x, x') = x'x’

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — lel% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)

e Prediction: x,,., € R?

/\T

y new = W 'XIICW

=y'XX? + 1,)" Xx, .,

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — leI% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)

e Prediction: x,,., € R?

/\T

y\new = W X
=y'XX? + 1,)" Xx, .,

e Hence, to make prediction on any future data points, all we need to know is

new

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mind ly — leI% + lllwll%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)

e Prediction: x,,., € R?

/\T

y new = W 'XIICW

=y'XX? + 1,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x{, Xpew) K(x;,x;) K(xq,x,)
XXpew = : € R", and XX’ = : :
K(x,, x

new) _K(xna x]) K(xna -x2)

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg min ||y — Xw||2 + /1||w||2
weR?

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x') = x'x’
e Training: W = (XX + Al)~ ' X'y
= X'XX? + 1,)ty (when n < d via linear algebra)
e Prediction: x,,., € R?

/\T

yIICW= wo X

ncw
= y!XXT+ AL,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(xl, neW) K(xl, Xy) K(xl, X5) |
XX o = : € R", and XX’ = : : e R™"
o _K(xn, xnew)_ _K(xn, X;) K(Xn, X5)]

e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to

access the features via kernel K(x;, x;) and K(x) and not the features ¢ (x;)

l’ I’IGW

Kernel (i.e., dot-product) of polynomial features

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k
X1

, Px) = [x] fork = 1and d = 2, then K(x, x') = xx] + x,x5

2

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

e Px) =

P(x) =

X

xp

x3

X1Xo

_x2x1 |

1 / f :
%, fork =1andd = 2, then K(X,)C) = X1X + X2 Xo

fork =2andd = 2,

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

e Px) =

P(x) =

X

xp

x3

X1Xo

1 / f :
%, fork =1andd = 2, then K(X,)C) = X1X + X2 Xo

fork =2andd = 2,

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*

e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)
takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by
only computing the kernel, then computing { K(x;, x;) };_, takes memory/time dn

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x") = ¢(x) - p(x') = (P (x), p(x")) = p(x)! Pp(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
, Px) = x; fork = 1and d = 2, then K(x, x') = xx] + x,x5

xp

2
dpx)=| 2 [fork=2andd =2,
. X142

then K(x, x') = x7(x])* + x5(x3)* + 2x,X,x1x5 = (X,x] + Xpx5)*
e Note that for a data point x;, explicitly computing the feature ¢(x,)

takes memory/time p = d~
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) };?:1 takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

The Kernel Trick

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a choice of a loss, use a linear predictor of the form

n
i=1

for some a =

aq

a,

n

€ R" to be learned

Predictionis y .o, = W " Xpow = Z A; X; Xpew

i=1

The Kernel Trick
. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a choice of a loss, use a linear predictor of the form
n a1
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
Predictionis y .o, = W " Xpow = Z A; X; Xpew
i=1

2. Design an algorithm that finds a while accessing the data only via {xiTx]-}

The Kernel Trick
. Given data {(x;, y;) }'_,, pick a kernel K : RYx RY > R

1. For a choice of a loss, use a linear predictor of the form
n a1
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
Predictionis y .o, = W " Xpow = Z A; X; Xpew
i=1

2. Design an algorithm that finds a while accessing the data only via {xiTx]-}

3| Substitute xiTx]- with K(x;, x]-), and find a|using the above algorithm from step 2.

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

- RY%x RY - R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = 2 a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n

Predictionis y .o, = W " Xpow = Z A; X; Xpew

i=1

2. Design an algorithm that finds a while accessing the data only via {xiij}

3.

n
4. Make prediction with y .. = Z a,K(x;, x,

Substitute xiij with K(x;, xj), and find a

i=1

. T .
(replacing x; X, with K(x;, X,..,))

using the above algorithm from step 2.

ew)

The Kernel Trick for regularized least squares

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

(Step 1. Use a linear predictor)

The Kernel Trick for regularized least squares

S

n
W = argmin Z (y; — WTX,-)2 + /1||W||%
w
i=1

mn
There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1

The Kernel Trick for regularized least squares

S

W o= argmln Z(y, wix)® + Allwll;
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1

n n
a = argmm g g aj{xj,)% + A g g ;0 (X, 25)
1=1

i=1 j=1

The Kernel Trick for regularized least squares

S

W o= argmln Z(y, wix)® + Allwll;
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zoz] Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of)

:argmmg E a; K(xi,x;)) +)\§ E a0 K (i, z5)
1=1

1=1 5=1

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) +)\E E a0 K (i, z5)
1=1

1=1 5=1

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

akemel:argmmg E a; K(xi,x;)) —I—)\E E a0 K (i, z5)
1=1

1=1 5=1

(Step 3. Switch inner product with kernel)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

— argmin ||y — Kal|5 + Ao’ Ka

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
i=1 =1 j=1

(Step 2. Write an algorithm in terms of)

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

= argmin ||y — Ka/| |§ + ' Ko Where K;; = K(x;, x;) = (P (x), gb(xj))

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

n n
Xkernel — argmoini :(y?» o E :ajK(ajiaxj + A E E OézOé] LU@,CUJ

1=1 5=1

(Step 3. Switch inner product with kernel)

= argmin ||y — Ka/| |§ + ' Ko Where K;; = K(x;, x;) = (P (x), ¢(9Cj)>

(Solve for &y orner)

The Kernel Trick for regularized least squares

S

I argmln Z(y, wlx)? + Allwll3
i=1

There exists an o € R": w = Z oG T (Step 1. Use a linear predictor)
i=1
&:argmmz Zozj Tj,T;)) —I—)\ZZ%% Ti, Tj)
=1 =1 7=1

(Step 2. Write an algorithm in terms of)

n n
Xrernel — M8 mO}n E :(y?» o E :ajK(ajia x] ‘|‘ A E E OézOé] .’137,, CCJ

1=1 5=1

(Step 3. Switch inner product with kernel)

= argmin ||y — Ka/| |§ + ' Ko Where K;; = K(x;, x;) = (P (x), gb(xj))

(Solve for &y orner)

ThUS, &\kemel = (K + ﬂIan)_ly

Examples of popular Kernels

. Polynomials of degree exactly k

K(x, x) = (xTx)k
. Polynomials of degree up to k&

Kx,x)=(1+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
|lx — x’”z)

K(x,x") = exp(~ T

- Sigmoid
K(x,x") = tanh(yx'x" + r)

”x. —AX | | ; \ K, x
RBF kernel k(x;, x) = exp{ _ 2 } /i) (X,)

K(z,z;)

00 02 04

-0.4

0.5 1.0 15

0.0

20?2

samples {(x;, y;) } i

: : @7 : : bandwidth :\ o
@ 9 o oo
; v %
I , | . | ; 1
. T.] - .
_3 -1) g 2: f\
: i : f(z) =00+2j0‘jK(33,$j)
: —
: <
: o
: ~~ «w
. 8] o
. = o ®
- o
: ®
; <
IL lI 4 - | l ll C? N Tl 1T % L 1 !
-2 -1 0 1 2 -2 1 0 1
xZr I

n
predictor f(x) = Z a;K(x;, x) is taking weighted sum of n kernel functions

centered at each ’s:almple points

2
||Xi — x“z }

RBF kernel (x, x) = exp{
2062
e« ZL(a) = ||Ka—y||% + la'Ka

e The bandwidth 67 of the kernel regularizes the predictor, and the regularization
coefficient A also regularizes the predictor

—3 —4 _ —4 _ —
c=10"3X1=10 c=10"2 A =10 c=10"" A=10"4
y 65 1 —— True f(x) - \] —— True f(x) - ' —— True f(x)
| Fitted f(x) Fitted f(x) . Fitted f(x)
60 ‘ + Data 60 I /

ﬁ + Data &0 U
.. 55
y ' s)0 .
._ \ f)50 '
/ a5

\/

A + Data

¢ 4 “ — 107" A=10""
o=10"9)\ =10) oc=10"" A =10
. : —— True f(x)
—— True f(i) Fitted f(x)
Fitted f(x) e . Data
. Data [* .
- AN / .
fx) = a; K(x;,x) / SRR
=1 /

o\
\\/
.
.
08 10

RBF kernel for SVMs

W = argmin —Zmax{O 1—yb+wix)} + /1||W||2

wb N z |
n
a,b = arg arerl[é?b - Z max{0,1 —y(b + Zl a;K(x;, x,))} + /1. 12 1()tl-ozjK(xl-, X;)
J= i=1,j=
Bandwidth o is Iarge enough Bandwidth o is small

Bootstrap

Confidence intervals

Suppose you have training data { (x;, ;) }'_, drawn i.i.d. from some true
distribution Px,y

We train a kernel ridge regressor, with some choice of a kernel
K:R™>d R

minmize , ||Ka — y”% + 1a’Ka Example of 5% and 95% percentile
a curves for predictor f(x)

The resulting pr[edictor IS o -
f@ =) Kx,0a, « -
=1 - ‘ '//.“' |
where ™ e\
a = (K+AD'ly eR” RS
/ \ ¢/ ')
- e ’I ¥\\"‘\ ’/// ‘\
We wish to build a confidence interva AR AN \‘
for our predictor f(x), using ° 7 Y J/ _
5% and 95% percentiles - NS

Confidence intervals

o Let's focus on a single x € R?

» Note that our predictor f(x) is a random
variable, whose randomness comes . PR

from the training data S, = {(x;,)}, o et
* If we know the statistics > 1/ A
(in particular the CDF of the DA /A
random variable f(x)) of the predictor, TR |
then the confidence interval with | R 2 '.
confidence level 90% is defined as - - :

A CDF(f(X)) 010 0i5 1.0 1i5 2j0 2i5 3i0

A . x
0.95 if we know the distribution of our predictor f(x),
the green line is the expectation E[f(x)]
0.90 and the black dashed lines are the
5% and 95% percentiles in the figure above
v 0.05 -
| g f (x)

5% percentile 95% percentile

e As we do not have the cumulative distribution function (CDF),

. we need to approximate them

Confidence intervals

e Hypothetically, if we can sample as many times as we want,
then we can train B € Z7 i.i.d. predictors, each trained on n fresh samples to get

empirical estimate of the CDFof y = f(x)

1.0

e Forb=1,...B o | |

b) (b
« Draw n fresh samples {(xl.(),yl.())}?=1

e Train a regularized kernel
. %k
regression b)

n
Predict)A/(b) = ZK(xi(b),x)a:(b)

i=1

CDF (5)

Probability
o
()]

o
»
T

([]
0.2+

» Let the empirical CDF of those B predictors = -2 T 0

—_—

{)A/(b)}lg=1 be CDF (), defined as
P 1 &)
CDF (y) = — E I{ 3 <3

) 5 ~ {(yYW<y}

A

e Compute the confidence interval using CDF ()

<>

Bootstrap

* As we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

e Bootstrap is a general tool for assessing statistical accuracy
e We learn it in the context of confidence interval for trained models

A bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }'_,

e Forb=1,...,B

o Create a bootstrap dataset S (b)
bootstrap

e Train a regularized kernel regression o (b)

n
Predict §©) = ZK(xl.(b),x)ai*(b)
i=1

e« Compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

bootstrap

multiple bootstrapped

training a single predictor 90% confidence interval

predictors
n - n - n .
< < A < A 7
/ \
/ \
[J
™ o .' o A 7 o -//.,“\' |
e e\,
’ Y] \
. a /1
Y) > N N K : . "// \1l]
/ o iy v
- - -~ - L] - | I ° = ST -~ N Y \
° ~ y ’ e)/ ‘
4 y '. , 7’ \e /'/ I‘
o - o o 17 N bl ‘
| \ o/ |
| \ .
Q L] /.
- - -~ . -~ 14N 4
' ' . e~
60 05 10 15 20 25 30 00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
X X X

Figures from Hastie et al

