Support Vector Machines

Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $\hat{y} = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for

$$(\hat{b}, \hat{w}) = \arg\min_{b,w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at $w^T x + b = 0$

How do we choose the best linear classifier?

- Informally, margin of a set of examples to a decision boundary is the distance to the closest point to the decision boundary
- For linearly separable datasets, maximum margin classifier is a natural choice
- Large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points

• Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$,

which is the hyperplane orthogonal to w with a shift of b

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$,

which is the hyperplane orthogonal to w with a shift of b

• we define **margin** of (b, w) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$,

which is the hyperplane orthogonal to w with a shift of b

• we define **margin** of (b, w) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$

(The proof is on the next slide)

• The distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows:

- The distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows:
- We know that if you move from x_i in the negative direction of w by length γ_i , you arrive at the line, which can be written as

$$\left(x_i - \frac{w}{\|w\|_2} \gamma_i\right)$$
 is in $\{x \mid w^T x + b = 0\}$

- The distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows:
- We know that if you move from x_i in the negative direction of w by length γ_i , you arrive at the line, which can be written as

$$\left(x_i - \frac{w}{\|w\|_2} \gamma_i\right) \text{ is in } \{x \mid w^T x + b = 0\}$$

So we can plug the point in the formula:

$$w^{T}\left(x_{i} - \frac{w}{\|w\|_{2}}\gamma_{i}\right) + b = 0$$
 which is

$$w^{T} x_{i} - \frac{\|w\|_{2}^{2}}{\|w\|_{2}} \gamma_{i} + b = 0$$
 and hence

$$\gamma_i = \frac{w^T x_i + b}{\|w\|_2},$$

We multiply the formula by y_i so that for negative samples we use the opposite direction of -w instead of w

 The margin with respect to a set is defined as

efined as
$$\gamma = \min_{i \in \{1, \dots, n\}} \gamma_i = \min_{i} y_i \frac{(w^T x_i + b)}{\|w\|_2} - \frac{\gamma}{-\gamma} + \frac{\gamma}{+\gamma} + \frac$$

 The margin with respect to a set is defined as

efined as
$$\gamma = \min_{i \in \{1,\dots,n\}} \gamma_i = \min_i y_i \frac{(w^T x_i + b)}{\|w\|_2} - \frac{\gamma}{-\gamma} + \frac{\gamma}{+\gamma} + \frac{\gamma}{+\gamma}$$

 The margin with respect to a set is defined as

$$\gamma = \min_{i \in \{1, ..., n\}} \gamma_i = \min_i y_i \frac{(w^T x_i + b)}{\|w\|_2}.$$

 Among all linear classifiers, we would like to find one that has the maximum margin

 The margin with respect to a set is defined as

$$\gamma = \min_{i \in \{1, ..., n\}} \gamma_i = \min_i y_i \frac{(w^T x_i + b)}{\|w\|_2}.$$

 Among all linear classifiers, we would like to find one that has the maximum margin

 The margin with respect to a set is defined as

$$\gamma = \min_{i \in \{1,...,n\}} \gamma_i = \min_i y_i \frac{(w^T x_i + b)}{\|w\|_2}.$$

 Among all linear classifiers, we would like to find one that has the maximum margin

 We will derive an algorithm that finds the maximum margin classifier, by transforming a difficult to solve optimization into an efficient one

(we transform the optimization into an efficient one)

(maximize the margin)

(s.t. γ is a lower bound on the margin)

(we transform the optimization into an efficient one)

(we transform the optimization into an efficient one)

(we transform the optimization into an efficient one)

• We propose the following optimization problem:

• If we fix (w, b), the optimal solution of the optimization is the margin

(we transform the optimization into an efficient one)

- If we fix (w, b), the optimal solution of the optimization is the margin
- Together with (w, b), this finds the classifier with the maximum margin

(we transform the optimization into an efficient one)

maximize
$$w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}$$
 γ (maximize the margin) subject to $\frac{y_i(w^Tx_i + b)}{\|w\|_2} \ge \gamma$ for all $i \in \{1, ..., n\}$ (s.t. γ is a lower bound on the margin)

- If we fix (w, b), the optimal solution of the optimization is the margin
- Together with (w, b), this finds the classifier with the maximum margin
- Note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid

(we transform the optimization into an efficient one)

- If we fix (w, b), the optimal solution of the optimization is the margin
- Together with (w, b), this finds the classifier with the maximum margin
- Note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid

(we transform the optimization into an efficient one)

• We propose the following optimization problem:

maximize
$$w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}$$
 γ (maximize the margin) subject to $\frac{y_i(w^Tx_i + b)}{\|w\|_2} \ge \gamma$ for all $i \in \{1, ..., n\}$ (s.t. γ is a lower bound on the margin)

- If we fix (w, b), the optimal solution of the optimization is the margin
- Together with (w, b), this finds the classifier with the maximum margin
- Note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid
- The above optimization looks difficult, so we transform it using **reparametrization**

Because of scale invariance, the optimal solution does not change, as the solutions to the original problem did not depend on $||w||_2$, and only depends on the direction of w

(maximize the margin)

(now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

• $\max_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \gamma$

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \geq \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

(maximize the margin)

(now
$$\frac{1}{\|w\|_2}$$
 plays the role of a lower bound on the margin)

• maximize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}}$ γ

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

The above optimization still looks difficult, but can be transformed into

$$\max_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{\|w\|_2}$$
 (maximize the margin)

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$
 for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

which simplifies to

$$\mathsf{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \quad \|w\|_2^2$$

subject to
$$y_i(w^Tx_i + b) \ge 1$$
 for all $i \in \{1,...,n\}$

• $\mathsf{maximize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}}$ γ

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

The above optimization still looks difficult, but can be transformed into

$$\max_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{\|w\|_2}$$
 (maximize the margin)

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$
 for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

which simplifies to

minimize
$$_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all $i \in \{1, ..., n\}$

This is a quadratic program with linear constraints, which can be easily solved

• $\max_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \gamma$

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

• The above optimization still looks difficult, but can be transformed into

$$\max_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{\|w\|_2}$$
 (maximize the margin)

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$
 for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

which simplifies to

minimize
$$_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all $i \in \{1, ..., n\}$

- This is a quadratic program with linear constraints, which can be easily solved
- Once the optimal solution is found, the margin of that classifier (w, b) is $\frac{1}{\|w\|_2}$

• We cheated a little in the sense that the reparametrization of $\|w\|_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin

- We cheated a little in the sense that the reparametrization of $\|w\|_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

Two issues

- it does not generalize to non-separable datasets
- max-margin formulation we proposed is sensitive to outliers

 We introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$${x \mid w^T x + b = +1}$$

$${x \mid w^T x + b = -1}$$

 We introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$${x \mid w^T x + b = -1}$$

• This gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} ||w||_2^2 + c \sum_{i=1}^n ||x_i||_2^2 + c$

subject to
$$y_i(w^Tx_i + b) \ge 1 - \xi_i$$
 for all $i \in \{1,...,n\}$

 We introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$${x \mid w^T x + b = -1}$$

• This gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} ||w||_2^2 + c \sum_{i=1}^n \xi_i$

subject to
$$y_i(w^Tx_i+b) \geq 1-\xi_i$$
 for all $i\in\{1,...,n\}$
$$\xi_i \geq 0 \quad \text{ for all } i\in\{1,...,n\}$$

 We introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$${x \mid w^T x + b = -1}$$

This gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad ||w||_2^2 + c \sum_{i=1}^n \xi_i$

subject to
$$y_i(w^Tx_i+b) \ge 1-\xi_i$$
 for all $i \in \{1,...,n\}$
$$\xi_i \ge 0 \quad \text{ for all } i \in \{1,...,n\}$$

the (re-scaled) margin (for each sample) is allowed to be less than one, but you pay $c\xi_i$ in the cost, and c balances the two goals: maximizing the margin for most examples vs. having small number of violations

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} & \|w\|_2^2 + c & \sum_{i=1}^n \xi_i \\ & \text{subject to} & y_i(w^T x_i + b) \geq 1 - \xi_i & \text{for all } i \in \{1, \dots, n\} \end{aligned}$$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

notice that at optimal solution, ξ_i 's satisfy

• $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- So one can write

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- So one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- So one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- So one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

Recall: we were looking for a loss function

- We want a loss function that
 - approximates (captures the flavor of) the 0-1 loss
 - can be easily optimized (e.g. convex and/or non-zero derivatives)
- More formally, we want a loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - which has other nice characteristics, e.g., differentiable or convex
- We now have a new loss function from the SVM optimization problem:

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

Logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$

$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}) \qquad \ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- Differentiable and convex in \hat{y}
- Approximation of 0-1 loss
- Most popular choice of a loss function for classification problems

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

As it is non-differentiable, we solve it using sub-gradient descent

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

- As it is non-differentiable, we solve it using sub-gradient descent
- which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set)

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

- As it is non-differentiable, we solve it using sub-gradient descent
- which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set)
- this means that we can take (a generic form derived from previous page) $\partial_w \mathcal{E}(w^Tx_i+b,y_i) \ = \ \mathbf{I}\{y_i(w^Tx_i+b) \le 1\}(-y_ix_i)$ and apply

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \left(\sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i x_i) + \frac{2}{c} w^{(t)} \right)$$

$$b^{(t+1)} \leftarrow b^{(t)} - \eta \sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i)$$

Kernels

What if the data is not linearly separable?

Some points do not satisfy margin constraint:

$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Two options:

- 1. Introduce slack to this optimization problem (Support Vector Machine)
- 2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

Use features, for example,

- Generally, in high dimensional feature space, it is easier to linearly separate different classes
- However, it is hard to know which feature map will work for given data
- So the rule of thumb is to use high-dimensional features and hope that the algorithm will automatically pick the right set of features

Example: adding more polynomial features

Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$
 $h_2(x) = x[2]$
 $h_3(x) = x[1]^2$
 $h_4(x) = x[2]^2$
 \vdots

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear on polynomial features

•
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding higher degree polynomial features

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	$(x[1])^6$	0.8
h ₁₂ (x)	(x[2])6	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	$(x[2])^2$	-48.6
h ₅ (x)	$(x[1])^3$	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	$(x[1])^6$	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Creating Features

• Feature mapping $\phi: \mathbb{R}^d \to \mathbb{R}^p$ maps original data into a rich and high-dimensional feature space (usually $d \ll p$)

For example, in d=1, one can use

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_k(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

For example, for d>1, one can generate vectors

and define features:

$$\phi_j(x) = \cos(u_j^T x)$$

$$\phi_j(x) = (u_j^T x)^2$$

$$\phi_j(x) = \frac{1}{1 + \exp(u_i^T x)}$$

- Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials for $x=(x_1,...,x_d)\in\mathbb{R}^d$?
- At a first glance, it seems inevitable that we need memory (to store the features $\{\phi(x_i) \in \mathbb{R}^p\}_{i=1}^n$) and run-time that increases with p where $d < n \ll p$

Creating Features

• Feature mapping $\phi:\mathbb{R}^d\to\mathbb{R}^p$ maps original data into a rich and high-dimensional feature space (usually $d\ll p$)

For example, in d=1, one can use

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_k(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

For example, for d>1, one can generate vectors $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$

and define features:

$$\phi_j(x) = \cos(u_j^T x)$$

$$\phi_j(x) = (u_j^T x)^2$$

$$\phi_j(x) = \frac{1}{1 + \exp(u_i^T x)}$$

- Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials for $x=(x_1,...,x_d)\in\mathbb{R}^d$?
- At a first glance, it seems inevitable that we need memory (to store the features $\{\phi(x_i) \in \mathbb{R}^p\}_{i=1}^n$) and run-time that increases with p where $d < n \ll p$

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a *kernel* for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

This notation is for dot product (which is the same as inner product)

• So, if we can represent our

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

- So, if we can represent our
 - training algorithms and

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

- So, if we can represent our
 - training algorithms and
 - decision rules for prediction

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a *kernel* for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

- So, if we can represent our
 - training algorithms and
 - decision rules for prediction
- as functions of dot products of feature maps (i.e. $\{\phi(x)\cdot\phi(x')\}$) and if we can find a kernel for our feature map such that

$$K(x \, . \, x') = \phi(x) \cdot \phi(x')$$

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

This notation is for dot product (which is the same as inner product)

- So, if we can represent our
 - training algorithms and
 - decision rules for prediction
- as functions of dot products of feature maps (i.e. $\{\phi(x)\cdot\phi(x')\}$) and if we can find a kernel for our feature map such that

$$K(x \,.\, x') = \phi(x) \cdot \phi(x')$$

then we can avoid explicitly computing and storing (high-dimensional) $\{\phi(x_i)\}_{i=1}^n$ and instead only work with the kernel matrix of the training data

$$\{K(x_i, x_j)\}_{i,j \in \{1,...,n\}}$$

• Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n < d \text{ via linear algebra)}$

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n < d \text{ via linear algebra)}$
- Prediction: $x_{\text{new}} \in \mathbb{R}^d$

$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}}$$
$$= \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$$

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n < d \text{ via linear algebra)}$
- Prediction: $x_{\text{new}} \in \mathbb{R}^d$ $\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}}$ $= \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$
- Hence, to make prediction on any future data points, all we need to know is

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x,x')=x^Tx'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n < d \text{ via linear algebra)}$
- Prediction: $x_{\text{new}} \in \mathbb{R}^d$

$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}}$$
$$= \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$$

• Hence, to make prediction on any future data points, all we need to know is

$$\mathbf{X}x_{\text{new}} = \begin{bmatrix} K(x_1, x_{\text{new}}) \\ \vdots \\ K(x_n, x_{\text{new}}) \end{bmatrix} \in \mathbb{R}^n, \text{ and } \mathbf{X}\mathbf{X}^T = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots \\ \vdots & \vdots & \\ K(x_n, x_1) & K(x_n, x_2) & \cdots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n < d \text{ via linear algebra)}$
- Prediction: $x_{\text{new}} \in \mathbb{R}^d$

$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}}$$
$$= \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$$

• Hence, to make prediction on any future data points, all we need to know is

$$\mathbf{X}x_{\text{new}} = \begin{bmatrix} K(x_1, x_{\text{new}}) \\ \vdots \\ K(x_n, x_{\text{new}}) \end{bmatrix} \in \mathbb{R}^n, \text{ and } \mathbf{X}\mathbf{X}^T = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots \\ \vdots & \vdots & \\ K(x_n, x_1) & K(x_n, x_2) & \cdots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

• Even if we run ridge linear regression on feature map $\phi(x) \in \mathbb{R}^p$, we only need to access the features via kernel $K(x_i, x_j)$ and $K(x_i, x_{\text{new}})$ and not the features $\phi(x_i)$

• Recall kernel is defined as $K(x,x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ for } k = 1 \text{ and } d = 2 \text{, then } K(x, x') = x_1 x_1' + x_2 x_2'$$

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

•
$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 for $k = 1$ and $d = 2$, then $K(x, x') = x_1 x_1' + x_2 x_2'$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$$
 for $k = 2$ and $d = 2$,

then $K(x, x') = x_1^2(x_1')^2 + x_2^2(x_2')^2 + 2x_1x_2x_1'x_2' = (x_1x_1' + x_2x_2')^2$

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

•
$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 for $k = 1$ and $d = 2$, then $K(x, x') = x_1 x_1' + x_2 x_2'$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$$
 for $k = 2$ and $d = 2$,

then
$$K(x, x') = x_1^2(x_1')^2 + x_2^2(x_2')^2 + 2x_1x_2x_1'x_2' = (x_1x_1' + x_2x_2')^2$$

• Note that for a data point x_i , **explicitly** computing the feature $\phi(x_i)$ takes memory/time $p=d^k$

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

•
$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 for $k = 1$ and $d = 2$, then $K(x, x') = x_1 x_1' + x_2 x_2'$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$$
 for $k = 2$ and $d = 2$,

then
$$K(x, x') = x_1^2(x_1')^2 + x_2^2(x_2')^2 + 2x_1x_2x_1'x_2' = (x_1x_1' + x_2x_2')^2$$

- Note that for a data point x_i , **explicitly** computing the feature $\phi(x_i)$ takes memory/time $p=d^k$
- For a data point x_i , if we can make predictions (as we saw in the previous slide) by only computing the kernel, then computing $\{K(x_i, x_j)\}_{j=1}^n$ takes memory/time dn

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 for $k = 1$ and $d = 2$, then $K(x, x') = x_1 x_1' + x_2 x_2'$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix} \text{ for } k = 2 \text{ and } d = 2,$$

then
$$K(x, x') = x_1^2(x_1')^2 + x_2^2(x_2')^2 + 2x_1x_2x_1'x_2' = (x_1x_1' + x_2x_2')^2$$

- Note that for a data point x_i , **explicitly** computing the feature $\phi(x_i)$ takes memory/time $p=d^k$
- For a data point x_i , if we can make predictions (as we saw in the previous slide) by only computing the kernel, then computing $\{K(x_i, x_j)\}_{i=1}^n$ takes memory/time dn
 - The features are **implicit** and accessed only via kernels, making it efficient

The Kernel Trick

The Kernel Trick

• Given data $\{(x_i,y_i)\}_{i=1}^n$, pick a kernel $K:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$

• Given data $\{(x_i,y_i)\}_{i=1}^n$, pick a kernel $K:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$

- Given data $\{(x_i,y_i)\}_{i=1}^n$, pick a kernel $K:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$
- 1. For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^{n} \alpha_i x_i \text{ for some } \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \text{ to be learned}$$

Prediction is
$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^n \alpha_i x_i^T x_{\text{new}}$$

- Given data $\{(x_i,y_i)\}_{i=1}^n$, pick a kernel $K:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$
- 1. For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^{n} \alpha_i x_i \text{ for some } \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \text{ to be learned}$$

Prediction is
$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^n \alpha_i x_i^T x_{\text{new}}$$

2. Design an algorithm that finds α while accessing the data only via $\{x_i^Tx_j\}$

- Given data $\{(x_i, y_i)\}_{i=1}^n$, pick a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
- 1. For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^{n} \alpha_i x_i \text{ for some } \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \text{ to be learned}$$

Prediction is
$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^n \alpha_i x_i^T x_{\text{new}}$$

- 2. Design an algorithm that finds α while accessing the data only via $\{x_i^T x_j\}$
- 3. Substitute $x_i^T x_j$ with $K(x_i, x_j)$, and find α using the above algorithm from step 2.

- Given data $\{(x_i, y_i)\}_{i=1}^n$, pick a kernel $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
- 1. For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^{n} \alpha_i x_i \text{ for some } \alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \text{ to be learned}$$

Prediction is
$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^n \alpha_i x_i^T x_{\text{new}}$$

- 2. Design an algorithm that finds α while accessing the data only via $\{x_i^T x_j\}$
- 3. Substitute $x_i^T x_j$ with $K(x_i, x_j)$, and find α using the above algorithm from step 2.
- 4. Make prediction with $\hat{y}_{\text{new}} = \sum_{i=1}^{N} \alpha_i K(x_i, x_{\text{new}})$ (replacing $x_i^T x_{\text{new}}$ with $K(x_i, x_{\text{new}}^{i=1})$)

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$
(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$
(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$= \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$
(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. Use a linear predictor)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$
(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. Use a linear predictor)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$
(Stop 2. Write an algorithm in to

(Step 2. Write an algorithm in terms of \widehat{lpha})

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. Use a linear predictor)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_{2}^{2} + \lambda \alpha^{T} \mathbf{K}\alpha \qquad \qquad \text{Where } \mathbf{K}_{ij} = K(x_{i}, x_{j}) = \langle \phi(x_{i}), \phi(x_{j}) \rangle$$

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an
$$\alpha \in \mathbb{R}^n$$
: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. Use a linear predictor)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Where
$$\mathbf{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

(Solve for $\widehat{\alpha}_{\mathrm{kernel}}$)

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(Step 1. Use a linear predictor)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

(Step 2. Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Step 3. Switch inner product with kernel)

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Where
$$\mathbf{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

(Solve for $\widehat{\alpha}_{\mathrm{kernel}}$)

Thus,
$$\hat{\alpha}_{\text{kernel}} = (\mathbf{K} + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y}$$

Examples of popular Kernels

Polynomials of degree exactly k

$$K(x, x') = (x^T x')^k$$

- Polynomials of degree up to $oldsymbol{k}$

$$K(x, x') = (1 + x^T x')^k$$

 Gaussian (squared exponential) kernel (a.k.a RBF kernel for Radial Basis Function)

$$K(x, x') = \exp\left(-\frac{\|x - x'\|_2^2}{2\sigma^2}\right)$$

Sigmoid

$$K(x, x') = \tanh(\gamma x^T x' + r)$$

predictor $f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$ is taking weighted sum of n kernel functions centered at each sample points

RBF kernel
$$k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}$$

- $\mathcal{L}(\alpha) = \|\mathbf{K}\alpha \mathbf{y}\|_2^2 + \lambda \alpha^T K \alpha$
- The bandwidth σ^2 of the kernel regularizes the predictor, and the regularization coefficient λ also regularizes the predictor

$$y = 10^{-3} \lambda = 10^{-4}$$

$$y = 10^{-4} \lambda = 10^{-4}$$

$$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$

RBF kernel for SVMs

$$\widehat{w} = \arg\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\{0,1-y_i(b+w^Tx_i)\} + \lambda ||w||_2^2$$

$$\widehat{\alpha}, \widehat{b} = \arg\min_{\alpha \in \mathbb{R}^n, b} \frac{1}{n} \sum_{i=1}^{n} \max\{0,1-y_i(b+\sum_{j=1}^{n} \alpha_j K(x_j,x_i))\} + \lambda \sum_{i=1,j=1}^{n} \alpha_i \alpha_j K(x_i,x_j)$$
Bandwidth σ is large enough

Bandwidth σ is small

Bootstrap

Confidence intervals

- Suppose you have training data $\{(x_i,y_i)\}_{i=1}^n$ drawn i.i.d. from some true distribution $P_{x,y}$
- We train a kernel ridge regressor, with some choice of a kernel $K: \mathbb{R}^{d \times d} \to \mathbb{R}$

minmize_{α} $\|\mathbf{K}\alpha - \mathbf{y}\|_2^2 + \lambda \alpha^T \mathbf{K}\alpha$

The resulting predictor is

$$f(x) = \sum_{i=1}^{n} K(x_i, x) \hat{\alpha}_i,$$

where

$$\hat{\alpha} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} \in \mathbb{R}^n$$

• We wish to build a confidence interval for our predictor f(x), using 5% and 95% percentiles

Example of 5% and 95% percentile curves for predictor f(x)

Confidence intervals

- Let's focus on a single $x \in \mathbb{R}^d$
- Note that our predictor f(x) is a random variable, whose randomness comes from the training data $S_{\text{train}} = \{(x_i, y_i)\}_{i=1}^n$
- If we know the statistics (in particular the CDF of the random variable f(x)) of the predictor, then the **confidence interval** with **confidence level 90%** is defined as

As we do not have the cumulative distribution function (CDF), we need to approximate them

Confidence intervals

- Hypothetically, if we can sample as many times as we want, then we can train $B \in \mathbb{Z}^+$ i.i.d. predictors, each trained on n fresh samples to get empirical estimate of the CDF of $\hat{y} = f(x)$
- For b=1,...,B
 - Draw n fresh samples $\{(x_i^{(b)}, y_i^{(b)})\}_{i=1}^n$
 - Train a regularized kernel regression $\alpha^{*(b)}$

Predict
$$\hat{y}^{(b)} = \sum_{i=1}^{n} K(x_i^{(b)}, x) \alpha_i^{*(b)}$$

• Let the empirical CDF of those B predictors $\{\hat{y}^{(b)}\}_{b=1}^{B}$ be $\widehat{\text{CDF}}(\hat{y})$, defined as

$$\widehat{\text{CDF}}(\hat{y}) = \frac{1}{B} \sum_{b=1}^{B} \mathbf{I} \{ \hat{y}^{(b)} \le \hat{y} \}$$

• Compute the confidence interval using $\widehat{\mathrm{CDF}}\,(\hat{y})$

Bootstrap

- As we cannot sample repeatedly (in typical cases), we use bootstrap samples instead
- Bootstrap is a general tool for assessing statistical accuracy
- We learn it in the context of confidence interval for trained models
- A **bootstrap dataset** is created from the training dataset by taking n (the same size as the training data) examples uniformly at random **with replacement** from the training data $\{(x_i, y_i)\}_{i=1}^n$
- For b=1,...,B
 - ullet Create a bootstrap dataset $S_{
 m bootstrap}^{(b)}$
 - Train a regularized kernel regression $lpha^{*(b)}$

• Predict
$$\hat{y}^{(b)} = \sum_{i=1}^{n} K(x_i^{(b)}, x) \alpha_i^{*(b)}$$

 Compute the empirical CDF from the bootstrap datasets, and compute the confidence interval

bootstrap

Figures from Hastie et al