Linear classification

> Learn: £X —sY = Loss function:

X — features U(f(z),y) =1{f(z) #y}
- Y —target classes
Ye{-11}
> Expected loss of f:
>

Exy [1{f(X) # Y}] = Ex[Ey x[1{f() # Y} X = o]
Evix[1{f(@) #Y}X =2] =1 — P(Y = f(z)|X = z)

> Bayes optimal classifier:

f(x) = arg man]P(Y = y|X = x)

> Model of logistic regression: 1
P(Y =ylz,w) =

1 + exp(—yw'x)

What if the model is wrong?



Binary Classification
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Can we do classification without a model of P(Y = y|X :xy




The Perceptron Algorithm s«

> Classification setting: y in {-1,+1}
> Linear model
- Prediction:

> Training:
- Initialize weight vector:

- At each time step:
> Observe features:
> Make prediction:
> Observe true class:

> Update model:
- If prediction is not equal to truth
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The Perceptron Algorithm s«

> Classification setting: y in {-1,+1}
> Linear model
Prediction:
Sign(waz- +0) =) \\v\ww i %éwxw‘feé
> Training:
Initialize weight vector:

At each time step:
> Observe features:

> Make prediction: \
> Observe true class: 6’( Slgn ajk@ ‘ — C,UX(U\* vwoo
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> Update model: V\"'q“g oF MW\O/ M\- .0 K
If prediction is not equal to truth
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Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958
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Linear Separability
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= Perceptron guaranteed to converge if
= Data linearly separable:



Perceptron Analysis: Linearly Separable

Case
= JEEE———

= Theorem [Block, Novikoff]:
Given a sequence of labeled examples:

Each feature vector has bounded norm:

If dataset is linearly separable:

= Then the number of mistakes made by the online perceptron on any such sequence is
bounded by
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Beyond Linearly Separable Case
"

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done
for ever! 4
Even if you see infinite data =+ =
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Beyond Linearly Separable Case
" I

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done

for ever! 4

Even if you see infinite data =+ =

1F -
. . . + =
= Perceptron is useless in practice! T+

Real world not linearly separable -
If data not separable, cycles forever and hardto 4 + T
detect Ik o

Even if separable may not give good
generalization accuracy (small margin)
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What is the Perceptron Doing???

"
= \When we discussed logistic regression:
Started from maximizing conditional log-likelihood

= \When we discussed the Perceptron:
Started from description of an algorithm

= \What is the Perceptron optimizing????



Support Vector Machines
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Logistic regression for binary classification

.DataD = {(x; e Ry, € {—1,+ 1},
. Model: = xTw + b
. Loss function: logistic loss (9, y) = log(1 4+ e™?)
 Optimization: solve for i
(/b\, W) = arg min 2 log(1 + e‘yi(b”iTW))
bw o

 As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wix+b=0
using gradient descent T » \
. Prediction: sign(b + x'w) . .,.'°.§::
CU[Q] ’ . ST e o
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How do we choose the best linear classifier?

» |Informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

e For linearly separable datasets, maximum margin classifier is a natural
choice

e |Large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points




Geometric margin
Given a set of training examples {(x;, y,)}'_;, withy, € {—1, + 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the hyperplane orthogonal to w with a shift of b
we define margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y,) to the
decision boundary, which is

w'x; + b) i
Yi =i )
lwll> :

(The proof is on the next slide)

{x|wlx+b=0)}



