
> Learn: f:X —>Y
– X – features
– Y – target classes

> Expected loss of f:
>

> Bayes optimal classifier: 

> Model of logistic regression:

Linear classification

©Kevin Jamieson 2018

`(f(x), y) = 1{f(x) 6= y}

EXY [1{f(X) 6= Y }] = EX [EY |X [1{f(x) 6= Y }|X = x]]

f(x) = argmax
y

P(Y = y|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

EY |X [1{f(x) 6= Y }|X = x] =
X

i

P (Y = i|X = x)1{f(x) 6= i} =
X

i 6=f(x)

P (Y = i|X = x)

= 1� P (Y = f(x)|X = x)

■ Loss function:

P (Y = y|x,w) = 1

1 + exp(�y wTx)

What if the model is wrong?

Y 2 {�1, 1}

> Perceptron guaranteed to converge if
■ Data linearly separable:

Binary Classification

©Kevin Jamieson 2016

Can we do classification without a model of ? f(x) = argmax
y

P(Y = y|X = x)

as

which perfect
classifies all

points

©Kevin Jamieson 2016

> Classification setting: y in {-1,+1}
> Linear model

– Prediction:

> Training:
– Initialize weight vector:
– At each time step:

> Observe features:
> Make prediction:
> Observe true class:

> Update model:
– If prediction is not equal to truth

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

©Kevin Jamieson 2016

> Classification setting: y in {-1,+1}
> Linear model

– Prediction:

> Training:
– Initialize weight vector:
– At each time step:

> Observe features:
> Make prediction:
> Observe true class:

> Update model:
– If prediction is not equal to truth

sign(wTxi + b)

w0 = 0, b0 = 0

wk+1

bk+1

�
=

wk

bk

�
+ yk

xk

1

�

xk

sign(xT
kwk + bk)

yk

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

linear in features

ER
JE O O current model

may or may
not beye

ER et end

©Kevin Jamieson 2016

Rosenblatt 1957

5

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

©Kevin Jamieson 2016 6

Linear Separability

■ Perceptron guaranteed to converge if
■ Data linearly separable:

©Kevin Jamieson 2016

Perceptron Analysis: Linearly Separable
Case

■ Theorem [Block, Novikoff]:
□ Given a sequence of labeled examples:
□ Each feature vector has bounded norm:
□ If dataset is linearly separable:

■ Then the number of mistakes made by the online perceptron on any such sequence is
bounded by

7

©Kevin Jamieson 2016

Beyond Linearly Separable Case
■ Perceptron algorithm is super cool!

□ No assumption about data distribution!
■ Could be generated by an oblivious adversary, no

need to be iid
□ Makes a fixed number of mistakes, and it’s done

for ever!
■ Even if you see infinite data

8

©Kevin Jamieson 2016

Beyond Linearly Separable Case
■ Perceptron algorithm is super cool!

□ No assumption about data distribution!
■ Could be generated by an oblivious adversary, no

need to be iid
□ Makes a fixed number of mistakes, and it’s done

for ever!
■ Even if you see infinite data

■ Perceptron is useless in practice!
□ Real world not linearly separable
□ If data not separable, cycles forever and hard to

detect
□ Even if separable may not give good

generalization accuracy (small margin)

9

©Kevin Jamieson 2016

What is the Perceptron Doing???

■ When we discussed logistic regression:
□Started from maximizing conditional log-likelihood

■ When we discussed the Perceptron:
□Started from description of an algorithm

■ What is the Perceptron optimizing????

10

 
Support Vector Machines

Logistic regression for binary classification

• Data

• Model:

• Loss function: logistic loss
• Optimization: solve for  

• As this is a smooth convex optimization,  
it can be solved efficiently  
using gradient descent

• Prediction:

! = {(xi ∈ ℝd, yi ∈ {−1, + 1})}n
i=1

̂y = xTw + b
ℓ(̂y, y) = log(1 + e−y ̂y)

(̂b , ̂w) = arg min
b,w

n

∑
i=1

log(1 + e−yi(b+xT
i w))

sign(b + xTw)

x[1]
<latexit sha1_base64="G4qQjwHB5qu/snoWuKUhnnxkpFg=">AAAB7XicbVA9T8MwEL2Ur1K+CowsFi0SU5WUAcYKFsYi0Q8pjSrHdVpTx45sB1FF/Q8sDCDEyv9h49/gthmg5UknPb13p7t7YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc38z8ziNVmklxbyYJDWI8FCxiBBsrtatPvhdU++WKW3PnQKvEy0kFcjT75a/eQJI0psIQjrX2PTcxQYaVYYTTaamXappgMsZD6lsqcEx1kM2vnaIzqwxQJJUtYdBc/T2R4VjrSRzazhibkV72ZuJ/np+a6CrImEhSQwVZLIpSjoxEs9fRgClKDJ9Ygoli9lZERlhhYmxAJRuCt/zyKmnXa95FrX5XrzSu8ziKcAKncA4eXEIDbqEJLSDwAM/wCm+OdF6cd+dj0Vpw8plj+APn8wdyRI5h</latexit>

x[2]
<latexit sha1_base64="+kGcMsx6YZr6dnzaJZGSu+hJC/s=">AAAB7XicbVA9T8MwEL2Ur1K+CowsFi0SU5WEAcYKFsYi0Q8pjSrHdVtTx45sB1FF/Q8sDCDEyv9h49/gthmg5UknPb13p7t7UcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEdokkkvVibCmnAnaNMxw2kkUxXHEaTsa38z89iNVmklxbyYJDWM8FGzACDZWalWfAj+s9soVt+bOgVaJl5MK5Gj0yl/dviRpTIUhHGsdeG5iwgwrwwin01I31TTBZIyHNLBU4JjqMJtfO0VnVumjgVS2hEFz9fdEhmOtJ3FkO2NsRnrZm4n/eUFqBldhxkSSGirIYtEg5chINHsd9ZmixPCJJZgoZm9FZIQVJsYGVLIheMsvr5KWX/Muav6dX6lf53EU4QRO4Rw8uIQ63EIDmkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w9zyo5i</latexit>

+1

-1

decision boundary at
wT x + b = 0

How do we choose the best linear classifier?
• Informally, margin of a set of examples to a decision boundary is  

the distance to the closest point to the decision boundary

• For linearly separable datasets, maximum margin classifier is a natural

choice

• Large margin implies that the decision boundary can change without losing

accuracy, so the learned model is more robust against new data points

+

+
+

+

+

+

+

+
-

-
-

-

- -

--

-

N

Geometric margin
• Given a set of training examples , with

• and a linear classifier

• such that the decision boundary is  

a separating hyperplane , 

which is the hyperplane orthogonal to with a shift of

• we define margin of  

with respect to a training example as 
the distance from the point to the  
decision boundary, which is 
 

{(xi, yi)}n
i=1 yi ∈ {−1, + 1}

(w, b) ∈ ℝd × ℝ

{x |b + w1x[1] + w2x[2] + ⋯ + wdx[d]
wT x+b

= 0}

w b
(b, w)

(xi, yi)
(xi, yi)

γi = yi
(wT xi + b)

∥w∥2

+
+

+

+
+

+
-

-
-

-

- -

--

-

(xi, yi = + 1)

w

{x | wT x + b = 0}

γi

(The proof is on the next slide)

1

