Linear classification

- > Learn: f:X ->Y
 - X features
 - Y target classes
 - $Y \in \{-1,1\}$
- > Expected loss of f:

>

Loss function:

 $\ell(f(x),y) = \mathbf{1}\{f(x) \neq y\}$

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$
$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

- > Bayes optimal classifier:
- > Model of logistic regression:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

$$P(Y = y | x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

What if the model is wrong?

©Kevin Jamieson 2018

The Perceptron Algorithm [Rosenblatt '58, '62]

> Classification setting: y in {-1,+1}

- > Linear model
 - Prediction:

> Training:

- Initialize weight vector:
- At each time step:
 - > Observe features:
 - > Make prediction:
 - > Observe true class:
 - > Update model:
 - If prediction is not equal to truth

The Perceptron Algorithm [Rosenblatt '58, '62]

- **Classification setting:** y in {-1,+1} >
- Linear model >
 - **Prediction:** _

$$sign(w^T x_i + b) \rightarrow jinear in features$$

 $\begin{bmatrix} x_k \end{bmatrix}$

 $w_0 = 0, b_0 = 0$

- > Training:
 - Initialize weight vector:
 - At each time step:
 - > Observe features:
 - > Make prediction:
 - > **Observe true class:**
 - > Update model:
- $\begin{array}{c} x_k & \longrightarrow & \in \mathbb{R}^c \\ y_k = \operatorname{sign}(x_k^T(w_k) + (b_k)) \longrightarrow & \operatorname{current} & \operatorname{model} \\ y_k & \longrightarrow & \operatorname{may} & \operatorname{ormag} & \operatorname{not} & \operatorname{be} & y_k \\ \end{array}$ If prediction is not equal to truth

 w_{k+1}

©Kevin Jamieson 2016

 $= \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k$

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability

Perceptron guaranteed to converge if

Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- Perceptron is useless in practice!
 - Real world not linearly separable
 - If data not separable, cycles forever and hard to detect
 - Even if separable may not give good generalization accuracy (small margin)

What is the Perceptron Doing???

When we discussed logistic regression:
Started from maximizing conditional log-likelihood

When we discussed the Perceptron:
Started from description of an algorithm

What is the Perceptron optimizing????

Support Vector Machines

Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $\hat{y} = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- Optimization: solve for

$$(\widehat{b}, \widehat{w}) = \arg\min_{b, w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at

How do we choose the best linear classifier?

- Informally, margin of a set of examples to a decision boundary is the distance to the closest point to the decision boundary
- For linearly separable datasets, maximum margin classifier is a natural choice
- Large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points

Geometric margin

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b + w_1 x[1] + w_2 x[2] + \dots + w_d x[d] = 0\}$,

which is the hyperplane orthogonal to w with a shift of b

• we define **margin** of (b, w)with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$

(The proof is on the next slide)

