Linear classification

- > **Learn**: f:**X —>**Y
	- **X** features
	- **Y target classes**
		- $Y \in \{-1, 1\}$
- > **Expected loss of f:** ^E*^Y [|]^X*[1*{f*(*x*) ⁶⁼ *^Y }|^X* ⁼ *^x*] = ^X

 \geq

■ **Loss function:**

 $\ell(f(x), y) = \mathbf{1}{f(x) \neq y}$

*i*6=*f*(*x*)

$$
\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_{X}[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]
$$

$$
\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)
$$

- > **Bayes optimal classifier:**
- > **Model of logistic regression:**

$$
f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)
$$

$$
P(Y = y|x, w) = \frac{1}{1 + \exp(-y w^T x)}
$$

What if the model is wrong?

©Kevin Jamieson 2018

The Perceptron Algorithm [Rosenblatt '58, '62]

> **Classification setting: y in {-1,+1}**

- > **Linear model**
	- **Prediction:**

> **Training:**

- **Initialize weight vector:**
- **At each time step:**
	- > **Observe features:**
	- > **Make prediction:**
	- > **Observe true class:**
	- > **Update model:**
		- **If prediction is not equal to truth**

The Perceptron Algorithm [Rosenblatt '58, '62]

- > **Classification setting: y in {-1,+1}**
- > **Linear model**
	- **Prediction:**

$$
\operatorname{sign}(w^T x_i + b) \implies \text{linear in features}
$$

 $w_0 = 0, b_0 = 0$

- > **Training:**
	- **Initialize weight vector:**
		- **At each time step:**
			- > **Observe features:**
			- > **Make prediction:**
			- > **Observe true class:**
			- > **Update model:**
				- **If prediction is not equal to truth**

 $\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix}$ = $\int w_k^k$ b_k $\mathcal{\tilde{T}}$ + *y^k* $\int x_k$ 1 ֖֖֖֡֩֩֩֩֩֩׀[֟] *xk* $\text{sign}(x_k^T\!\!\left(w_k\right)\!+\!\!\left(b_k\right)\!)$ *yk* ER $y_k = \operatorname{sign}(x_k^T(w_k) + (b_k) \implies \text{current model})$ \int $\int r \, \mathrm{mag}$ not be $\int r \, \mathrm{kg}$ ER^{Δ} $\overline{w_k}$ $\overline{w_k}$ $\overline{w_k}$

©Kevin Jamieson 2016

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability

■ Perceptron guaranteed to converge if

■ Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
	- □ Given a sequence of labeled examples:
	- □ Each feature vector has bounded norm:
	- □ If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
	- □ No assumption about data distribution!
		- Could be generated by an oblivious adversary, no need to be iid
	- \Box Makes a fixed number of mistakes, and it's done for ever!
		- Even if you see infinite data

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
	- □ No assumption about data distribution!
		- Could be generated by an oblivious adversary, no need to be iid
	- \Box Makes a fixed number of mistakes, and it's done for ever!
		- Even if you see infinite data
- Perceptron is useless in practice!
	- □ Real world not linearly separable
	- □ If data not separable, cycles forever and hard to detect
	- \Box Even if separable may not give good generalization accuracy (small margin)

What is the Perceptron Doing???

■ When we discussed logistic regression: □ Started from maximizing conditional log-likelihood

■ When we discussed the Perceptron: □ Started from description of an algorithm

■ What is the Perceptron optimizing????

Support Vector Machines

Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $\hat{y} = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- Optimization: solve for

$$
(\hat{b}, \hat{w}) = \arg\min_{b,w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})
$$

- As this is a **smooth convex** optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at

How do we choose the best linear classifier?

- Informally, **margin** of a set of examples to a decision boundary is the distance to the closest point to the decision boundary
- For linearly separable datasets, **maximum margin** classifier is a natural choice
- Large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points

Geometric margin

- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b + w_1x[1] + w_2x[2] + \dots + w_d x[d] = 0\},\$

which is the hyperplane orthogonal to w with a shift of b $w^T x + b$

• we define **margin** of (*b*,*w*) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$
\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}
$$

(The proof is on the next slide)

