Linear classification

- > **Learn**: f:**X** —>Y
 - X features
 - Y target classes $Y \in \{-1, 1\}$
- > Expected loss of f:

>

Loss function:

$$\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$$

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_X[\mathbb{E}_{Y|X}[\mathbf{1}\{f(X) \neq Y\}|X = X]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = 1 - P(Y = f(x)|X = x)$$

- > Bayes optimal classifier:
- > Model of logistic regression:

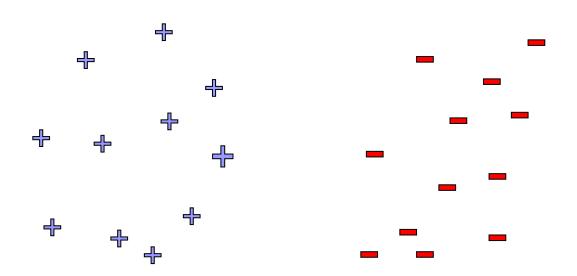
$$f(x) = \arg\max_{y} \mathbb{P}(Y = y|X = x)$$

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

What if the model is wrong?

Binary Classification

- > Perceptron guaranteed to converge if
 - Data linearly separable:



Can we do classification without a model of $\mathbb{P}(Y = y | X = x)$?

The Perceptron Algorithm [Rosenblatt '58, '62]

- > Classification setting: y in {-1,+1}
- Linear model
 - **Prediction:**
- > Training:
 - **Initialize weight vector:**
 - At each time step:
 - > Observe features:
 - > Make prediction:
 - > Observe true class:
 - > Update model:
 - If prediction is not equal to truth

- Classification setting: y in {-1,+1}
- Linear model
 - Prediction:

$$sign(w^T x_i + b)$$

> Training:

Initialize weight vector:

At each time step:

> Observe features:

> Make prediction:

> Observe true class:

$$w_0 = 0, b_0 = 0$$

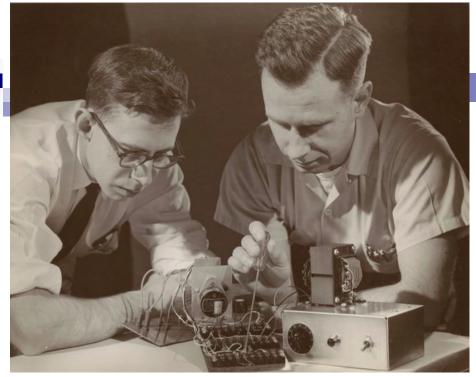
 x_k

 $\operatorname{sign}(x_k^T w_k + b_k)$

 y_k

- > Update model:
 - If prediction is not equal to truth

$$\begin{bmatrix} w_{k+1} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} w_k \\ b_k \end{bmatrix} + y_k \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$

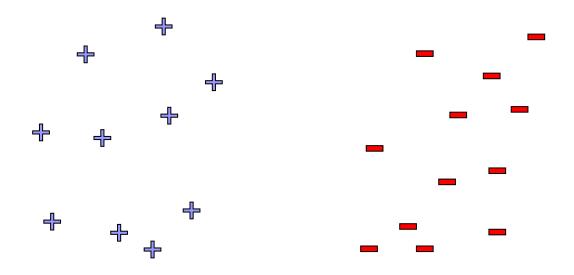


Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

Linear Separability



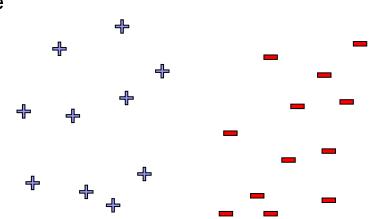
- Perceptron guaranteed to converge if
 - Data linearly separable:

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - □ Given a sequence of labeled examples:
 - Each feature vector has bounded norm:
 - If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on any such sequence is bounded by

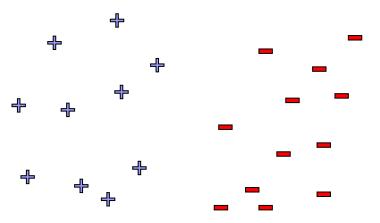
Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data



Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
- Perceptron is useless in practice!
 - Real world not linearly separable
 - If data not separable, cycles forever and hard to detect
 - Even if separable may not give good generalization accuracy (small margin)



What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - Started from description of an algorithm

What is the Perceptron optimizing????

Support Vector Machines

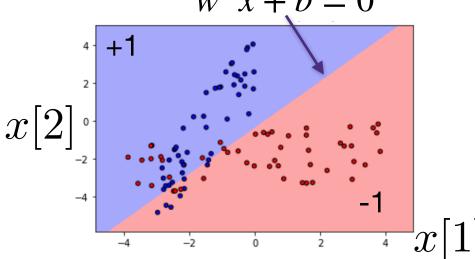
Logistic regression for binary classification

- Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n$
- Model: $\hat{y} = x^T w + b$
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for

$$(\hat{b}, \hat{w}) = \arg\min_{b,w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

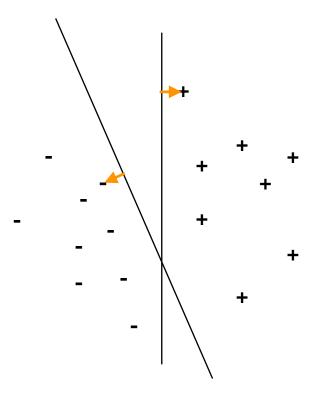
- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at $w^T x + b = 0$



How do we choose the best linear classifier?

- Informally, margin of a set of examples to a decision boundary is the distance to the closest point to the decision boundary
- For linearly separable datasets, maximum margin classifier is a natural choice
- Large margin implies that the decision boundary can change without losing accuracy, so the learned model is more robust against new data points



Geometric margin

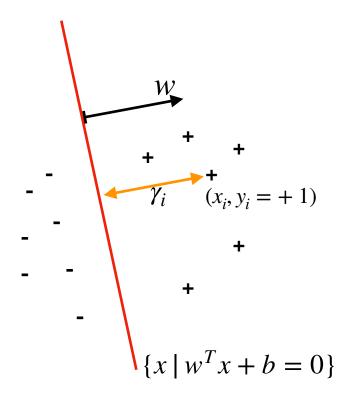
- Given a set of training examples $\{(x_i, y_i)\}_{i=1}^n$, with $y_i \in \{-1, +1\}$
- and a linear classifier $(w, b) \in \mathbb{R}^d \times \mathbb{R}$
- such that the decision boundary is a separating hyperplane $\{x \mid b+w_1x[1]+w_2x[2]+\cdots+w_dx[d]=0\}$,

which is the hyperplane orthogonal to w with a shift of b

• we define **margin** of (b, w) with respect to a training example (x_i, y_i) as the distance from the point (x_i, y_i) to the decision boundary, which is

$$\gamma_i = y_i \frac{(w^T x_i + b)}{\|w\|_2}$$

(The proof is on the next slide)



Geometric margin

- The distance γ_i from a hyperplane $\{x \mid w^T x + b = 0\}$ to a point x_i can be computed geometrically as follows:
- We know that if you move from x_i in the negative direction of w by length γ_i , you arrive at the line, which can be written as

$$\left(x_i - \frac{w}{\|w\|_2} \gamma_i\right)$$
 is in $\{x \mid w^T x + b = 0\}$

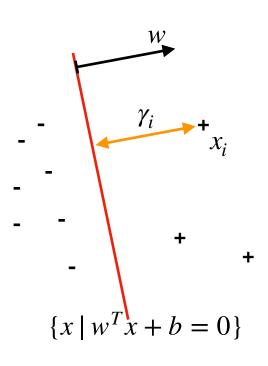
So we can plug the point in the formula:

$$w^{T}\left(x_{i} - \frac{w}{\|w\|_{2}}\gamma_{i}\right) + b = 0$$
 which is

$$w^{T} x_{i} - \frac{\|w\|_{2}^{2}}{\|w\|_{2}} \gamma_{i} + b = 0$$
 and hence

$$\gamma_i = \frac{w^T x_i + b}{\|w\|_2},$$

We multiply the formula by y_i so that for negative samples we use the opposite direction of -w instead of w

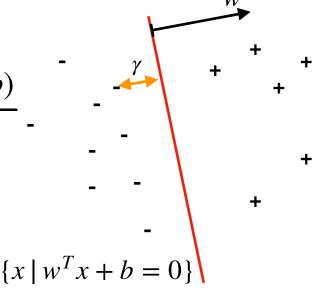


Maximum margin classifiers

 The margin with respect to a set is defined as

$$\gamma = \min_{i \in \{1,...,n\}} \gamma_i = \min_i y_i \frac{(w^T x_i + b)}{\|w\|_2}.$$

 Among all linear classifiers, we would like to find one that has the maximum margin



 We will derive an algorithm that finds the maximum margin classifier, by transforming a difficult to solve optimization into an efficient one

Maximum margin classifier

(we transform the optimization into an efficient one)

• We propose the following optimization problem:

maximize
$$w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}$$
 γ (maximize the margin) subject to $\frac{y_i(w^Tx_i + b)}{\|w\|_2} \ge \gamma$ for all $i \in \{1, ..., n\}$ (s.t. γ is a lower bound on the margin)

- If we fix (w, b), the optimal solution of the optimization is the margin
- Together with (w, b), this finds the classifier with the maximum margin
- Note that this problem is **scale invariant** in (w, b), i.e. changing a (w, b) to (2w, 2b) does not change either the feasibility or the objective value, hence the following reparametrization is valid
- The above optimization looks difficult, so we transform it using **reparametrization**

Because of scale invariance, the optimal solution does not change, as the solutions to the original problem did not depend on $||w||_2$, and only depends on the direction of w

• $\max_{w \in \mathbb{R}^d, b \in \mathbb{R}, \gamma \in \mathbb{R}} \gamma$

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \gamma \text{ for all } i \in \{1,\ldots,n\}$$

$$\|w\|_2 = \frac{1}{\gamma}$$

• The above optimization still looks difficult, but can be transformed into

maximize
$$_{w \in \mathbb{R}^d, b \in \mathbb{R}} = \frac{1}{\|w\|_2}$$
 (maximize the margin)

subject to
$$\frac{y_i(w^Tx_i+b)}{\|w\|_2} \ge \frac{1}{\|w\|_2}$$
 for all $i \in \{1,...,n\}$ (now $\frac{1}{\|w\|_2}$ plays the role of a lower bound on the margin)

which simplifies to

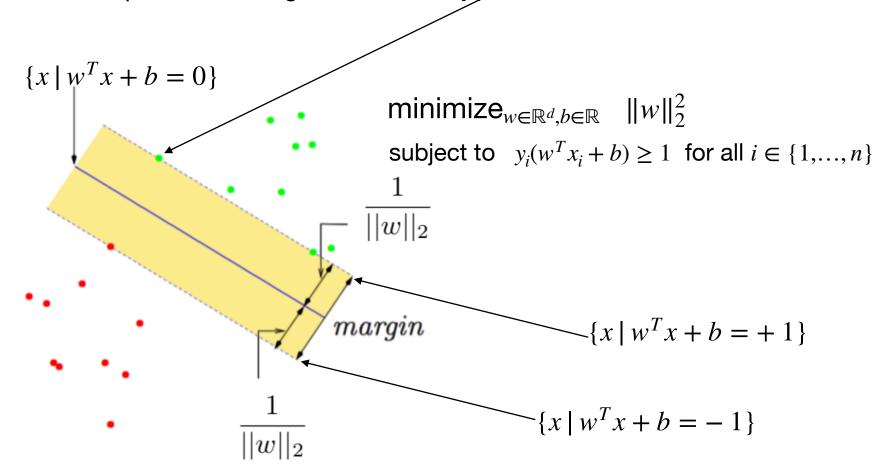
minimize
$$_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all $i \in \{1, ..., n\}$

- This is a quadratic program with linear constraints, which can be easily solved
- Once the optimal solution is found, the margin of that classifier (w, b) is $\frac{1}{\|w\|_2}$

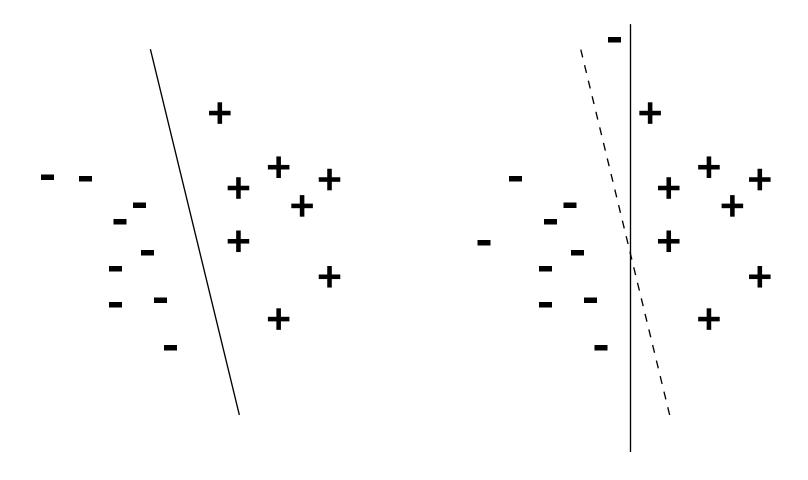
What if the data is not separable?

- We cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- Otherwise, there is no feasible solution
- The examples at the margin are called support vectors

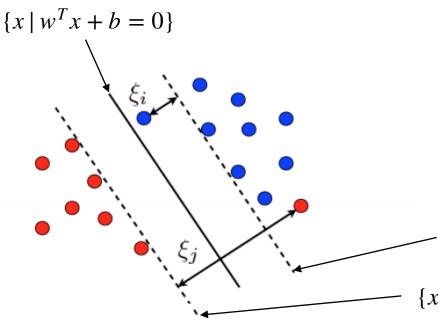


Two issues

- it does not generalize to non-separable datasets
- max-margin formulation we proposed is sensitive to outliers



What if the data is not separable?



 We introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$${x \mid w^T x + b = -1}$$

This gives a new optimization problem with some positive constant $c \in \mathbb{R}$ minimize $_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad ||w||_2^2 + c \sum_{i=1}^n \xi_i$

subject to
$$y_i(w^Tx_i+b) \ge 1-\xi_i$$
 for all $i \in \{1,...,n\}$
$$\xi_i \ge 0 \quad \text{ for all } i \in \{1,...,n\}$$

the (re-scaled) margin (for each sample) is allowed to be less than one, but you pay $c\xi_i$ in the cost, and c balances the two goals: maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

For the optimization problem

$$\begin{aligned} & \text{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \quad \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(w^T x_i + b) \geq 1 - \xi_i \quad \text{ for all } i \in \{1, \dots, n\} \\ & \quad \xi_i \geq 0 \quad \text{ for all } i \in \{1, \dots, n\} \end{aligned}$$

notice that at optimal solution, ξ_i 's satisfy

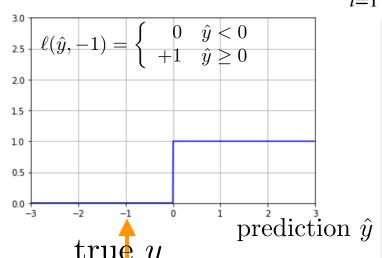
- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- So one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

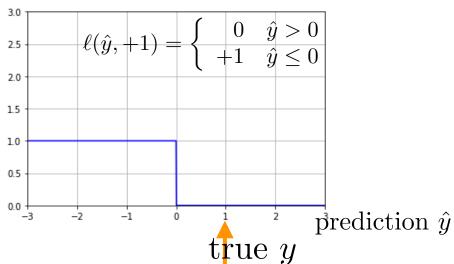
minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

Recall: we were looking for a loss function

- We want a loss function that
 - approximates (captures the flavor of) the 0-1 loss
 - can be easily optimized (e.g. convex and/or non-zero derivatives)
- More formally, we want a loss function
 - with $\ell(\hat{y}, -1)$ small when $\hat{y} < 0$ and larger when $\hat{y} > 0$
 - with $\ell(\hat{y}, 1)$ small when $\hat{y} > 0$ and larger when $\hat{y} < 0$
 - · which has other nice characteristics, e.g., differentiable or convex
- We now have a new loss function from the SVM optimization problem:

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$





Logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$

$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}) \qquad \ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- Differentiable and convex in \hat{y}
- Approximation of 0-1 loss
- Most popular choice of a loss function for classification problems

Sub-gradient descent for SVM

SVM is the solution of

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

- As it is non-differentiable, we solve it using sub-gradient descent
- which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set)
- this means that we can take (a generic form derived from previous page) $\partial_w \mathcal{E}(w^T x_i + b, y_i) = \mathbf{I}\{y_i(w^T x_i + b) \leq 1\}(-y_i x_i)$ and apply

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \left(\sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i x_i) + \frac{2}{c} w^{(t)} \right)$$

$$b^{(t+1)} \leftarrow b^{(t)} - \eta \sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i)$$