Linear classification

. = Loss function:
> Learn: f:X —>Y
_ X_features K(f($)7 y) — 1{f(33> 7é y}

- Y —target classes
Ye{-1,1}
> Expected loss of f:
>

Exy [1{f(X) # Y}] = Ex[Ey x[1{f(z) # Y}|X = a]]
Eyix[L{f() 2Y}X =2]=1 - P(Y = f(2)|X =)

> Bayes optimal classifier:

f(x) = arg manIP’(Y = y|X = x)

> Model of logistic regression: 1
P(Y = ylz,w) =

1+ exp(—ywTx)

What if the model is wrong?

©Kevin Jamieson 2018

Binary Classification

> Perceptron guaranteed to converge if
= Data linearly separable:

T o=
+ =
I =
ain = -
ok
+ " - .
+ . T - _
+))

Can we do classification without a model of P(Y = y| X = x)?

©Kevin Jamieson 2016

The Perceptron Algorithm s «

> Classification setting: y in {-1,+1}
> Linear model
- Prediction:

> Training:
- Initialize weight vector:

- At each time step:
> Observe features:
> Make prediction:
> Observe true class:

> Update model:
- If prediction is not equal to truth

©Kevin Jamieson 2016

The Perceptron Algorithm s «

> Classification setting: y in {-1,+1}
> Linear model
Prediction:
sign(w?’ z; + b)
> Training:
Initialize weight vector:

At each time step: wo = 0,bp =0
> Observe features: Lk
> Make prediction: . T
> Observe true class: Slgn(xk Wk + bk)
Yk

> Update model:
If prediction is not equal to truth

W41 | _ | Wk Lk
il = [l e[

©Kevin Jamieson 2016

Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

©Kevin Jamieson 2016 5

Linear Separability

T =
.:ﬂ:. =
L =
T & * - -
o, ¢ - _
.:ﬂ:. = =

= Perceptron guaranteed to converge if
= Data linearly separable:

©Kevin Jamieson 2016

Perceptron Analysis: Linearly Separable
Case

= Theorem [Block, Novikoff]:
~ Given a sequence of labeled examples:

~ Each feature vector has bounded norm:

~ If dataset is linearly separable:

= Then the number of mistakes made by the online perceptron on any such sequence is
bounded by

©Kevin Jamieson 2016

Beyond Linearly Separable Case
" S

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done
for ever! 4
Even if you see infinite data iy -

©Kevin Jamieson 2016

Beyond Linearly Separable Case
" S

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done

for ever! +

Even if you see infinite data iy -

o' -
. . . + -
= Perceptron is useless in practice! L _

Real world not linearly separable -
If data not separable, cycles forever and hardto 4 + +
detect 4= o

Even if separable may not give good
generalization accuracy (small margin)

©Kevin Jamieson 2016

What is the Perceptron Doing???

"
= \When we discussed logistic regression:
Started from maximizing conditional log-likelihood

= \WWhen we discussed the Perceptron:
Started from description of an algorithm

= \What is the Perceptron optimizing??7??

Support Vector Machines

W

Logistic regression for binary classification

.Data D = {(x; e R%,y, € {—1,+ 1D},

. Model: § =xTw + b

. Loss function: logistic loss Z(3, y) = log(1 + e¢™?)
- Optimization: solve for

(/b\, W) = arg min Z log(1 + e_yi(b+xiTW))
A

 As this is a smooth convex optimization, decision boundary at
it can be solved efficiently wlix+b=0
using gradient descent T » ‘\
- Prediction: sign(b + XTW) 2 ...’.j::
T2 e
S ";’.i .'. % e iy .. °
. pe 1

How do we choose the best linear classifier?

e Informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

e For linearly separable datasets, maximum margin classifier is a natural
choice

e Large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points

Geometric margin
Given a set of training examples {(x;, y;)};_,, withy, € {—1, + 1}

and a linear classifier (w, b) € RYx R

such that the decision boundary is
a separating hyperplane {x | b + wx[1] + wyx[2] + -+ + w, x[d] = 0},

w!l x+b
which is the hyperplane orthogonal to w with a shift of b
we define margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y;) to the
decision boundary, which is

(w'x; + b) i
Vi =Di
wll2 :

(The proof is on the next slide)

{(x|wix+b=0)}

Geometric margin

« The distance y; from a hyperplane {x|w’x + b = 0} to a point x; can be
computed geometrically as follows:
e We know that if you move from x;

in the negative direction of w by length y;, |44
you arrive at the line, which can be written as

(xl. >|sm{x|w x+b=0} - L >+
wil,” g
* So we can plug the point in the formula: -
T w -
w (xl- — Y; > +b =0 +
AT il :
which is
T
”WHZ {XlW x+b=0}
Txl - 2}/1' +b =0
Iwll,
and hence
wlx, +b
Vi = ’
Iwll,

We multiply the formula by y; so that for negative samples we use the
opposite direction of —w instead of w

Maximum margin classifiers

* The margin with respect to a set w
is defined as
- Y
, , (wal- + b) -
y = min jy; = miny;,) -
i€{1,....n) i W, -

e Among all linear classifiers,
we would like to find one that has y
the maximum margin x|wlx+b=0)

e We will derive an algorithm that finds the maximum margin
classifier, by transforming a difficult to solve optimization into an
efficient one

Maximum margin classifier

(we transform the optimization into an efficient one)

We propose the following optimization problem:

Max1mze,,cpd per yeR ¥ (maximize the margin)
. yl-(wal- + b) . .
subject to >y foralli € {1,...,n} (s.t. y is a lower bound on
Iwll> the margin)

If we fix (w, b), the optimal solution of the optimization is the margin
Together with (w, b), this finds the classifier with the maximum margin

Note that this problem is scale invariant in (w,), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

The above optimization looks difficult, so we transform it using reparametrization

maximize,,crd peR yeR ¥ }/+
(w!x; + b) : +
subject to o l >y foralli € {l,...,n} - +
il -
Iwlly =— - - +

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w||,,
and only depends on the direction of w

maximize,,crd per yeR ¥

_ yl-(wal-+ b) .
subject to >y foralli € {1,...,n}
Iwll>

wlly =—

The above optimization still looks difficult, but can be transformed into

maximize,,crd peR (maximize the margin)

wlla

(wlx, + b) 1 _
i l > foralli € {1,...,n}(now
Iwlla Iwll> 1wll2
a lower bound
on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,eraper ||W]|5

subjectto y,(wlx;+b) > 1 foralli € {1,...,n}

This is a quadratic program with linear constraints, which can be easily solved

1

Iwlla

Once the optimal solution is found, the margin of that classifier (w, b) is

What if the data is not separable?

. We cheated a little in the sense that the reparametrization of ||w]||, = —is

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e Otherwise, there is no feasible solution
* The examples at the margin are called support vectors

x|wlx+b=0)
minimize,.criper [IWIl5

subjectto y(w'x;+b)>1 forallie {(1,...,n}
1

r [|w
%;;;\\\\\\\uhﬁk+b=+l}

x|wix+b=-1)

2

Two issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |
+ | +
- - + - | +
_- + = Ty
o\ + - .+
- + - +

What if the data is not separable?

(efwhx +b =0) e We introduce slack so that
some points can violate the
margin condition

No x|wix+b=-1)

e This gives a new optimization problem w’i;ch some positive constant ¢ € R
minimize,,crd peRr scRrr ||w||% +c Z &;
i=1
subjectto y(w'x.+b)>1—¢ foralli € {1,...,n}
& >0 foralie{l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

e For the optimization problem

n
minimize,,crd peRr seRn ||w||% +c 2 &
i=1
subject to yl-(wal-+ by>1-¢& foralli € {1,...,n}
& >0 foralie {l,...,n}

notice that at optimal solution, &,'s satisfy
& = 0 if margin is big enough yl-(wal- +b)>1,o0r
_ T : o . T
o & =1—y(w"x;+ b), if the example is within the margin y;(w" x; + b) < 1

e So one can write
T . .
o & =max{0,1 —y,(w" x; + b)}, which gives

n
. 1 2 T
minimize,,criper —|[W|[5 + Zmax{O,l —y(w'x;+b)}
c
i=1

Recall: we were looking for a loss function

- We want a loss function that
- approximates (captures the flavor of) the 0-1 loss
 can be easily optimized (e.g. convex and/or non-zero derivatives)
* More formally, we want a loss function
with £(y, —1) small when § < 0 and larger when 3 > 0
+ with £(g, 1) small when y > 0 and larger when gy < 0

- which has other nice characteristics, e.g., differentiable or convex
« We now have a new loss function from the SVM optimization problem:

e 1 2 C T
minimize,,criper —|lwll5 + Z max{0,1 —y,(w"x; + D)}
C

i=1
30 30

0 . 0 >0
2 6(@,—1>:{ Al é(y,+1):{ i<

+1 §>0 1 §<0

20 2.0 1

15 15 A1

10 10

05 0.5 4

0.0

! ! 0.0 T T T T
-3 -2 -1 0 -3 -2 -1 0 1 2

prediction g

1 prezdictaion 0
true y true y

Logistic loss £(y, y) = log(1 + e ™)

0(y,—1) = log(1 + %) 0(y, +1) = log(1 +e77)
10-// 10 \\
00—3 -2 3 0 1 2 By 00-3 -2 1 0] 2 y

true y true y

« Differentiable and convex in y
e Approximation of 0-1 loss
* Most popular choice of a loss function for classification problems

Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,epiper —[IWII3 + » max{0.1 — y,(w'x,+b)}
C
i=1
As it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
0, LW x;+b,y) = Iyw'x;+b) < 1}(=yx)
and apply

& 2
Wit w“)—n(Zl{yi«w(f)ﬂxﬁb(”) <1 (-yx) + —w“))
C
nl=1

PHD — b0 = X Ty(wW) x + 5D < DY (=)
i=1

