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Probabilistic interpretation of logistic regression *

&
e just as Maximum Likelihood Estimator (MLE) under linear model and W C/”\X’é
additive Gaussian noise model recovers linear least squares,

* we study a particular noise model that recovers logistic regression as MLE

e a probabilistic noise model for Binary labels:

1 10
H:D(yz =+ 1 |xi) = 1 + e—wai ::M
Py, = — 1]x) : .
L= — X;
yl 1 1 + ewai OSN

with a ground truth model parameter w € R? WT X
l

. this function o(z) = - is called a logistic function (not to be
o—
confused with logistic loss, which is different) or a sigmoid function
e if we know that the data came from such a model, but do not know the

ground truth parameter w € [Rd, we can apply MLE to find the best w
* this MLE recovers the logistic regression algorithm, exactly



Maximum Likelihood Estimator (MLE)

e if the data came from a probabilistic model model: (

Plyi=+1|z;) \P(yi=—1]x;)

e log-likelihood of observing a data point (x;, ;) is

log ( ) ifyi=+l
log-likelihood = log (P(yilz;) ) = VST
log ( 1

1_|_ewT.’L',I:

e Maximum Likelihood Estimator is the one that maximizes the sum of all log-
likelihoods on training data points

wyveeg = argmax P({y, ...y, [ {xp .- x,})

@ (independence)
/_> (substitution)



* notice that this is exactly the logistic regression:

1
Wogie = argmin ;( Y logl+ e+ Y 10g(1+e_WTxi)>
é iy=—1 iy=1

« once we have trained a model Wi, We can make a hard prediction v
of the label at an input examplex

) { HUOR(H) > B(-Ae) [

—1 otherwise
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= sign(w” x




Understanding the sigmoid




Multi-class regression



How do we encode categorical data y?

so far, we considered Binary case where there are twa categories \,\0,&/
encoding y is simple: {+1,-1}

multi-class classification predicts categorial y

taking values in C = {cy, ..., ¢;}

cj’s are called classes or labels

examples:

?Ez: looos

e 1 in Your Return Addres
/% Ar&th Gy & St

Country of birth - Zipcode %E

(Argentina, Brazil, USA,...) (10005, 98195,...)

byel of F
a k-class classifier predicts y given x =) = (0 0000015)



Embedding ¢;’s in real values

o for optimization we need to embed raw categorical cj’s into real
valued vectors

e there are many ways to embed categorial data
e True->1, False->-1
 Yes->1, Maybe->0, No->-1
e Yes->(1,0), Maybe->(0,0), No->(0,1)
 Apple->(1,0,0), Orange->(0,1,0), Banana->(0,0,1)

 Ordered sequence:
(Horse 3, Horse 1, Horse 2) -> (3,1,2)

 we use one-hot embedding (a.k.a. one-hot encoding)

e each class is a standard basis vector in k—dimension

1-hot
encoging MW_M

Country of birth 1

\ (Argentina, Brazil, USA,...) ] | ]

| |
8 196 categories 196 features



G [

Multi-class logistic regression —

e data: categorical yin {c, ..

we use one-hot encoding, s.t. y = |0

[J(G: )

., C} with k categories

|

-

)

0

implies that y = ¢,

e model: linear vector-function makes a linear prediction y € R¥

—f=———

5\71' — f(xi) — WTxi & Rk

with model parameter matrix w € R4k and sample x; € R4

_fl (xi)_ _WI,O Wiy Wiop e
f(xi) = fz(x’) — W.Z,O Wy1 Wpp oo

Ji(x) W0 Wk W2
w=[wls 11 w21 - wlz K]

1
Xi[l]

Xi

wy o+ w1+ wy ox[2] + -

Wy 0+ w1 5[ 1]+ wy ox[2] + -

_Xi [.d ] .

_Wk,() + Wk’l.xi[l] + Wk’z.xi[Z] + -




* Logistic regression

2 classes

P(yi=_1|xi)= T
1 + e

wlx,

e
Py, =+1 |xi) =

I+e% 1 +ew'

Maximum Likelil

P(y; = ¢l x) =

el Ty oo 4 oWkl

Without loss of generality setting w[:,1]=0 when
k = 2 recovers the original binary class case

hood Estimator

. 1 ¢
maximize, — 2 log(P(y; | x;))
i1

.. 1 ¢ 1 1
maximize,, rad ; Zl Og( 1 + e viw'x >
l=

ew[:’j]Txi >

Zk ewlni'Tx;
j'=1

1 n k
Maximize,, ¢ paxk— 2 2 Iy, = Cj}IOg(
n
i=1 |j=1

I{y;, = j} is an indicator that is one only if y; = j




Linear classification

> Learn: £X —sY = Loss function:

X — features ((f(z),y) = H{f(z) #y}
- Y —target classes

Y e{-1,1}|

> Expected loss of f:
>

Exy [1{f(X) # Y}] = Ex[Ey x[1{f() # Y} X = o]
Evix[1{f(@) #Y}X =2] =1 — P(Y = f(z)|X = z)

| )
> Bayes optimal classifier: f(z) = arg maxP(Y = y|X = z)
y — .
> Model of logistic regression: ——— 1
P(Y =ylz,w) =
1+ exp(—yw’x)

What if the model is wrong?

©Kevin Jamieson 2018



Binary Classification

> Perceptron guaranteed to converge if
= Data linearly separable:

T =
-:ﬂ:- -
I -
an = -
ok
+ + -
+ oL T - _
=ﬂ= - -

Can we do classification without a model of P(Y = y| X = x)?

©Kevin Jamieson 2016



The Perceptron Algorithm s«

> Classification setting: y in {-1,+1}
> Linear model
- Prediction:

> Training:
- Initialize weight vector:

- At each time step:
> Observe features:
> Make prediction:
> Observe true class:

> Update model:
- If prediction is not equal to truth

©Kevin Jamieson 2016



The Perceptron Algorithm s«

> Classification setting: y in {-1,+1}

> Linear model sign(w’ z; + b)
Prediction:

> Training: wo = 0,60 =0
Initialize weight vector:
At each time step: Lk

> Observe features: Slgﬂ(ﬂf{’wk —|— bk)
> Make prediction:

> Observe true class: Yk

> Update model:
If prediction is not equal to truth

We+1| _ |Wk Lk
i =[] o

©Kevin Jamieson 2016



Rosenblatt 1957

"the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence."

The New York Times, 1958

©Kevin Jamieson 2016 15



Linear Separability

T =
=ﬂ= -
'=|I}=' |
aln = -
T+ L _
+ . " - _
+ = =

= Perceptron guaranteed to converge if
= Data linearly separable:

16



Perceptron Analysis: Linearly Separable Case
" JE——

= Theorem [Block, Novikoff]:
Given a sequence of labeled examples:

Each feature vector has bounded norm:

If dataset is linearly separable:

= Then the number of mistakes made by the online perceptron on any such sequence is
bounded by

©Kevin Jamieson 2016 17



Beyond Linearly Separable Case
"

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done
for ever! 4
Even if you see infinite data =+ =

©Kevin Jamieson 2016
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Beyond Linearly Separable Case
" I

= Perceptron algorithm is super cool!

No assumption about data distribution!

Could be generated by an oblivious adversary, no
need to be iid

Makes a fixed number of mistakes, and it's done

for ever! 4

Even if you see infinite data =+ =

1F -
. . . + =
= Perceptron is useless in practice! T+

Real world not linearly separable -
If data not separable, cycles forever and hardto 4 + T
detect Ik o

Even if separable may not give good
generalization accuracy (small margin)

©Kevin Jamieson 2016
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What is the Perceptron Doing???

"
= \When we discussed logistic regression:
Started from maximizing conditional log-likelihood

= \When we discussed the Perceptron:
Started from description of an algorithm

= \What is the Perceptron optimizing????



Lecture 16:
Support Vector Machines

- how do we choose a better classifier?

W



How do we choose the best linear classifier?

* informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

* for linearly separable datasets, maximum margin classifier is a natural
choice

* large margin implies that the decision boundary can change without losing
accuracy, so the learned model is more robust against new data points




Geometric margin
given a set of training examples {(x;, )}, withy, € {—1,+ 1}

i=1’
and a linear classifier (w, b) € RYx R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + w,x[2] + --- + w x[d] = 0},

wl x+b
which is the set of points that are orthogonal to w with a shift of b
we define functional margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y,) to the
decision boundary, which is

(wal- + b) -
Yi =i )
Iwll, :

(The proof is on the next slide)

{x|wlx+b=0)}



Geometric margin

e the distance ; from a hyperplane {x|w!x + b = 0} to a point x; can be
computed geometrically as follows
e We know that if you move from x;

in the negative direction of w by length y,,
you arrive at the line, which can be written as

w o .
<xi_ }’i)ISIn{x|w x+b =0} - +
Iwll, - X,
e s0 we can plug the point in the formula: oo
W -
w3 =——y ) +b = 0
- Iwll,
which is
T
w {x|w'x+b =0}
and hence 2
wlx, +b
Yi = ,

lwll>
and we multiply it by y; so that for negative samples we use the opposite

direction of —w instead of w



Geometric margin

* the margin with respect to a set w
Is defined as
i Y
, , (wai + b) -
y = mn ¥ = miny, ) i
ie{1,....n) i W, -

e among all linear classifiers,
we would like to find one that has i
the maximum margin {x|wlx+b=0)}

* We will derive an algorithm that finds the maximum margin
classifier, by transforming a difficult to solve optimization into an
efficient one



Maximum margin classifier

(we transform the optimization into an efficient one)

we propose the following optimization problem:

MAXIMIZC, crd per yer ¥ (maximize the margin)
: yi(wal- + b) : _
subject to >y forallie {1,...,n} (s.t. y is a lower bound on
Iwll, the margin)

if we fix (w, b), the optimal solution of the optimization is the margin
together with (w, b), this finds the classifier with the maximum margin

note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

the above optimization looks difficult, so we transform it using reparametrization

maximize,erd peR yeR Y Vs
w!x; + b) . +
subject to % l >y foralli € {1,...,n} - +
Il -
wlly == - ; +
)4 -

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w||,,
and only depends on the direction of w




maximizeweRd,beR,yeR 4

. )’i(WTxi + D) :
subject to >y foralli € {1,...,n}
Iwll>
wll, =—
Y
the above optimization still Ilooks difficult, but can be transformed into

MaximIZe,,cRrd peR (maximize the margin)

Iwlla

wix. +b 1
yiw % )> foralli € {1,...,n}(now

Iwl| vl wll
2 2 a lower bound

on the margin)

subject to plays the role of

which simplifies to
L 2
minimize,,crdper  ||W|5

subjectto  y,(wlx;+b) > 1 foralli € {1,...,n}

this is a quadratic program with linear constraints, which can be easily solved

once the optimal solution is found, the margin of that classifier (w, b) is Tl
Wil



What if the data is not separable?

. We cheated a little in the sense that the reparametrization of  ||w|, = — s
possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

e otherwise, there is no feasible solution

* the examples at the margin are called support vectors

{x|w'x+b =0}
minimize,.criper  |IWIl3

subjectto y(w'x;+b)>1 forallie {1,...,n)
1

F [[wl]2
m‘(u"gin\{xm%m: + 1}

! \{xlex+b=—1}




Two Issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |+
+ \ +
- - + - +
- + T B
o\ + - T+
- + R




What if the data is not separable?

Lelwlx+b=0) e we introduce slack so that
some points can violate the
margin condition

yi(wal- +b) > 1-¢

e x|wix+b=-1)}

e this gives a new optimization problem wi;c@h some positive constant ¢ € R
mMinimize,yerd peR R ||w||% +c Z E;
i=1
subjectto y(wlx;+b)>1—¢& forallie {1,...,n)
& >0 foralie {l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations



Support Vector Machine

e for the optimization problem

n
minimize,,crd per ccr” ”W”% +c Z éi
i=1
subjectto y(wlx;+b)>1—¢&  foralli € {1,...,n)
& >0 foralie{l,...,n}

notice that at optimal solution, &;'s satisfy
¢, = 0if margin is big enough yl-(wal- +b)>1,o0r
. T : : L : T
o & =1—y(w"x;+ b), if the example is within the margin y,(w* x; + b) < 1

e SO One can write
_ T . .
e &, =max{0,1 —y,(w'x;+ b)}, which gives

n
C 1 o) T
minimize,eraper  —I|WI5 + ZmaX{O,l —y(w'x;+ D)}
c
i=1



Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,,crd per —||w||% + 2 max{0,1 — y.(w'x; + b)}
C
i=1
as it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
and apply

L 2
WD e w0 = (DT x4 BO) < 1H =) + Zw)
C
nl=1

b pO_y Z I{yi((w(t))Txl- + b)) < D} (=)
i=1



