Logistics:

- Mid-term evaluation open now!!
 - For every 25% participation, there'll be an extra credit question on the exam
- Midterm exam next Friday Feb 10 in-class
 - Section next week will be reviewing last quarter's midterm exam, so please review it before

Classification with logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}
- Note that logistic regression is a classification algorithm not a regression algorithm

Training data for a binary classification problem

- in this example, each input is $x_i \in \mathbb{R}^2$
- Red points have label y_i =-1, blue points have label y_i =1
- We want a predictor that maps any $x \in \mathbb{R}^2$ to a prediction $\hat{y} \in \{-1, +1\}$

Example: linear classifier trained on 100 samples

simple decision boundary at $w^T x + b = 0$

- We fit a linear model: $w_0 + w_1 x[1] + w_2 x[2] = 0.8 1.1 x[1] + 0.9 x[2]$
- predict using $\hat{y} = \text{sign}(0.8 1.1x[1] + 0.9x[2])$
- decision boundary is the line (or hyperplane in higher dimensions) defined by 0.8 1.1x[1] + 0.9x[2] = 0
- note that a model $2w^Tx + 2b$ has the same predictions as $w^Tx + b$
- How do we find such a good linear classifier that fits the data?

Binary Classification with 0-1 loss

Squared loss

- Learn a linear model: $f: x \mapsto \hat{y} = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: $sign(\hat{y})$
- Ideal loss function $\ell(\hat{y}, y)$:
 - **0-1 loss**, because we care about how many were classified correctly
 - What are weaknesses? Not differentiable and zero derivative

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases}$$

$$\ell(\hat{y}, +1) = \begin{cases} 0 & \hat{y} > 0 \\ +1 & \hat{y} \le 0 \end{cases}$$

true y

Binary Classification with 0-1 loss

• If we know the underlying distribution, $(x, y) \sim P_{X,Y}$ and if we do not restrict ourselves to **any function class**, then we could find the optimal predictor under **0-1 loss**, called **Bayes optimal classifier**

•
$$f_{\text{Bayes}}(x) = \arg \max_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y = \hat{y} | X = x)$$

- Claim: Bayes optimal classifier achieves the minimum possible achievable true error for 0-1 loss
- True error: $\mathbb{E}_{X,Y}[\ell(f(X),Y)] = \mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- Proof:

We can write the true error of a classifier $f(\cdot)$ using chain rule as

$$\mathbb{E}_{X,Y}[\mathbb{I}\{Y \neq f(X)\}] = \mathbb{E}_X\big[\mathbb{E}_{Y|X}[\mathbb{I}\{Y \neq f(X)\}] \mid X = X\big] = \mathbb{E}_X\big[\mathbb{P}_{Y|X}(Y \neq f(X) \mid X = X)\big]$$

optimal classifier minimizes this true error, at every *x*

$$f_{\text{opt}}(x) = \arg\min_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y \neq \hat{y} \mid x)$$

• But, we do not know $P_{X,Y}$ and 0-1 loss cannot be optimized with gradient descent

Binary Classification with square loss

- Learn a linear model: $f: x \mapsto \hat{y} = b + x^T w$
 - x input/features, $y \in \{-1, +1\}$ label in target classes
 - Prediction: $sign(\hat{y})$
- Square loss function $\mathcal{C}(b + x^T w, y) = (y x^T w b)^2$
 - This is the same as treating this as a linear regression problem

$$(\widehat{w}, \widehat{b}) = \arg\min_{b,w} \sum_{i=1}^{n} (y_i - (b + x_i^T w))^2$$

What is the strengths and weaknesses? Goes back up in the "correct" regime

Looking for a better loss function

- we get better results using loss functions that
 - approximate, or captures the flavor of, the 0-1 loss
 - is more easily optimized (e.g. convex and/or non-zero derivatives)
- concretely, we want a loss function
- with $\ell(\hat{y},-1)$ small when $\hat{y}<0$ and larger when $\hat{y}>0$ with $\ell(\hat{y},1)$ small when $\hat{y}>0$ and larger when $\hat{y}<0$
 - Which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss
$$\ell(\hat{y}, y) = \frac{1}{1 + e^{y\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, +1) = \frac{1}{1 + e^{\hat{y}}}$$

- differentiable approximation of 0-1 loss
- What is the weakness? not convex in \hat{y}
- the two losses sum to one

$$\frac{1}{1+e^{-\hat{y}}} + \frac{1}{1+e^{\hat{y}}} = \frac{e^{\hat{y}}}{e^{\hat{y}}+1} + \frac{1}{1+e^{\hat{y}}} = 1$$

• softer (or smoothed) version of the 0-1 loss

Logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$

$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}) \qquad \ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- differentiable and convex in \hat{y}
- how do we show $\ell(\cdot, y)$ is convex?
- approximation of 0-1
- Most popular choice of a loss function for classification problems

Logistic regression for binary classification

- . Data $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n \longrightarrow \text{Binary}$
- Model: $\hat{y} = x^T w + b$

- Linear
- Loss function: logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for

$$(\widehat{b}, \widehat{w}) = \arg\min_{b, w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction: $sign(b + x^T w)$

decision boundary at $w^T x + b = 0$

Example: adding more polynomial features

Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$
 $h_2(x) = x[2]$
 $h_3(x) = x[1]^2$
 $h_4(x) = x[2]^2$
 \vdots

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear on polynomial features

•
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Learned decision boundary

Feature	Value	Coefficient
$h_0(x)$	1	0.23
$h_1(x)$	x[1]	1.12
$h_2(x)$	x[2]	-1.07

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
h ₄ (x)	$(x[2])^2$	-0.96
h ₅ (x)	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

Feature	Value	Coefficient
$h_0(x)$	1	1.68
$h_1(x)$	x[1]	1.39
$h_2(x)$	x[2]	-0.59
$h_3(x)$	$(x[1])^2$	-0.17
$h_4(x)$	$(x[2])^2$	-0.96
$h_5(x)$	x[1]x[2]	Omitted

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding higher degree polynomial features

Feature	Value	Coefficient learned
$h_0(x)$	1	21.6
$h_1(x)$	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2])6	-8.6

Coefficient values getting large

Adding higher degree polynomial features

Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	$(x[1])^2$	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
$h_7(x)$	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h (v)	/v[2]\6	-8.6

Coefficient values getting large

Adding higher degree polynomial features

x[1]

Overfitting leads to

Feature	Value	Coefficient learned
h ₀ (x)	1	21.6
h ₁ (x)	x[1]	5.3
h ₂ (x)	x[2]	-42.7
h ₃ (x)	(x[1]) ²	-15.9
h ₄ (x)	(x[2]) ²	-48.6
h ₅ (x)	(x[1]) ³	-11.0
h ₆ (x)	(x[2]) ³	67.0
h ₇ (x)	(x[1]) ⁴	1.5
h ₈ (x)	(x[2]) ⁴	48.0
h ₉ (x)	(x[1]) ⁵	4.4
h ₁₀ (x)	(x[2]) ⁵	-14.2
h ₁₁ (x)	(x[1]) ⁶	0.8
h ₁₂ (x)	(x[2]) ⁶	-8.6

Coefficient values getting large

Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

Regularization path

• Absolute regularizer (a.k.a \mathcal{C}_1 regularizer) gives sparse parameters, which is desired for interpretability, feature selection, and efficiency

Probabilistic interpretation of logistic regression

- just as Maximum Likelihood Estimator (MLE) under linear model and additive Gaussian noise model recovers linear least squares,
- we study a particular noise model that recovers logistic regression as MLE
- a probabilistic noise model for Binary labels:

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

with a ground truth model parameter $w \in \mathbb{R}^d$

- this function $\sigma(z)=\frac{1}{1+e^{-z}}$ is called a **logistic function** (not to be confused with logistic loss, which is different) or a **sigmoid function**
- if we know that the data came from such a model, but do not know the ground truth parameter $w \in \mathbb{R}^d$, we can apply MLE to find the best w
- this MLE recovers the logistic regression algorithm, exactly

Maximum Likelihood Estimator (MLE)

• if the data came from a probabilistic model model: $(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}})$ $\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$

• log-likelihood of observing a data point (x_i, y_i) is

$$\log\text{-likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all loglikelihoods on training data points

$$\hat{w}_{\text{MLE}} = \arg \max_{w} \mathbb{P}(\{y_1, ..., y_n\} \mid \{x_1, ..., x_n\})$$

$$= \arg \max_{w} \prod_{i:v=-1}^{n} \mathbb{P}(y_i \mid x_i) \qquad \text{(independence)}$$

$$= \arg \max_{w} \sum_{i:v=-1} \log \left(\frac{1}{1 + e^{w^T x_i}}\right) + \sum_{i:v=1} \log \left(\frac{1}{1 + e^{-w^T x_i}}\right) \qquad \text{(substitution)}$$

notice that this is exactly the logistic regression:

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \frac{1}{n} \left(\sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = 1} \log(1 + e^{-w^T x_i}) \right)$$

• once we have trained a model $\hat{w}_{\text{logistic}}$, we can make a hard prediction \hat{v} of the label at an input example x

$$\hat{v} = \begin{cases} +1 & \text{if } \mathbb{P}(+1|x) \ge \mathbb{P}(-1|x) \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } \frac{1}{1+e^{-w^T x}} \ge \frac{1}{1+e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} +1 & \text{if } 1 \le e^{2w^T x} \\ -1 & \text{otherwise} \end{cases}$$

$$= \text{sign}(w^T x)$$

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

$$w_0 = -2, w_1 = -1$$

$$w_0 = 0, w_1 = -1$$

$$w_0 = 0, w_1 = -0.5$$

