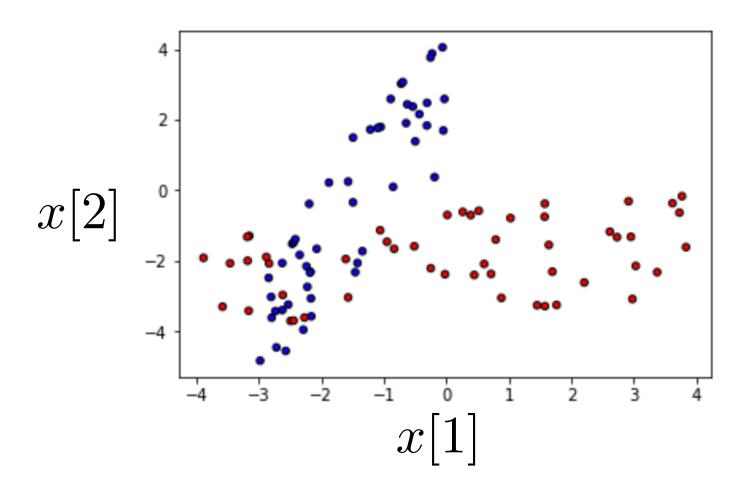
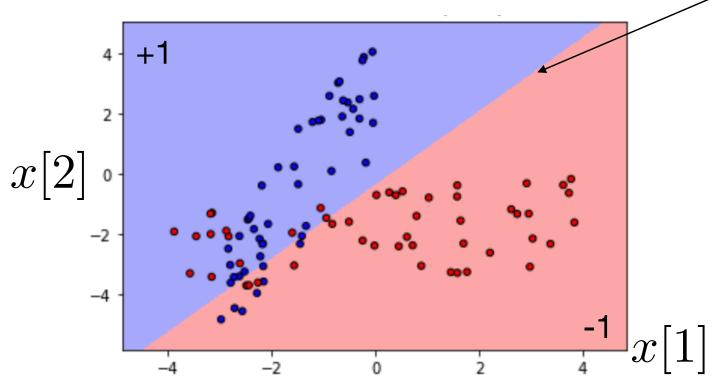
#### Logistics:


- Mid-term evaluation open now!!
  - For every 25% participation, there'll be an extra credit question on the exam
- Midterm exam next Friday Feb 10 in-class
  - Section next week will be reviewing last quarter's midterm exam, so please review it before

# Classification with logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}
- Note that logistic regression is a classification algorithm not a regression algorithm




#### Training data for a binary classification problem



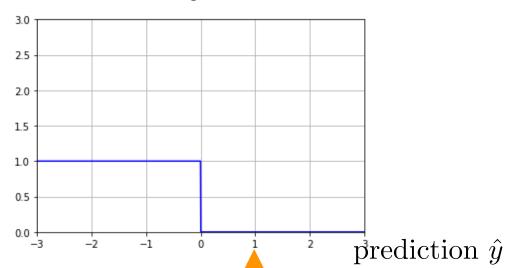
- in this example, each input is  $x_i \in \mathbb{R}^2$
- Red points have label  $y_i$ =-1, blue points have label  $y_i$ =1
- We want a predictor that maps any  $x \in \mathbb{R}^2$  to a prediction  $\hat{y} \in \{-1, +1\}$

#### Example: linear classifier trained on 100 samples

simple decision boundary at  $w^T x + b = 0$ 



- We fit a linear model:  $w_0 + w_1 x[1] + w_2 x[2] = 0.8 1.1 x[1] + 0.9 x[2]$
- predict using  $\hat{y} = \text{sign}(0.8 1.1x[1] + 0.9x[2])$
- decision boundary is the line (or hyperplane in higher dimensions) defined by 0.8 1.1x[1] + 0.9x[2] = 0
- note that a model  $2w^Tx + 2b$  has the same predictions as  $w^Tx + b$
- How do we find such a good linear classifier that fits the data?

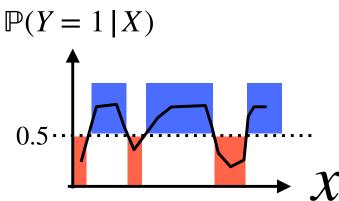

#### **Binary Classification with 0-1 loss**

Squared loss

- Learn a linear model:  $f: x \mapsto \hat{y} = b + x^T w$ 
  - x input/features,  $y \in \{-1, +1\}$  label in target classes
  - Prediction:  $sign(\hat{y})$
- Ideal loss function  $\ell(\hat{y}, y)$ :
  - **0-1 loss**, because we care about how many were classified correctly
  - What are weaknesses? Not differentiable and zero derivative

$$\ell(\hat{y}, -1) = \begin{cases} 0 & \hat{y} < 0 \\ +1 & \hat{y} \ge 0 \end{cases}$$

$$\ell(\hat{y}, +1) = \begin{cases} 0 & \hat{y} > 0 \\ +1 & \hat{y} \le 0 \end{cases}$$




true y

#### **Binary Classification with 0-1 loss**

• If we know the underlying distribution,  $(x, y) \sim P_{X,Y}$  and if we do not restrict ourselves to **any function class**, then we could find the optimal predictor under **0-1 loss**, called **Bayes optimal classifier** 

• 
$$f_{\text{Bayes}}(x) = \arg \max_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y = \hat{y} | X = x)$$



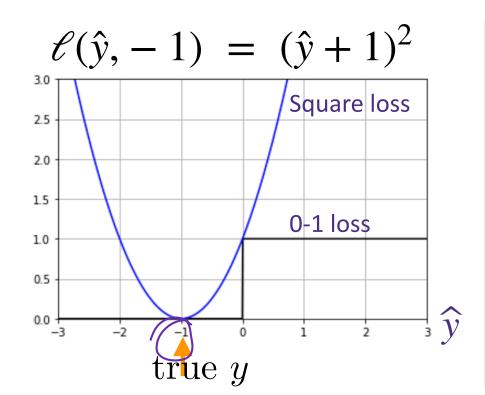
- Claim: Bayes optimal classifier achieves the minimum possible achievable true error for 0-1 loss
- True error:  $\mathbb{E}_{X,Y}[\ell(f(X),Y)] = \mathbb{P}(\operatorname{sign}(f(X)) \neq Y)$
- Proof:

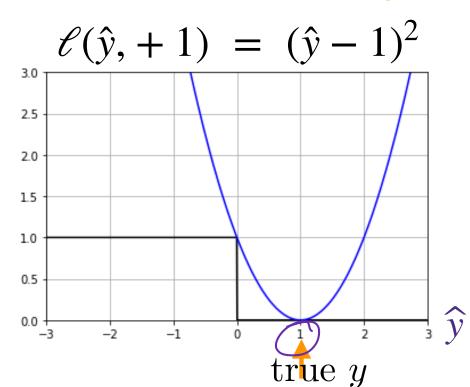
We can write the true error of a classifier  $f(\cdot)$  using chain rule as

$$\mathbb{E}_{X,Y}[\mathbb{I}\{Y \neq f(X)\}] = \mathbb{E}_X\big[\mathbb{E}_{Y|X}[\mathbb{I}\{Y \neq f(X)\}] \mid X = X\big] = \mathbb{E}_X\big[\mathbb{P}_{Y|X}(Y \neq f(X) \mid X = X)\big]$$

optimal classifier minimizes this true error, at every *x* 

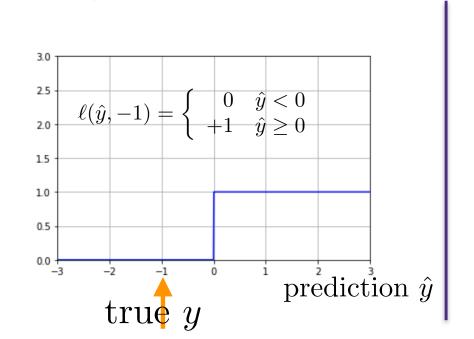
$$f_{\text{opt}}(x) = \arg\min_{\hat{y} \in \{-1,1\}} \mathbb{P}_{Y|X}(Y \neq \hat{y} \mid x)$$


• But, we do not know  $P_{X,Y}$  and 0-1 loss cannot be optimized with gradient descent


#### **Binary Classification with square loss**

- Learn a linear model:  $f: x \mapsto \hat{y} = b + x^T w$ 
  - x input/features,  $y \in \{-1, +1\}$  label in target classes
  - Prediction:  $sign(\hat{y})$
- Square loss function  $\mathcal{C}(b + x^T w, y) = (y x^T w b)^2$ 
  - This is the same as treating this as a linear regression problem

$$(\widehat{w}, \widehat{b}) = \arg\min_{b,w} \sum_{i=1}^{n} (y_i - (b + x_i^T w))^2$$

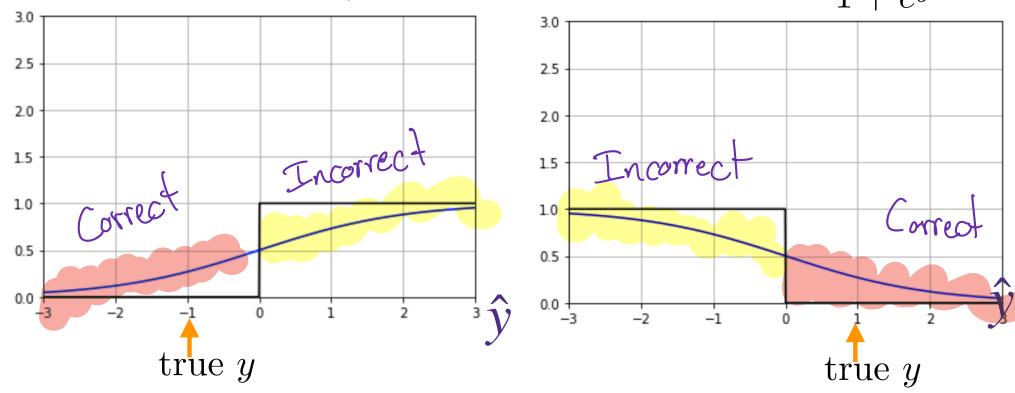

What is the strengths and weaknesses? Goes back up in the "correct" regime





#### Looking for a better loss function

- we get better results using loss functions that
  - approximate, or captures the flavor of, the 0-1 loss
  - is more easily optimized (e.g. convex and/or non-zero derivatives)
- concretely, we want a loss function
- with  $\ell(\hat{y},-1)$  small when  $\hat{y}<0$  and larger when  $\hat{y}>0$  with  $\ell(\hat{y},1)$  small when  $\hat{y}>0$  and larger when  $\hat{y}<0$ 
  - Which has other nice characteristics, e.g., differentiable or convex






Sigmoid loss 
$$\ell(\hat{y}, y) = \frac{1}{1 + e^{y\hat{y}}}$$

$$\ell(\hat{y}, -1) = \frac{1}{1 + e^{-\hat{y}}}$$

$$\ell(\hat{y}, +1) = \frac{1}{1 + e^{\hat{y}}}$$



- differentiable approximation of 0-1 loss
- What is the weakness? not convex in  $\hat{y}$
- the two losses sum to one

$$\frac{1}{1+e^{-\hat{y}}} + \frac{1}{1+e^{\hat{y}}} = \frac{e^{\hat{y}}}{e^{\hat{y}}+1} + \frac{1}{1+e^{\hat{y}}} = 1$$

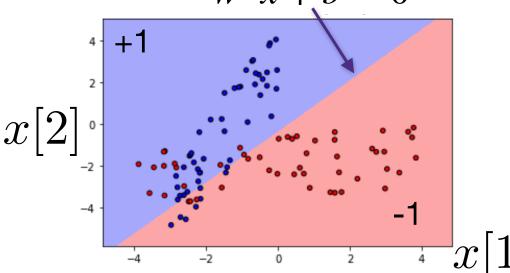
• softer (or smoothed) version of the 0-1 loss

# Logistic loss $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$

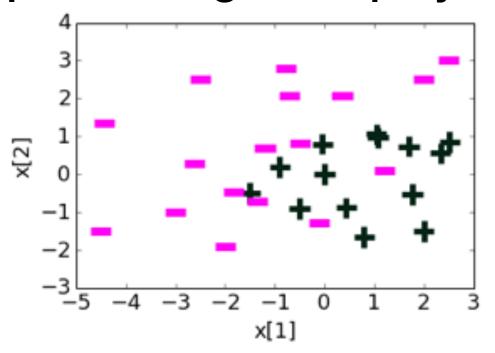
$$\ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}) \qquad \ell(\hat{y}, +1) = \log(1 + e^{-\hat{y}})$$

- differentiable and convex in  $\hat{y}$
- how do we show  $\ell(\cdot, y)$  is convex?
- approximation of 0-1
- Most popular choice of a loss function for classification problems

## Logistic regression for binary classification


- . Data  $\mathcal{D} = \{(x_i \in \mathbb{R}^d, y_i \in \{-1, +1\})\}_{i=1}^n \longrightarrow \text{Binary}$
- Model:  $\hat{y} = x^T w + b$

- Linear
- Loss function: logistic loss  $\ell(\hat{y}, y) = \log(1 + e^{-y\hat{y}})$
- · Optimization: solve for


$$(\widehat{b}, \widehat{w}) = \arg\min_{b, w} \sum_{i=1}^{n} \log(1 + e^{-y_i(b + x_i^T w)})$$

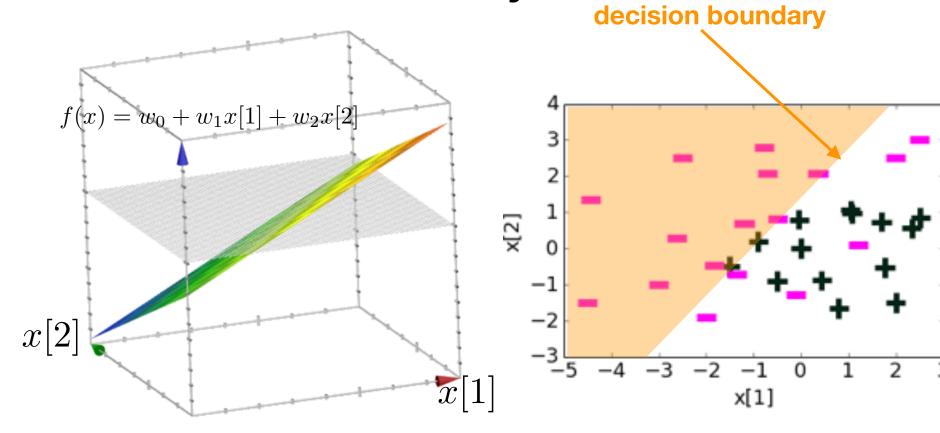
- As this is a smooth convex optimization, it can be solved efficiently using gradient descent
- Prediction:  $sign(b + x^T w)$

decision boundary at  $w^T x + b = 0$ 



#### Example: adding more polynomial features

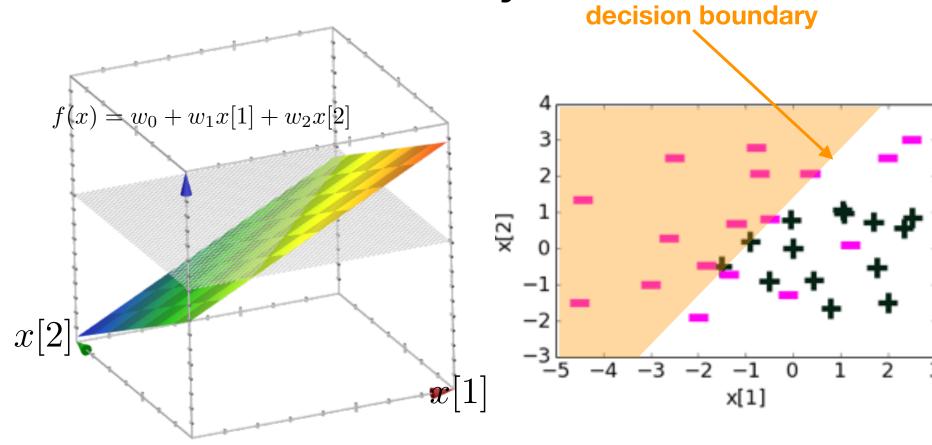



Polynomial features

$$h_0(x) = 1$$
 $h_1(x) = x[1]$ 
 $h_2(x) = x[2]$ 
 $h_3(x) = x[1]^2$ 
 $h_4(x) = x[2]^2$ 
 $\vdots$ 

- data: x in 2-dimensions, y in {+1,-1}
- features: polynomials
- model: linear on polynomial features

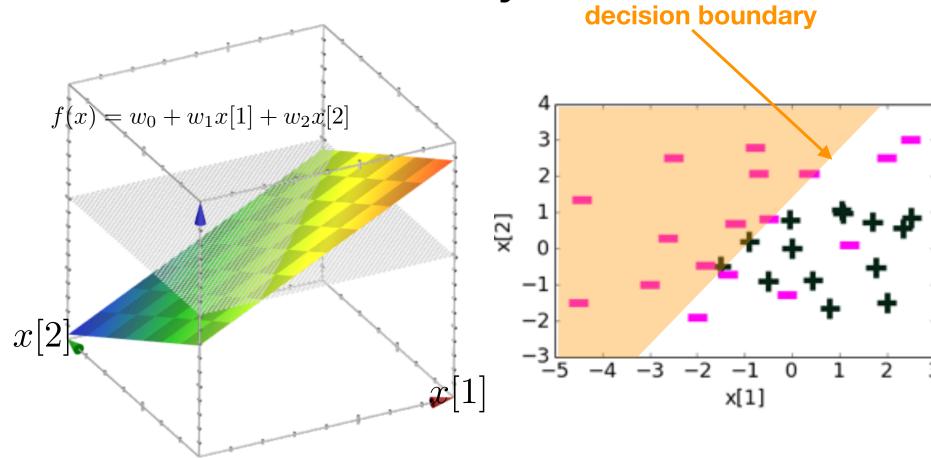
• 
$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$


## Learned decision boundary



| Feature  | Value | Coefficient |
|----------|-------|-------------|
| $h_0(x)$ | 1     | 0.23        |
| $h_1(x)$ | x[1]  | 1.12        |
| $h_2(x)$ | x[2]  | -1.07       |

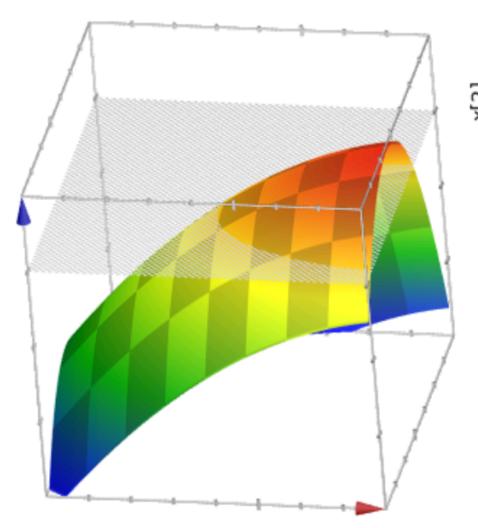
- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

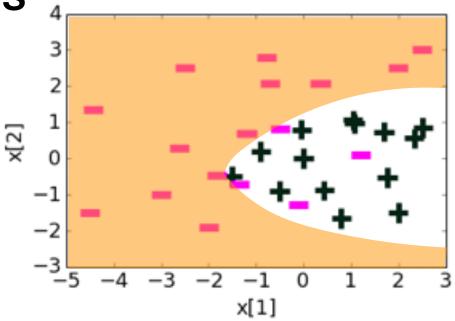

## Learned decision boundary



| Feature  | Value | Coefficient |
|----------|-------|-------------|
| $h_0(x)$ | 1     | 0.23        |
| $h_1(x)$ | x[1]  | 1.12        |
| $h_2(x)$ | x[2]  | -1.07       |

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

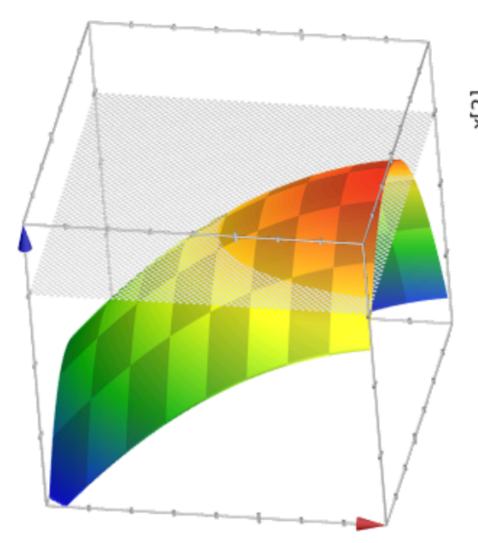

## Learned decision boundary

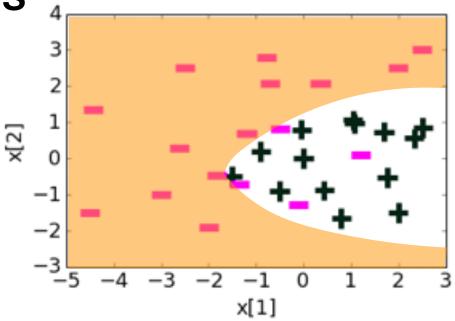



| Feature  | Value | Coefficient |
|----------|-------|-------------|
| $h_0(x)$ | 1     | 0.23        |
| $h_1(x)$ | x[1]  | 1.12        |
| $h_2(x)$ | x[2]  | -1.07       |

- Simple regression models had smooth predictors
- Simple classifier models have smooth decision boundaries

Adding quadratic features

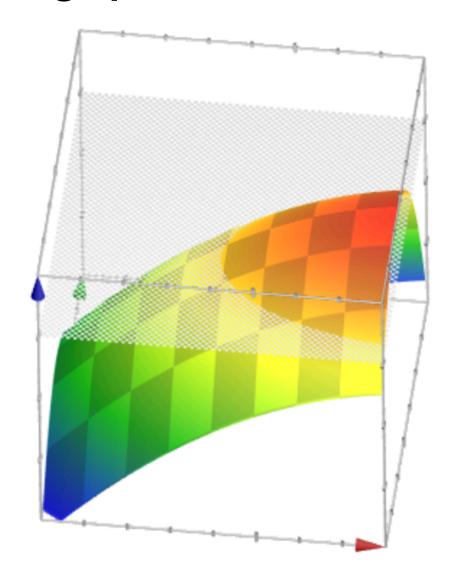


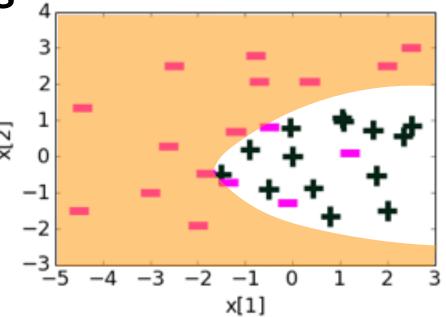




| Feature  | Value      | Coefficient |
|----------|------------|-------------|
| $h_0(x)$ | 1          | 1.68        |
| $h_1(x)$ | x[1]       | 1.39        |
| $h_2(x)$ | x[2]       | -0.59       |
| $h_3(x)$ | $(x[1])^2$ | -0.17       |
| $h_4(x)$ | $(x[2])^2$ | -0.96       |
| $h_5(x)$ | x[1]x[2]   | Omitted     |

- Adding more features gives more complex models
- Decision boundary becomes more complex

Adding quadratic features

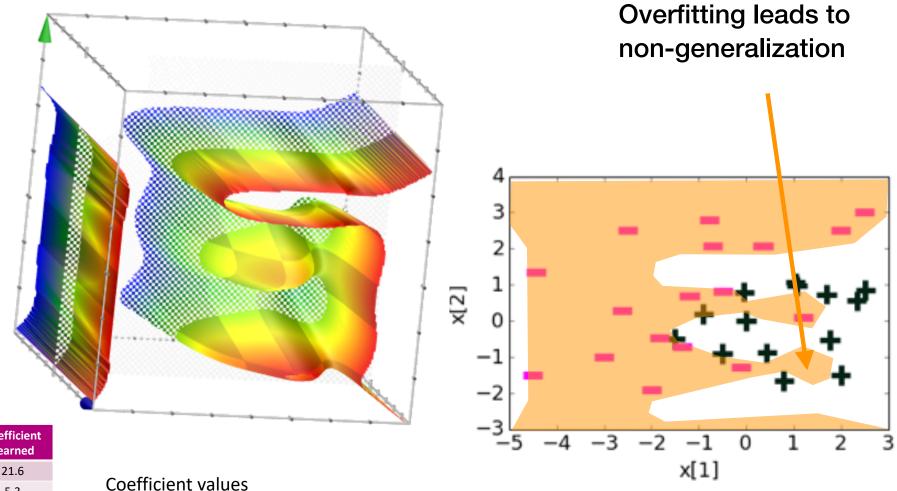



| Feature            | Value      | Coefficient |
|--------------------|------------|-------------|
| $h_0(x)$           | 1          | 1.68        |
| $h_1(x)$           | x[1]       | 1.39        |
| $h_2(x)$           | x[2]       | -0.59       |
| $h_3(x)$           | $(x[1])^2$ | -0.17       |
| h <sub>4</sub> (x) | $(x[2])^2$ | -0.96       |
| h <sub>5</sub> (x) | x[1]x[2]   | Omitted     |

- Adding more features gives more complex models
- Decision boundary becomes more complex

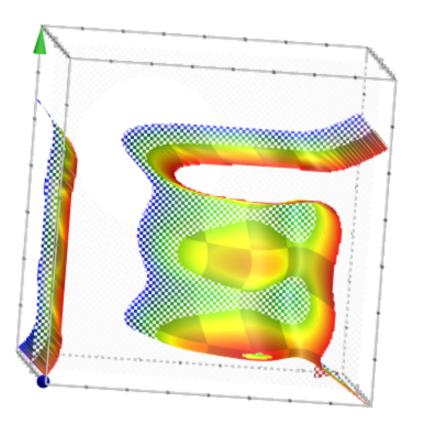
Adding quadratic features

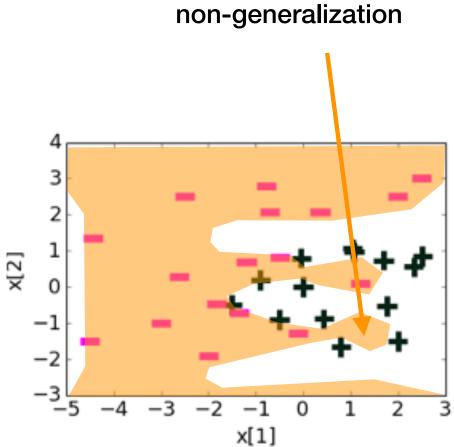





| Feature  | Value      | Coefficient |
|----------|------------|-------------|
| $h_0(x)$ | 1          | 1.68        |
| $h_1(x)$ | x[1]       | 1.39        |
| $h_2(x)$ | x[2]       | -0.59       |
| $h_3(x)$ | $(x[1])^2$ | -0.17       |
| $h_4(x)$ | $(x[2])^2$ | -0.96       |
| $h_5(x)$ | x[1]x[2]   | Omitted     |

- Adding more features gives more complex models
- Decision boundary becomes more complex


## Adding higher degree polynomial features

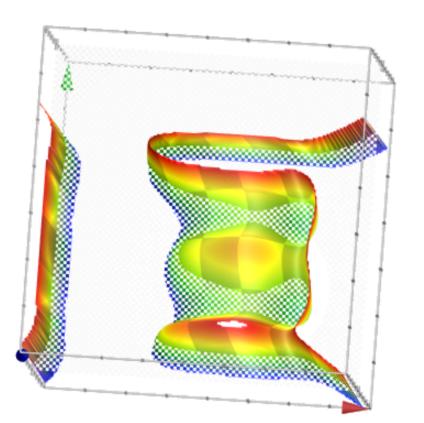


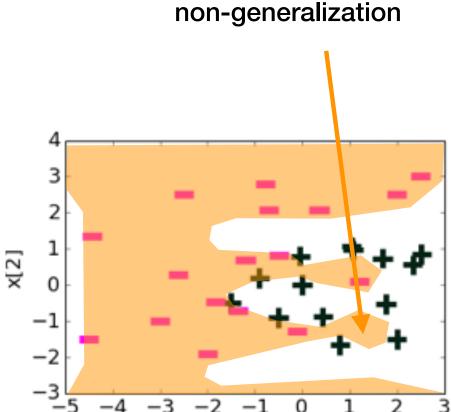

| Feature             | Value               | Coefficient<br>learned |
|---------------------|---------------------|------------------------|
| $h_0(x)$            | 1                   | 21.6                   |
| $h_1(x)$            | x[1]                | 5.3                    |
| h <sub>2</sub> (x)  | x[2]                | -42.7                  |
| h <sub>3</sub> (x)  | $(x[1])^2$          | -15.9                  |
| h <sub>4</sub> (x)  | (x[2]) <sup>2</sup> | -48.6                  |
| h <sub>5</sub> (x)  | (x[1]) <sup>3</sup> | -11.0                  |
| h <sub>6</sub> (x)  | (x[2]) <sup>3</sup> | 67.0                   |
| h <sub>7</sub> (x)  | (x[1]) <sup>4</sup> | 1.5                    |
| h <sub>8</sub> (x)  | (x[2]) <sup>4</sup> | 48.0                   |
| h <sub>9</sub> (x)  | (x[1]) <sup>5</sup> | 4.4                    |
| h <sub>10</sub> (x) | (x[2]) <sup>5</sup> | -14.2                  |
| h <sub>11</sub> (x) | (x[1]) <sup>6</sup> | 0.8                    |
| h <sub>12</sub> (x) | (x[2])6             | -8.6                   |

Coefficient values getting large

#### Adding higher degree polynomial features







Overfitting leads to

| Feature             | Value               | Coefficient<br>learned |
|---------------------|---------------------|------------------------|
| h <sub>0</sub> (x)  | 1                   | 21.6                   |
| h <sub>1</sub> (x)  | x[1]                | 5.3                    |
| h <sub>2</sub> (x)  | x[2]                | -42.7                  |
| h <sub>3</sub> (x)  | $(x[1])^2$          | -15.9                  |
| h <sub>4</sub> (x)  | (x[2]) <sup>2</sup> | -48.6                  |
| h <sub>5</sub> (x)  | (x[1]) <sup>3</sup> | -11.0                  |
| h <sub>6</sub> (x)  | (x[2]) <sup>3</sup> | 67.0                   |
| $h_7(x)$            | (x[1]) <sup>4</sup> | 1.5                    |
| h <sub>8</sub> (x)  | (x[2]) <sup>4</sup> | 48.0                   |
| h <sub>9</sub> (x)  | (x[1]) <sup>5</sup> | 4.4                    |
| h <sub>10</sub> (x) | (x[2]) <sup>5</sup> | -14.2                  |
| h <sub>11</sub> (x) | (x[1]) <sup>6</sup> | 0.8                    |
| h (v)               | /v[2]\6             | -8.6                   |

Coefficient values getting large

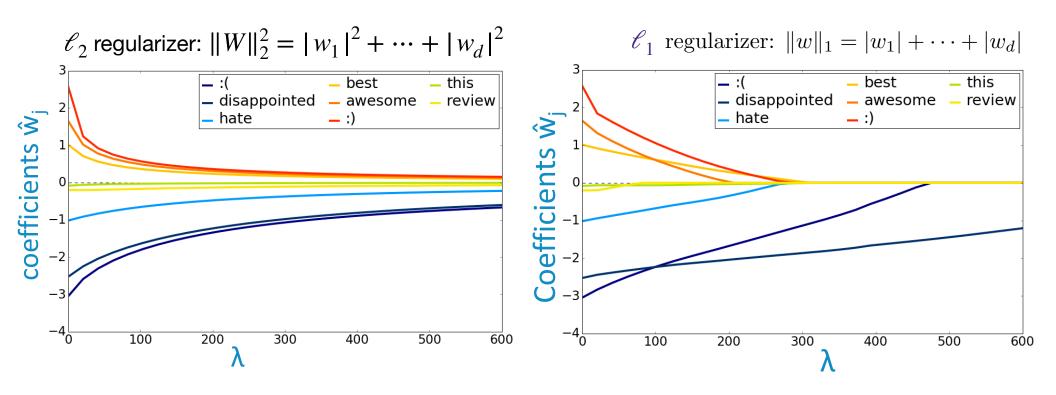
#### Adding higher degree polynomial features





x[1]

Overfitting leads to


| Feature             | Value               | Coefficient<br>learned |
|---------------------|---------------------|------------------------|
| h <sub>0</sub> (x)  | 1                   | 21.6                   |
| h <sub>1</sub> (x)  | x[1]                | 5.3                    |
| h <sub>2</sub> (x)  | x[2]                | -42.7                  |
| h <sub>3</sub> (x)  | (x[1]) <sup>2</sup> | -15.9                  |
| h <sub>4</sub> (x)  | (x[2]) <sup>2</sup> | -48.6                  |
| h <sub>5</sub> (x)  | (x[1]) <sup>3</sup> | -11.0                  |
| h <sub>6</sub> (x)  | (x[2]) <sup>3</sup> | 67.0                   |
| h <sub>7</sub> (x)  | (x[1]) <sup>4</sup> | 1.5                    |
| h <sub>8</sub> (x)  | (x[2]) <sup>4</sup> | 48.0                   |
| h <sub>9</sub> (x)  | (x[1]) <sup>5</sup> | 4.4                    |
| h <sub>10</sub> (x) | (x[2]) <sup>5</sup> | -14.2                  |
| h <sub>11</sub> (x) | (x[1]) <sup>6</sup> | 0.8                    |
| h <sub>12</sub> (x) | (x[2]) <sup>6</sup> | -8.6                   |

Coefficient values getting large

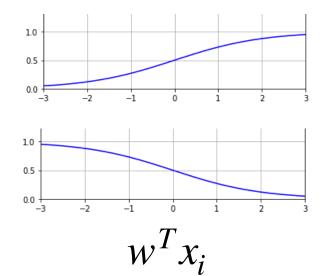
Overfitting leads to very large values of

$$f(x) = w_0 h_0(x) + w_1 h_1(x) + w_2 h_2(x) + \cdots$$

#### Regularization path



• Absolute regularizer (a.k.a  $\mathcal{C}_1$  regularizer) gives sparse parameters, which is desired for interpretability, feature selection, and efficiency


#### Probabilistic interpretation of logistic regression

- just as Maximum Likelihood Estimator (MLE) under linear model and additive Gaussian noise model recovers linear least squares,
- we study a particular noise model that recovers logistic regression as MLE
- a probabilistic noise model for Binary labels:

$$\mathbb{P}(y_i = +1 \mid x_i) = \frac{1}{1 + e^{-w^T x_i}}$$

$$\mathbb{P}(y_i = -1 \mid x_i) = \frac{1}{1 + e^{w^T x_i}}$$

with a ground truth model parameter  $w \in \mathbb{R}^d$ 



- this function  $\sigma(z)=\frac{1}{1+e^{-z}}$  is called a **logistic function** (not to be confused with logistic loss, which is different) or a **sigmoid function**
- if we know that the data came from such a model, but do not know the ground truth parameter  $w \in \mathbb{R}^d$ , we can apply MLE to find the best w
- this MLE recovers the logistic regression algorithm, exactly

#### Maximum Likelihood Estimator (MLE)

• if the data came from a probabilistic model model:  $(\underbrace{\frac{1}{1+e^{-w^Tx}}}, \underbrace{\frac{1}{1+e^{w^Tx}}})$   $\mathbb{P}(y_i = +1|x_i) \quad \mathbb{P}(y_i = -1|x_i)$ 

• log-likelihood of observing a data point  $(x_i, y_i)$  is

$$\log\text{-likelihood} = \log\left(\mathbb{P}(y_i|x_i)\right) = \begin{cases} \log\left(\frac{1}{1+e^{-w^Tx_i}}\right) & \text{if } y_i = +1\\ \log\left(\frac{1}{1+e^{w^Tx_i}}\right) & \text{if } y_i = -1 \end{cases}$$

 Maximum Likelihood Estimator is the one that maximizes the sum of all loglikelihoods on training data points

$$\hat{w}_{\text{MLE}} = \arg \max_{w} \mathbb{P}(\{y_1, ..., y_n\} \mid \{x_1, ..., x_n\})$$

$$= \arg \max_{w} \prod_{i:v=-1}^{n} \mathbb{P}(y_i \mid x_i) \qquad \text{(independence)}$$

$$= \arg \max_{w} \sum_{i:v=-1} \log \left(\frac{1}{1 + e^{w^T x_i}}\right) + \sum_{i:v=1} \log \left(\frac{1}{1 + e^{-w^T x_i}}\right) \qquad \text{(substitution)}$$

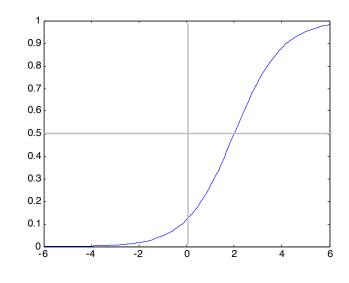
notice that this is exactly the logistic regression:

$$\hat{w}_{\text{logistic}} = \arg\min_{w} \frac{1}{n} \left( \sum_{i:y_i = -1} \log(1 + e^{w^T x_i}) + \sum_{i:y_i = 1} \log(1 + e^{-w^T x_i}) \right)$$

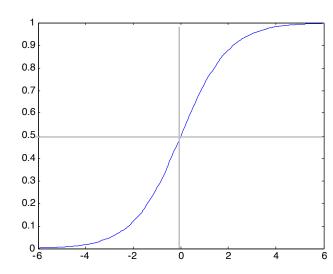
• once we have trained a model  $\hat{w}_{\text{logistic}}$ , we can make a hard prediction  $\hat{v}$  of the label at an input example x

$$\hat{v} = \begin{cases} +1 & \text{if } \mathbb{P}(+1|x) \ge \mathbb{P}(-1|x) \\ -1 & \text{otherwise} \end{cases}$$

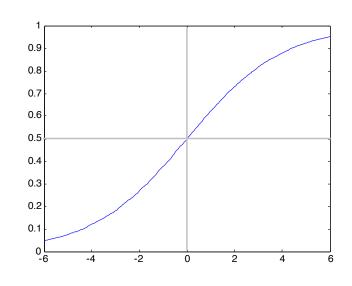
$$= \begin{cases} +1 & \text{if } \frac{1}{1+e^{-w^T x}} \ge \frac{1}{1+e^{w^T x}} \\ -1 & \text{otherwise} \end{cases}$$


$$= \begin{cases} +1 & \text{if } 1 \le e^{2w^T x} \\ -1 & \text{otherwise} \end{cases}$$

$$= \text{sign}(w^T x)$$


## Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$


$$w_0 = -2, w_1 = -1$$



$$w_0 = 0, w_1 = -1$$



$$w_0 = 0, w_1 = -0.5$$

