Logistics:
- Mid-term evaluation open now!!
- For every 25% participation, there’ll be an extra credit question on the exam

- Midterm exam next Friday Feb 10 in-class
- Section next week will be reviewing last quarter’s midterm exam, so please review it before

Classification with
logistic regression

- Regression: label is continuous valued
- Classification: label is discrete valued, e.g., {0,1}

- Note that logistic regression is
a classification algorithm not a regression algorithm




Training data for a binary classification problem
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e inthis example, each input is x; € R?
e Red points have label y,=-1, blue points have label y,=1

e We want a predictor that maps any x € R? to a prediction € {—1, + 1}



Example: linear classifier trained on 100 samples
simple decision boundary at w!x + b = 0
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We fit a linear model: wy + wx[1] + wyx[2] = 0.8 — 1.1x[1] + 0.9x[2]

predict using = sign(0.8 — 1.1x[1] + 0.9x[2])

decision boundary is the line (or hyperplane in higher dimensions) defined by
0.8 —1.1x[1]+0.9x[2] =0

note that a model 2w’ x + 2b has the same predictions as w! x + b

How do we find such a good linear classifier that fits the data?



Binary Classification with 0-1 loss Stpewed loss

2
e Learnalinearmodel: f:x— 9y =b+x'w (X _bb
- x —input/features, y € {—1, + 1} —label in target classes
» Prediction: sign(y)
« Ideal loss function (7, y):
* 0-1 loss, because we care about how many were classified correctly

« \What are weaknesses?
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Binary Classification with 0-1 loss

If we know the underlying distribution, (x,y) ~ PX’Y and if we do not restrict

ourselves to any function class, then we could find the optimal predictor under
0-1 loss, called Bayes optimal classifier

o fBayes(x) = arg X I?alxl} Py|x(Y = j\i |X = x) P(Y =1 |X)
ye —1, —

Claim: Bayes optimal classifier achieves the minimum possible achievable true
error for 0-1 loss

True error: Ey [£(f(X), Y)] = P( sign(f(X)) # Y)

Proof:
We can write the true error of a classifier f( - ) using chain rule as

optimal classifier minimizes this true error, at every x
Jopt®®) = arg min  Pyx(Y # y|x)

But, we do not know Py, and 0-1 loss cannot be optimized with gradient descent



Binary Classification with square loss

o Learnalinearmodel: f:x— 9 =b+xlw
« X input/features, y € {—1, + 1} label in target classes
- Prediction: sign(y)
. Square loss function Z2(b + x'w,y) = (y — xTw — b)?
* This is the same as tr,?ating this as a linear regression problem
(w, /b\) = arg min Z (y; — (b + xiTw))2
b,w

i=1
« What is the strengths and weaknesses?
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. Square loss e
: 0-1 loss 10.
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Looking for a better loss function

- we get better results using loss functions that

- approximate, or captures the flavor of, the 0-1 loss e
IS more easily optimized (e.g. convex and/or non-zero derivatives) \%,’239
: ’S"’( %Ll(
« concretely, we want a loss function W\\

small ¢ with ¢(g, —1) small when g) < 0/and larger when y >

éﬂssﬂ &5/ with ¢(y,1) small when ¢ > 0 and larger when ¢ < 0
Y’ Which has other nice characteristics, e.g., differentiable or convex
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differentiable approximation of 0-1 loss

What is the weakness? /\

the two losses sum to one
1 1 e’ 1
- -+ - = — -+ — = 1
l+e? 14+ e+1 1+
softer (or smoothed) version of the 0-1 loss




Logistic loss £(y,y) = log(1 + e@

0(g,—1) = log(1 + €¥) 0(9,+1) = log(1 +e7¥)
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differentiable and convex in y

how do we show £( -, y) is convex?
approximation of 0-1
Most popular choice of a loss function for classification problems



Logistic regression for binary classification

. Data 9 = {(x E R y. € {—1, + 1P}

. Model: y—x Tw+b

. Loss function: logistic loss £(y,y) = log(l

« Optimization: solve for

L1 weer/"

(b, W) = arg min Z log(1 4 ¢~ Yb+xm)y

using gradient descent

. Prediction: sign(b + xw)

i=1
 As this is a smooth convex optimization,
it can be solved efficiently

decision boundary at

w!x +\b =0
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Example
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data: x in 2-dimensions, y in {+1,-1}

features: polynomials

x[1]

1 2

model: linear on polynomial features

flz) =

3

: adding more polynomial features

Polynomial
features

ho (CIJ) =
hi(x) = z[1]
ho(x) = z[2]
hs(x) = z[1]?
ha(x) = x[2]?

’U]Qho(x) -+ wlhl(x) -+ wghQ(ZE‘) -+ ..
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Learned decision boundary
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Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth
* Simple classifier models have smooth



Learned decision boundary
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Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

g ® Simple classifier models have smooth



Learned decision boundary
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Coefficient

ho(x) 1 0.23
h1(x) x[1] 1.12
ha(x) x[2] -1.07

e Simple regression models had smooth

30 ® Simple classifier models have smooth



Adding quadratic features
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x[1]

Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models
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e Decision boundary becomes more complex




Adding quadratic features
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Coefficient

ho(x)
hi(x)
ha(x)
h3(x)
ha(x)
hs(x)

x[1]

1 1.68
x[1] 1.39
x[2] -0.59

(x[1])? -0.17
(x[2])? -0.96
x[1]x[2] Omitted

e Adding more features gives more complex models
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e Decision boundary becomes more complex




Adding quadratic features
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x[1]
ho(x) 1 1.68
hi(x) x[1] 1.39
ha(x) x[2] -0.59
hs(x) (x[1])2 -0.17
ha(x) (x[2])2 -0.96

hs(x) x[1]x[2] Omuitted

e Adding more features gives more complex models

. * Decision boundary becomes more complex



Addlng hlgher degree polynomial features

Overfitting leads to
non-generalization

\
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ho(x) 1 .

h(x) x[1]
ha(x) x[2]
hs(x) (x[1])?
ha(x) (x[2])?
hs(x) (x[1]®
hs(x) (x[2])3
h7(x) (x[1])*
hsg(x) (x[2])*
hg(x) (x[11y
hio(x)  (x[2])?
h11(x) (x[1])® 0.8
hio(x)  (x[2])8 -8.6

Coefficient values
getting large




Adding higher degree polynomial features

. Overfitting leads to
A = T non-generalization
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Adding higher degree polynomial features

Overfitting leads to
non-generalization
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Regularization path
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 Absolute regularizer (a.k.a | regularizer) gives sparse

parameters, which is desired for interpretability, feature
selection, and efficiency



Probabilistic interpretation of logistic regression

just as Maximum Likelihood Estimator (MLE) under linear model and
additive Gaussian noise model recovers linear least squares,

we study a particular noise model that recovers logistic regression as MLE

a probabilistic noise model for Binary labels:

1 10
H:D(yz =+ 1 |xi) = 1 + e—wai ::V‘
P(y; = —1]x) : .
L= — X;
yl l 1 + ewai OSN

with a ground truth model parameter w € R? WT X
l

this function o(z) = - is called a logistic function (not to be
o—

confused with logistic loss, which is different) or a sigmoid function

if we know that the data came from such a model, but do not know the

ground truth parameter w € [Rd, we can apply MLE to find the best w
this MLE recovers the logistic regression algorithm, exactly



Maximum Likelihood Estimator (MLE)

1 1
\1 + e—’wT{’ \1 + ew”

Plyi=+1|z;) P(yi=—1[x;)

e if the data came from a probabilistic model model: (

z)

J

e log-likelihood of observing a data point (x;, ;) is

ikel] log (1 s if y; = +1
log-likelihood = log (P(yz\xz)) — +e i

e Maximum Likelihood Estimator is the one that maximizes the sum of all log-
likelihoods on training data points

wyveeg = argmax P({y, ...y, [ {xp .- x,})

(independence)

(substitution)



notice that this is exactly the logistic regression:

~ 1 1 —Ww X
Wiogistic = aIg mvin ;( Z log(1 + "' %) + Z log(1 + e~ %) )
iy=—1 iy=1

once we have trained a model Wy, 4., We can make a hard prediction
of the label at an input example x

| +1 i P(+1]z) > P(—1|z)
V.o —1 otherwise

: 1 1
>
— _I_l lf 1‘|‘€_wa T 1_|_€wa
—1 otherwise

41 ifl<ew'e
—1 otherwise

— sign(w’ )



Understanding the sigmoid

g(wo + Z’wz‘ﬂ?i) =

WO='2, W1

=-1
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W1='1
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