

- When is an optimization (or learning) easy/fast to solve?

Recap: Ridge vs. Lasso

- minimize_w $\sum_{i=1}^{n} (w^T x_i y_i)^2 + \lambda ||w||_2^2$
- Very fast:
 - Closed form solution if used with linear models
 - Even with other loss functions, optimization is fast for squared ℓ_2 regularization, because $||w||_2^2$ is **convex and smooth**
- Lasso

Ridge

minimize_w
$$\sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

- Slower than Ridge:
 - Requires iterative optimization algorithm like sub-gradient descent
 - In particular, it is slower because $||w||_1$ is **convex but non-smooth**

What is a convex set?

K is connected

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \le t\}$ is convex

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \le t\}$ is convex

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \ge f(x) + \nabla f(x)^\top (y - x)$ for all $x, y \in dom(f)$

More definitions of convexity

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \le t\}$ is convex

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \ge f(x) + \nabla f(x)^\top (y - x)$ for all $x, y \in dom(f)$

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

 $f(x) \vee \geq 0$

Why do we care about convexity?

Convex functions

- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function

Non-convex Function

We only need to find a point with $\nabla f(x) = 0$, which for convex functions implies that it is a local minima and a global minima For non-convex functions, a stationary point with $\nabla f(x) = 0$ could be a local minima, a local maxima, or a saddle point

Gradient Descent on $\min f(w)$

W

- Strength: Can find global minima of a convex function efficiently
- Weakness: Can only be applied to smooth functions
 - i.e., functions that is differentiable everywhere,
 - otherwise $\nabla f(x)$ is not defined and gradient descent cannot be applied

Sub-Gradient

Definition: a function is **non-smooth** if it is not differentiable everywhere

Definition: a vector $g \in \mathbb{R}^d$ is a **sub-gradient** at x if it satisfies

$$f(y) \neq f(x) + g^T(y - x)$$
 for all $y \in \mathbb{R}^d$

Smooth Convex Function

Non-smooth Convex Function

- for smooth convex functions,
 - gradient is the unique sub-gradient, and
 - the global minimum is achieved at points where gradient is zero

- for non-smooth convex functions,
 - the minimum is achieved at points where sub-gradient set includes the zero vector

Sub-Gradient Descent for non-smooth functions

Initialize: $w_0 = 0$

for t = 1, 2, ...

Find any g_t such that $f(y) \ge f(w_t) + g_t^{\top}(y - w_t)$

 $w_{t+1} \leftarrow w_t - \eta_t g_t$

- Strength: finds global minima for **non-smooth convex functions**
- Weakness: it is slower than gradient descent on convex smooth functions, because the gradient do not get smaller near the global minima
 - Instead of last iterate w_t , we use the best one we saw in all iterates
 - The stepsize needs to decrease with *t*

Coordinate descent

Initialize: $w_0 = 0$ for t = 1, 2, ...Let $i_t = t \% d$ $w_{t+1}[i_t] \leftarrow w_t[i_t] - \eta_t \frac{\partial f(w_t)}{\partial w[i_t]}$

Optimization

- You can always run gradient descent whether f is convex or not. But you only have guarantees if f is convex
- Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)

