
Lecture 10: 
Convexity

- When is an optimization (or learning) easy/fast to solve?
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Recap: Ridge vs. Lasso

• Ridge  

              

• Very fast: 
• Closed form solution if used with linear models 
• Even with other loss functions, optimization is fast for squared  

regularization, because  is convex and smooth 

• Lasso 

             

• Slower than Ridge: 
• Requires iterative optimization algorithm like sub-gradient descent
• In particular, it is slower because  is convex but non-smooth
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What is a convex set?

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]
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What is a convex function?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]ℝd
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What is a convex function?
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Convex functions and convex sets?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

ℝd

Graph of  is defined as  
Epigraph of  is defined as   

f {(x, t) : f (x) = t}
f {(x, t) : f (x) ≤ t}
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More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)
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More definitions of convexity
A function f : Rd ! R that is twice-di↵erentiable everywhere is convex if
r2f(x) ⌫ 0 for all x 2 dom(f)
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More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)

A function f : Rd ! R that is twice-di↵erentiable everywhere is convex if
r2f(x) ⌫ 0 for all x 2 dom(f)

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]ℝd
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Why do we care about convexity?

Convex functions 
- All local minima are global minima 
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

We only need to find a point with , 
which for convex functions implies that it is  
a local minima and a global minima

∇f (x) = 0 For non-convex functions, a stationary point  
with  could be a local minima,  
a local maxima, or a saddle point 

∇f (x) = 0
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Gradient Descent on min
w

f(w)

Convex Function Non-convex Function

Initialize: w0 = 0

for t = 1, 2, . . .

wt+1 = wt � ⌘rf(wt)

• Strength: Can find global minima of a convex function efficiently

• Weakness: Can only be applied to smooth functions


•  i.e., functions that is differentiable everywhere, 


• otherwise  is not defined and gradient descent cannot be applied∇f(x)
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Sub-Gradient

Non-smooth Convex Function

Definition: a function is non-smooth if it is not differentiable everywhere

Smooth Convex Function

• for smooth convex functions, 

• gradient is the unique sub-gradient, and 

• the global minimum is achieved at points 

where gradient is zero 

• for non-smooth convex functions, 

• the minimum is achieved at 

points where sub-gradient set 
includes the zero vector

x
f (x) + gT(y − x)

Definition: a vector  is a sub-gradient at  if it satisfies  
                                        for all 

g ∈ ℝd x
f(y) ≥ f(x) + gT(y − x) y ∈ ℝd

f (x) + gT(y − x) with g ∈ [−2, − 1]

g ∈ [−1/2,1]



Sub-Gradient Descent for non-smooth functions
Initialize: w0 = 0

for t = 1, 2, . . .

Find any gt such that f(y) � f(wt) + g>t (y � wt)

wt+1 = wt � ⌘gt

Convex Function Non-convex Function

• Strength: finds global minima for non-smooth convex functions

• Weakness: it is slower than gradient descent on convex smooth functions, 

because the gradient do not get smaller near the global minima

•  Instead of last iterate , we use the best one we saw in all iterates

• The stepsize needs to decrease with 

wt
t

wt+1 ← wt − ηtgt



Coordinate descent

Initialize: w0 = 0

for t = 1, 2, . . .

Let it = t % n

w(it)
t+1 = w(it)

t � ⌘t
@f(w)

@w(it)

���
w=wt

d

wt+1[it] ← wt[it] − ηt
∂f(wt)
∂w[it]



Optimization

■ You can always run gradient descent whether f is 
convex or not. But you only have guarantees if f is 
convex

■ Many bells and whistles can be added onto gradient 
descent such as momentum and dimension-specific 
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Questions?


