

- When is an optimization (or learning) easy/fast to solve?

Recap: Ridge vs. Lasso

- **• Ridge** minimize $_{w}$ *n* ∑ *i*=1 $(w^T x_i - y_i)^2 + \lambda ||w||_2^2$
	- Very fast:
		- Closed form solution if used with linear models
		- Even with other loss functions, optimization is fast for squared ℓ_2 regularization, because $\|w\|_2^2$ is **convex and smooth**
- **• Lasso**

$$
\text{minimize}_{w} \quad \sum_{i=1}^{n} \left(w^T x_i - y_i \right)^2 + \lambda \|w\|_1
$$

- Slower than Ridge:
	- Requires iterative optimization algorithm like sub-gradient descent
	- In particular, it is slower because $||w||_1$ is convex but non-smooth

What is a convex set?

K is connected

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

What is a convex function?

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \le t\}$ is convex

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^\top (y-x)$ for all $x, y \in dom(f)$

More definitions of convexity

A function $f : \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

More definitions of convexity

or

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$ for all $x, y \in \mathbb{R}^d$ and $\lambda \in [0, 1]$

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x, t) \in \mathbb{R}^{d+1} : f(x) \le t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \ge f(x) + \nabla f(x)^\top (y-x)$ for all $x, y \in dom(f)$

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

y

 20 $\forall y$

 $\sqrt{f(x)}$

Why do we care about convexity?

Convex functions

- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

We only need to find a point with $\nabla f(x) = 0$, which for convex functions implies that it is a local minima and a global minima

For non-convex functions, a stationary point with $\nabla f(x) = 0$ could be a local minima, a local maxima, or a saddle point

Gradient Descent on min *f*(*w*)

w

- Strength: Can find global minima of a convex function efficiently
- Weakness: Can only be applied to smooth functions
	- i.e., functions that is differentiable everywhere,
	- otherwise $\nabla f(x)$ is not defined and gradient descent cannot be applied

Sub-Gradient

Definition: a function is **non-smooth** if it is not differentiable everywhere

Definition: a vector $g \in \mathbb{R}^d$ is a **sub-gradient** at \widehat{x} *i*f it satisfies

Smooth Convex Function

Non-smooth Convex Function

- for smooth convex functions,
	- gradient is the unique sub-gradient, and
	- the global minimum is achieved at points where gradient is zero
- for non-smooth convex functions,
	- the minimum is achieved at points where sub-gradient set includes the zero vector

Sub-Gradient Descent for non-smooth functions

Initialize: $w_0 = 0$

for $t = 1, 2, \ldots$

Find any g_t such that $f(y) \ge f(w_t) + g_t^{\perp}(y - w_t)$

 $w_{t+1} \leftarrow w_t - \eta_t g_t$

- Strength: finds global minima for **non-smooth convex functions**
- Weakness: it is slower than gradient descent on convex smooth functions, because the gradient do not get smaller near the global minima
	- Instead of last iterate w_t , we use the best one we saw in all iterates
	- The stepsize needs to decrease with *t*

Coordinate descent

Initialize: $w_0 = 0$ for $t = 1, 2, ...$ Let $i_t = t \, \% \, d$ $w_{i+1}[i] \leftarrow w_i$ $\left[l_t \right]$ – \mathbf{r} η _t $\frac{1}{2}$ $w_{t+1}[i_t] \leftarrow w_t[i_t] - \eta_t$ *df*(*w*_t) $\partial w[i_t]$

Optimization

- You can always run gradient descent whether f is **convex or not. But you only have guarantees if f is convex**
- **Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)**

