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Convexity

- When is an optimization (or learning) easy/fast to solve?
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Recap: Ridge vs. Lasso

- Ridge

n
minimize,, Z wlx, —y)? + illwll%
i=1
 Very fast:
« Closed form solution if used with linear models

. Even with other loss functions, optimization is fast for squared ¢,
regularization, because ||w||% is convex and smooth

« Lasso

n
minimize,, 2 wlx, —y)* + Awll,
i=1
- Slower than Ridge:
- Requires iterative optimization algorithm like sub-gradient descent
. In particular, it is slower because ||w||; is convex but non-smooth
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What is a convex set” K 5 Commesked

A set K C R% is convex if (1 — N)xz + Ay € K for all z,y € K and X € [0, 1]
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What is a convex set?

A set K C R?is convex if (1 — AN)z + Ay € K for all 2,y € K and X € [0, 1]
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What is a convex function?

A function f: R¢ — R is convex if f((1 — XNz + Ay) < (1 = X)f(z) + \f(y)
for all z,y € RYand A € [0, 1]

@ (1 =)fx) + 4/ (y)
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What is a convex function?

A function f: R¢ — R is convex if f((1 — XNz + Ay) < (1 = X)f(z) + \f(y)
for all z,y € RYand A € [0, 1]
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Convex functions and convex sets?

A set K C RY is convex if (1 — ANz + \y € K for all z,y € K and \ € [0, 1]

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 — N f(z) + Af(y)
for all z,y € RYand A € [0, 1] -

A function f : R? — R is convex if the set {(z,t) € R : f(z) <t} is convex

Graph of fis defined as {(x, 7) : f(x) =l}
Epigraph of fis defined as {(x,¢) : f(x) <t}
Jx) fx)




More definitions of convexity

A set K C R?is convex if (1 — AN)z + Ay € K for all z,y € K and X € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R : f(z) <t} is convex

A function f:R? — R that is differentiable everywhere is convex if
fly)> f(x) +Vf(x) (y— ) for all z,y € dom(f)
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More definitions of convexity

A function f : R — R that is twice-differentiable everywhere is convex if

V2f(;c) = 0 for all z € dom(f)
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More definitions of convexity

A set K C R?is convex if (1 — AN)z + Ay € K for all z,y € K and X € [0, 1]

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 — N f(z) + Af(y)
for all z,y € RYand A € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R : f(z) <t} is convex

A function f :R? — R that is differentiable everywhere is convex if
fy) > f(x) + Vf(z) ' (y — ) for all z,y € dom(f)

A function f :R? — R that is twice-differentiable everywhere is convex if
V2 f(x) =0 for all x € dom(f)

e v T vﬂf(x> \/ >0 \d\/



Why do we care about convexity?

Convex functions
- All local minima are global minima

- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N

We only need to find a point with Vf(x) =0, For non-convex functions, a stationary point

which for convex functions implies that it is with Vf(x) = 0 could be a local minima,
a local minima and a global minima a local maxima, or a saddle point




Gradient Descent on min f(w)

w
Initialize: wg = 0
for t = 1,?,...
wip1 = we — NV f(we)

Non-convex Function

Convex Function

e Strength: Can find global minima of a convex function efficiently
e Weakness: Can only be applied to smooth functions
e |.e., functions that is differentiable everywhere,

e otherwise Vf(x) is not defined and gradient descent cannot be applied



Sub-Gradient

7

Definition: a function is non-smooth if it is not differentiable everywhere

Definition: a vector g € R%is a sub-gradient at@f it satisfies

B (f(y) %f(x»: g’(y — x) forally € R?

Non-smooth Convex Function
Smooth Convex Function F) +87(r = x) withg € [=2, — 1]

@) +g' (v —x) Ze[—1/2,1]

X

. « for non-smooth convex functions,
» for smooth convex functions,

+ the minimum is achieved at
points where sub-gradient set

* the global minimum is achieved at points includes the zero vector
where gradient is zero

- gradient is the unique sub-gradient, and



Sub-Gradient Descent for non-smooth functions

Initialize: wg = 0
fort=1,2,...
Find any g; such that f(y) > f(ws) + g, (y — we)

Wil < Wy — N8

Convex Function Non-convex Function

e Strength: finds global minima for non-smooth convex functions

* Weakness: it is slower than gradient descent on convex smooth functions,
because the gradient do not get smaller near the global minima

e Instead of last iterate w,, we use the best one we saw in all iterates
e The stepsize needs to decrease with 7



Coordinate descent

Initialize: wg = 0
fort=1,2,...
Let it =1 % d

of(w,)

Wil < wili] —n, owli]



Optimization

= You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

= Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Questions?



