Tentative Schedule

Date Content Reading Slides
Intro, Maximum Likelihood, Linear Regression, Overfitting, Regularization
1/4 W Welcome/overview
Maximum likelihood for Bernoulli , HW0 out.
Murphy 1.1 - 1.3, 2.2-2.6, 4.1, 6.4
  Optional: HTF 1, Wasserman 9.1.-9.8
Combined week 1 Slides ,
1/6 F Maximum likelihood for Gaussian, Linear least squares Murphy 6.4, 7.1-7.3
  Optional: HTF 3.1-3.2
Annotated Lecture 2 MLE notes
1/9 M Linear least squares Murphy 6.4, 7.1-7.3
  Optional: HTF 3.1-3.2
Week 2 slides
slides
annotated slides
1/11 W Linear and Polynomial regression
HWO due, HW1 out
Murphy 6.4, 7.5.1,
 Optional: HTF 7.1-7.4
Slides
annotated slides
1/13 F Polynomial regression, Bias-variance. Overfitting
Murphy 6.4, 7.5.1
 Optional: HTF 7.1-7.4
Slides
(annotated)
1/16 M MLK day, no class
1/18 W Bias-Variance Murphy 6.4-6.5
 Optional: HTF 7.1-7.4
Week 3 slides
slides, annotated slides
1/21 F More bias-variance, regularization, ridge regression slides,
annotated slides
1/23 M Ridge regression, cross-validation Murphy 6.4-6.5,
Optional: HTF 7.1-7.4, 3
Week 4 slides
slides
Annotated
Optimization
1/25 W Cross-validation, Lasso
HW1 due, HW2 out
Murphy 8.1-8.3, 8.5
  Optional: HTF 4.1-4.2, 4.4
Annotated slides
1/27 F Convexity, Gradient Descent Annotated slides
1/30 M Gradient Descent/SGD Murphy 8.1-8.3, 8.5
Roughgarden-Valiant notes
  Optional: Gradient descent algorithms by Ruder
  Optional: Zen of gradient descent by Moritz Hardt
  Optional: HTF 4.1-4.2, 4.4
Annotated slides
2/1 W Coordinate Descent and intro to Classification Murphy 8.1-8.3, 8.5
  Optional: HTF 4.1-4.2, 4.4
Slides
Annotated Slides
Classification
2/3 F Classification/Logistic Regression Murphy Chapter 10 until 10.2.1, Murphy Chapter 10 until 10.2.3 Annotated slides
2/6 M Logistic Regression
HW2 due
Murphy Chapter 10.3 until 10.3.2, 17.3.1, 17.3.3 Annotated Slides
2/8 W Support Vector Machines (SVMs) + Review Murphy Chapter 17.3.1, 17.3.3, 17.3.6 Slides
Annotated Slides
2/10 F Midterm (in class)
HW3 out
Non-linear models
2/13 M Support Vector machines Murphy Chapter 17.3.1, 17.3.3, 17.3.6 Slides
Annotated Slides
2/15 W Kernels, Non-linear models slides ,
Annotated slides
2/17 F Bootstrap Slides ,
Annotated Slides
2/20 M President's Day, no class
2/22 W Neural Networks Slides
2/24 F Backpropagation Slides
2/27 M Convolutional Neural Networks
HW3 due, HW4 out
Slides -
All Annotated Slides on NNs, backprop, CNNs
Unsupervised Learning
3/1 W Remainder of NNs HTF 2.3-2.5, 7.11, 8.2
Murphy 6.1-6.3, 12.1.0, 12.2
Daume, chapter 15
Optional: HTF 5.9, 12.3; 14.5
PCA note 1 and notes 2
3/3 F K means, Principal Component Analysis Slides
3/6 M PCA computation, SVD HTF 14.3.6-14.3.7
Murphy 11.2-11.4,
k-means ++ paper
Annotated Slides
Additional Topics
3/8 W Questions of fairness and equity in ML
3/10 F Trees, random forests, boosting, matrix completion
HW4 due
Murphy 16.2, 16.4 Slides
3/15 W Final Exam