
Homework #3
CSE 446: Machine Learning

Prof. Jamie Morgenstern
Due: Monday February 27, 2023 11:59pm

101 points

Please review all homework guidance posted on the website before submitting it to GradeScope. Reminders:

• Make sure to read the “What to Submit” section following each question and include all items.

• Please provide succinct answers and supporting reasoning for each question. Similarly, when discussing
experimental results, concisely create tables and/or figures when appropriate to organize the experimental
results. All explanations, tables, and figures for any particular part of a question must be grouped together.

• For every problem involving generating plots, please include the plots as part of your PDF submission.

• When submitting to Gradescope, please link each question from the homework in Gradescope to the
location of its answer in your homework PDF. Failure to do so may result in deductions of up to 10% of
the value of each question not properly linked. For instructions, see https://www.gradescope.com/get_
started#student-submission.

• If you collaborate on this homework with others, you must indicate who you worked with on your homework
by providing a complete list of collaborators on the first page of your assignment. Make sure to include
the name of each collaborator, and on which problem(s) you collaborated. Failure to do so may result
in accusations of plagiarism. You can review the course collaboration policy at https://courses.cs.
washington.edu/courses/cse446/23wi/assignments/

• For every problem involving code, please include all code you have written for the problem as part of your
PDF submission in addition to submitting your code to the separate assignment on Gradescope created
for code. Not submitting all code files will lead to a deduction of up to 10% of the value of each question
missing code.

Not adhering to these reminders may result in point deductions.

Changelog:

• 2/14: Changed due date from Friday, February 24 to Monday, February 27.

1

https://www.gradescope.com/get_started#student-submission
https://www.gradescope.com/get_started#student-submission
https://courses.cs.washington.edu/courses/cse446/23wi/assignments/
https://courses.cs.washington.edu/courses/cse446/23wi/assignments/

Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] Say you trained an SVM classifier with an RBF 2kernel (K(u, v) = exp
(
−‖u−v‖2

2

2σ2

)
). It seems

to overfit the training set: should you increase or decrease σ?

b. [2 points] True or False: Training deep neural networks requires minimizing a convex loss function, and
therefore gradient descent will provide the best result.

c. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep neural
network.

d. [2 points] True or False: Given a neural network, the time complexity of the backward pass step in the
backpropagation algorithm can be prohibitively larger compared to the relatively low time complexity of
the forward pass step.

e. [2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers so that
the network learns non-linear decision boundaries.

What to Submit:
• Part a-e: 1-2 sentence explanation containing your answer.

Logistic Regression

A2. Here we consider the MNIST dataset, but for binary classification. Specifically, the task is to determine
whether a digit is a 2 or 7. Here, let Y = 1 for all the “7” digits in the dataset, and use Y = −1 for “2”.
We will use regularized logistic regression. Given a binary classification dataset {(xi, yi)}ni=1 for xi ∈ Rd and
yi ∈ {−1, 1} we showed in class that the regularized negative log likelihood objective function can be written as

J(w, b) =
1

n

n∑
i=1

log(1 + exp(−yi(b+ xT
i w))) + λ||w||22

Note that the offset term b is not regularized. For all experiments, use λ = 10−1. Let µi(w, b) =
1

1+exp(−yi(b+xT
i w))

.

a. [8 points] Derive the gradients ∇wJ(w, b), ∇bJ(w, b) and give your answers in terms of µi(w, b) (your
answers should not contain exponentials).

b. [8 points] Implement gradient descent with an initial iterate of all zeros. Try several values of step sizes
to find one that appears to make convergence on the training set as fast as possible. Run until you feel
you are near to convergence.

(i) For both the training set and the test, plot J(w, b) as a function of the iteration number (and show
both curves on the same plot).

(ii) For both the training set and the test, classify the points according to the rule sign(b + xT
i w) and

plot the misclassification error as a function of the iteration number (and show both curves on the
same plot).

Reminder: Make sure you are only using the test set for evaluation (not for training).

c. [7 points] Repeat (b) using stochastic gradient descent with a batch size of 1. Note, the expected gradient
with respect to the random selection should be equal to the gradient found in part (a). Show both plots
described in (b) when using batch size 1. Take careful note of how to scale the regularizer.

d. [7 points] Repeat (b) using stochastic gradient descent with batch size of 100. That is, instead of ap-
proximating the gradient with a single example, use 100. Note, the expected gradient with respect to the
random selection should be equal to the gradient found in part (a).

2

What to Submit
• Part a: Proof

• Part b: Separate plots for b(i) and b(ii).

• Part c: Separate plots for c which reproduce those from b(i) and b(ii) for this case.

• Part d: Separate plots for c which reproduce those from b(i) and b(ii) for this case.

• Code on Gradescope through coding submission.

Support Vector Machines

A3. Recall that solving the SVM problem amounts to solving the following constrained optimization problem:

Given data points D = {(xi, yi)}ni=1 find

min
w,b

||w||2 subject to yi(x
T
i w − b) ≥ 1 for i ∈ {1, . . . , n}

where xi ∈ Rd, yi ∈ {−1, 1}, and w ∈ Rd.

Consider the following labeled data points:
1 2
1 3
2 3
3 4

 with label y = −1 and


0 0.5
1 0
2 1
3 0

 with label y = 1

a. [2 points] Graph the data points above. Highlight the support vectors and write their coordinates. Draw
the two parallel hyperplanes separating the two classes of data such that the distance between them is
as large as possible. Draw the maximum-margin hyperplane. Write the equations describing these three
hyperplanes using only x,w, b(that is without using any specific values). Draw w(it doesn’t have to have
the exact magnitude, but it should have the correct orientation).

b. [2 points] For the data points above, find w and b.

Hint: Use the support vectors and the values {−1, 1} to create a linear system of equations where the
unknowns are w1, w2 and b.

What to Submit:

• Part a: Write down support vectors and equations. Graph the points, hyperplanes, and w.

• Part b: Solution and corresponding calculations.

Kernels

A4. [5 points] Suppose that our inputs x are one-dimensional and that our feature map is infinite-dimensional:
φ(x) is a vector whose ith component is:

1√
i!
e−x2/2xi ,

for all nonnegative integers i. (Thus, φ is an infinite-dimensional vector.)

a. Show that K(x, x′) = e−
(x−x′)2

2 is a kernel function for this feature map, i.e.,

φ(x) · φ(x′) = e−
(x−x′)2

2 .

Hint: Use the Taylor expansion of z 7→ ez. (This is the one dimensional version of the Gaussian (RBF)
kernel).

3

What to Submit:
• Part a: Solution and corresponding calculations.

A5. This problem will get you familiar with kernel ridge regression using the polynomial and RBF kernels.
First, let’s generate some data. Let n = 30 and f∗(x) = 4 sin(πx) cos(6πx2). For i = 1, . . . , n let each xi be
drawn uniformly at random from [0, 1], and let yi = f∗(xi)+ εi where εi ∼ N (0, 1). For any function f , the true
error and the train error are respectively defined as:

Etrue(f) = EX,Y

[
(f(X)− Y)2

]
, Êtrain(f) =

1

n

n∑
i=1

(f(xi)− yi)
2
.

Now, our goal is, using kernel ridge regression, to construct a predictor:

α̂ = argmin
α

‖Kα− y‖22 + λα>Kα , f̂(x) =

n∑
i=1

α̂ik(xi, x)

where K ∈ Rn×n is the kernel matrix such that Ki,j = k(xi, xj), and λ ≥ 0 is the regularization constant.

a. [10 points] Using leave-one-out cross validation, find a good λ and hyperparameter settings for the following
kernels:

• kpoly(x, z) = (1 + x>z)d where d ∈ N is a hyperparameter,

• krbf(x, z) = exp(−γ‖x− z‖22) where γ > 0 is a hyperparameter1.

We strongly recommend implementing either grid search or random search. Do not use sklearn, but
actually implement of these algorithms. Reasonable values to look through in this problem are: λ ∈
10[−5,−1], d ∈ [5, 25], γ sampled from a narrow gaussian distribution centered at value described in the
footnote.
Report the values of d, γ, and the λ values for both kernels.

b. [10 points] Let f̂poly(x) and f̂rbf(x) be the functions learned using the hyperparameters you found in part
a. For a single plot per function f̂ ∈

{
f̂poly(x), f̂rbf(x)

}
, plot the original data {(xi, yi)}ni=1, the true f(x),

and f̂(x) (i.e., define a fine grid on [0, 1] to plot the functions).

c. [5 points] Repeat parts a and b with n = 300, but use 10-fold CV instead of leave-one-out for part a.

What to Submit:
• Part a: Report the values of d, γ and the value of λ for both kernels as described.

• Part b: Two plots. One plot for each function.

• Part c: Values of d, γ, and the value of λ for both kernels as described. In addition, provide two separate
plots as you did for part b.

• Code on Gradescope through coding submission.

Neural Networks for MNIST
For questions A.6 you will use a lot of PyTorch. This assignment may take much longer than previous
coding problems, especially for those who are not familiar with PyTorch. We advise that students
might need to start earlier on this problem.

1Given a dataset x1, . . . , xn ∈ Rd, a heuristic for choosing a range of γ in the right ballpark is the inverse of the median of all(n
2

)
squared distances ‖xi − xj‖22.

4

https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Random_search

Resources
In Section materials (Week 7-8) there are iPython notebooks that you might find useful. Additionally make use
of PyTorch Documentation, when needed.
If you do not have access to GPU, you might find Google Colaboratory useful. It allows you to use a cloud
GPU for free. To enable it make sure: ”Runtime” -> ”Change runtime type” -> ”Hardware accelerator” is set
to ”GPU”. When submitting please download and submit a .py version of your notebook.

A6. In Homework 1, we used ridge regression for training a classifier for the MNIST data set. In this problem,
we will use PyTorch to build a simple neural network classifier for MNIST to further improve our accuracy.

We will implement two different architectures: a shallow but wide network, and a narrow but deeper net-
work. For both architectures, we use d to refer to the number of input features (in MNIST, d = 282 = 784), hi

to refer to the dimension of the i-th hidden layer and k for the number of target classes (in MNIST, k = 10).
For the non-linear activation, use ReLU. Recall from lecture that

ReLU(x) =

{
x, x ≥ 0

0, x < 0 .

Weight Initialization

Consider a weight matrix W ∈ Rn×m and b ∈ Rn. Note that here m refers to the input dimension and n to the
output dimension of the transformation x 7→ Wx + b. Define α = 1√

m
. Initialize all your weight matrices and

biases according to Unif(−α, α).

Training

For this assignment, use the Adam optimizer from torch.optim. Adam is a more advanced form of gradient
descent that combines momentum and learning rate scaling. It often converges faster than regular gradient
descent in practice. You can use either Gradient Descent or any form of Stochastic Gradient Descent. Note
that you are still using Adam, but might pass either the full data, a single datapoint or a batch of data to it.
Use cross entropy for the loss function and ReLU for the non-linearity.

Implementing the Neural Networks

a. [10 points] Let W0 ∈ Rh×d, b0 ∈ Rh, W1 ∈ Rk×h, b1 ∈ Rk and σ(z) : R → R some non-linear activation
function applied element-wise. Given some x ∈ Rd, the forward pass of the wide, shallow network can be
formulated as:

F1(x) := W1σ(W0x+ b0) + b1

Use h = 64 for the number of hidden units and choose an appropriate learning rate. Train the network
until it reaches 99% accuracy on the training data and provide a training plot (loss vs. epoch). Finally
evaluate the model on the test data and report both the accuracy and the loss.

b. [10 points] Let W0 ∈ Rh0×d, b0 ∈ Rh0 , W1 ∈ Rh1×h0 , b1 ∈ Rh1 , W2 ∈ Rk×h1 , b2 ∈ Rk and σ(z) : R → R
some non-linear activation function. Given some x ∈ Rd, the forward pass of the network can be formulated
as:

F2(x) := W2σ(W1σ(W0x+ b0) + b1) + b2

Use h0 = h1 = 32 and perform the same steps as in part a.

c. [5 points] Compute the total number of parameters of each network and report them. Then compare the
number of parameters as well as the test accuracies the networks achieved. Is one of the approaches (wide,
shallow vs. narrow, deeper) better than the other? Give an intuition for why or why not.

Using PyTorch: For your solution, you may not use any functionality from the torch.nn module except for
torch.nn.functional.relu and torch.nn.functional.cross_entropy. You must implement the networks
F1 and F2 from scratch. For starter code and a tutorial on PyTorch refer to the sections 6 and 7 material.

5

https://pytorch.org/docs/stable/index.html
https://colab.research.google.com/

What to Submit:
• Parts a-b: Provide a plot of the training loss versus epoch. In addition evaluate the model trained on

the test data and report the accuracy and loss.

• Part c: Report the number of parameters for the network trained in part (a) and for the network trained
in part (b). Provide a comparison of the two networks as described in part in 1-2 sentences.

• Code on Gradescope through coding submission.

Administrative

A7.

a. [2 points] About how many hours did you spend on this homework? There is no right or wrong answer :)

6

