
Lecture 25:
Spectral clustering

- Unsupervised learning
- Dimensionality reduction

- PCA
- Auto-encoder

- Clustering
- -means
- Spectral,t-SNE,UMAP

- Generative models
- Density estimation

k

-means and GMMs are inherently lineark
• It tries to find linear boundaries between centers

• It fails completely on non-linearly clustered datasets such as

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]

• Any suggestions?

Spectral clustering
• Main idea:

• Transform the dataset into a graph encoding similarities

• Use eigenvalues (also called spectrum) and vectors of a

graph to cluster

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]

Step 1. From dataset to a graph
• Given , create a graph with nodes and weighted

edges , where each node represents each sample and each edge
measures the similarity between the two nodes

• Example 1: Gaussian kernel 

• Example 2: -nearest neighbor graph 
 if is one of -nearest neighbors of or  
 is one of -nearest neighbors of

! = {xi ∈ ℝd}n
i=1 n

{wij}

wij = e− ∥xi − xj∥22
σ2

k
wij = 1 j k i

i k j

Step 1:

Step 2:

Step 2. Graph partitioning
• Once we have a similarity graph, how do we partition it?

• Can we use minimum cut for a graph ?

• Set of nodes

• Set of edges

• If it is a weighted graph we have weights

• Minimum cut of a graph is a partition and  
such that  
  

G(V, E)
V = {1,…, n}
E = {(i, j)}

{wij}(i, j)∈E

A ∪ B = V A ∩ B = ∅

arg min
A,B ∑

i∈A
∑
j∈B

wi, j

cut(A,B)

Step 2. Graph partition using Graph Laplacian
• Definitions (we will define it for unweighted graphs,

but everything naturally generalizes to weighted
graphs)

• Adjacency matrix of a graph  

 if  
 0 otherwise

• Degree of a node is , which is

number of edges connected to node

• Define as a diagonal matrix with the

degrees of each node in the diagonal

• The Graph Laplacian of a graph is defined as  

A ∈ ℝn×n

Aij = 1 (i, j) ∈ E

i, di =
n

∑
j=1

Aij

i
D ∈ ℝn×n

LG = D − A

A =

0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0

1 2

3
4

5
6

7
8

9

10
11

12

D =

2 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 6

Step 2. Graph partition using Graph Laplacian
• Graph Laplacian can capture some structure of the graph

• Consider placing each node in 1-dim line at positions
LG = D − A

x = [x1, x2, …, xn]

1 2

3
4

5
6

7
8

9

10
11

12

1 2

x1 x2
3

x3
7

x7

2xixj

2xixj

di = ∑
j:(i, j)∈E

1

n

∑
i=1

∑
j:(i, j)∈E

1 =
n

∑
i=1

di = 2 |E | = ∑
(i, j)∈E

2

Step 2. Graph partition using Graph Laplacian

• Graph Laplacian can capture some structure of the graph

• Consider placing each node in 1-dim line at positions
LG = D − A

x = [x1, x2, …, x2]

1 2

3
4

5
6

7
8

9

10
11

12 1 2

x1 x2
3

x3
7

x7

xT LGx = ∑
(i, j)∈E

(xi − xj)2

• If we want a good graph partition, we want to place nodes such that the
distance between connected nodes are smaller

• This naturally leads to the following problem:
arg min

x∈ℝn
xT LGx = ∑

(i, j)∈E
(xi − xj)2

• There is a trivial solution to this problem: for all ,  
which achieves the minimum value of zero, so we change it to

xi = 1 i

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2 subject to xT1 = 0

Step 2. Graph partition using Graph Laplacian
• To solve graph partitioning, we solve  

 
 
 
 
 
 
 
and place nodes as per , and find a partition using simple algorithms
like -means

• It turns out that the above optimization has a efficient solver, because  
The optimal turns out to be the second smallest eigen vector of  
the graph Laplacian

• Since, eigen values of a matrix is also called a spectrum, this is called a
spectral clustering algorithm

x
k

x
LG

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2

subject to xT1 = 0
∥x∥2 = 1

Spectral clustering

• Step 1. Define a similarity graph

• Step 2. Compute the Graph Laplacian 

  

where is a diagonal matrix with

• let be the Eigen vector corresponding to the second smallest
Eigen value

• Place samples according to and apply -means clustering

• instead of using just the second smallest Eigen pair, you can use
multiple smallest Eigen pairs

G(V, E, W)

LG = D − W
D Dii =

n

∑
j=1

wij

x

x k

Questions?

Deep Generative Models
- Unsupervised learning

- Dimensionality reduction
- PCA
- Auto-encoder

- Clustering
- -means
- Spectral,t-SNE,UMAP

- Generative models
- Density estimation

k

https://www.whichfaceisreal.com/

Deep generative model
• traditional parametric generative model

• Gaussian:  

• Gaussian Mixture Models (GMM) 
 

• deep generative model

• easy to sample

• high representation power

• but no tractable evaluation of the density (i.e. p.d.f.)

fμ,σ(x) = 1
2πσ2

e− (x − μ)2
2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)2

2σ2
i

Deep generative model
• sampling from a deep generative model, parametrized by

• first sample a latent code of small dimension ,
from a simple distribution like standard Gaussian

• pass the code through a neural network of your choice, with
parameter

• the output sample is the sample of this deep
generative model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)

w
x ∈ ℝd

14

⋮z[1]

z[k]

x[1]

⋮ ⋮
x[d]

Deep generative model
using deep deconvolutional layers

15

Generative model
• a task of importance in unsupervised learning is fitting a

generative model

• classically, if we fit a parametric model like mixture of

Gaussians, we write the likelihood function explicitly in terms of
the model parameters, and maximize it using some algorithms 

•

• deep generative models use neural networks, but the likelihood
of deep generative models cannot be evaluated easily, so we
use alternative methods

maximizew

n

∑
i=1

log (Pw(xi))

16

Goal

• Given examples coming i.i.d from an unknown
distribution , train a generative model that can
generate samples from a distribution close to

{xi}n
i=1

P(x)
P(x)

Adversarial training
• Classification

• Consider the example of SPAM detection

• Each sample is an email

• Distribution of true email is

• Suppose spammers generate spams with distribution

• Spam detection: Typical classification task

• Generate samples from true emails and label them

• Generate samples from spams and label them

• Using these as training data, train a classifier  

that outputs 
 
  
 
for some neural network with parameter  
(this is the logistic model for binary classification)

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃ 1
1 + e−fθ(x)

fθ(⋅) θ
18

Adversarial training
• Applying logistic regression, we want to solve  

 

• in adversarial training, it is customary to write  
  
 
which is called a discriminator 

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution

max
θ ∑

i:yi=1
log(1

1 + e−fθ(xi)) + ∑
i:yi=0

log(1 − 1
1 + e−fθ(xi))

Dθ(x) = 1
1 + e−fθ(x)

max
θ

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

P(⋅)
Q(⋅)

19

Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, then the

spammer’s job is to generate spams that can fool the detector by making the
likelihood of the spams being classified as spams small: 
 

• where 0 labelled examples are coming from the distribution , which is
modeled by a deep neural network generative model, i.e. where

.

• The minimization can be solved by finding. The “best” generative model that

can fool the discriminator 
 

min
Q(⋅)

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

Q(⋅)
xi = Gw(zi)

zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(Gw(zi)))

20

Adversarial training
• Now we have a game between the spammer and the spam

detector: 
 

• Where is the distribution of real data (true emails), and
 is the distribution of the generated data (spams) that we

want to train with a deep generative model
• jointly training the discriminator and the generator is called

adversarial training

• Alternating method is used to find the solution

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

P(⋅)
Q(⋅)

21

Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed w) 
  

• First sample examples from real data (in the training set) and the
generator data  
(for the current iterate of the generator weight)

• compute the gradient for those samples using back-propagation

• Update the discriminator weight by subtracting the gradient with a

choice of a step size

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

xi∼Q(⋅)
log(1 − Dθ(xi))

n
xi ∼ Gw(zi)

w
2n
θ

22

Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed)  
 

• Consider the gradient update on a single sample 
 
  
for a single sampled from a Gaussian

• The gradient update is 
 
  
  
 
with  

θ

min
w ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) ∇x Dθ(x) −1

1 − Dθ(x)
x = Gw(zi)

23

This gives a new way to train a deep generative model

24

Not only is GAN amazing in generating realistic samples

25

http://whichfaceisreal.com

It opens new doors to exciting applications
• Cycle-GAN

26

27

28 https://www.youtube.com/watch?v=PCBTZh41Ris

Style transfer with generative model
• If we have paired training data,

• And want to train a generative model G(x,z)=y,

• This can be posed as a regression problem

29

x Y

z

How do we do style transfer without paired data? Cycle-GAN

30

How do we do style transfer without paired data? Cycle-GAN

31

z

Adversarial training

Cycle loss

https://www.youtube.com/watch?v=PCBTZh41Ris

Super resolution

32

The learned latent space is important

33

z x

z[1]

z[2]
Gw(⋅)

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage

How do we check if we found the right manifold (of faces)?

• latent traversal

34

Can we make the relation between the latent
space and the image space more meaningful?

35

• Disentangling
• GANs learn arbitrary mapping from z to x
• As the loss only depends on the marginal distribution of

x and not the conditional distribution of x given z (how z
is mapped to x)

Disentangling seeks meaningful mapping from to z x

36

37

Fully-supervised case

38

c1 c2 c3

Train a conditional GAN, where

 is a numerical representation of the labels 

given in the training data, and is drawn from Gaussian

(c1, c2, c3)
z

However, some properties are hard to represent numerically

39

Unsupervised training of Disentangled GAN

40

Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want to look
like training data (which is achieved by adversarial loss
provided by a discriminator)

• 2. We also want the controllable latent code to be
predictable from the image

• add a NN regressor that predicts , and train the
generator that makes the prediction accuracy high 
(note that both this predictor and the generator works
to make the prediction accurate, unlike adversarial
loss)

• 3. We also want each code to control distinct properties

• add a NN that predicts which code was changed 

Gw(z)

c

̂c(x)

41

c1
c2
c3

D() = {real,fake}

minimize ∥ ̂c() − c∥2

̂i() ≃ i

Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer

42

Discriminator  
encourages 
output to be realisticx

Predictor makes sure that
the changes in make

noticeable changes in

c
x

̂c(X)

̂i(x1, x2)
Contrastive regularizer
detects which latent code  

was the same in a paired

ci
(x1, x2)

But is still challenging

43

• Synthetic training data (with planted disentangled
representation)

• Trained Disentangled GAN (latent traversal)

Challenges in training GANs
• GAN training suffers from mode collapse

• this refers to the phenomenon where the generated

samples are not as diverse as the training samples

44

Mode collapse

45

Training data

Trained generative model

Mode collapse

46

Mode collapse

47

Principled approach to mode collapse
• Lack of diversity is easier to detect if we see multiple samples

• Consider MNIST hand-written digits

• If we have a generator that generates 1,3,5,7 perfectly, it is hard to tell from
a single sample that mode collapse has happened

• But easier to tell from a collection of, say, 5 samples all from wither training
data or all from generated data

48

Principled approach to mode collapse
• Turning this intuition into a training algorithm:

49

Principled approach to mode collapse: PacGAN, 2018

• Turning this intuition into a training algorithm:

50

Principled approach to mode collapse

51

Principled approach to mode collapse

52

Principled approach to mode collapse

53

• Could PacGAN be cheating, as it is a larger discriminator
network?

54

Principled approach to mode collapse
• Could PacGAN be cheating, as it is a larger discriminator

network?

55

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

56

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

57

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

Theoretical intuition behind PacGAN

58

• Typical Gan training loss is

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

• We will consider

min
w

max
θ ∑

xi∼P(⋅)
Dθ(xi) + ∑

zi∼N(0,I)
(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

Theoretical intuition behind PacGAN

59

• We will consider
min

w
max

θ ∑
xi∼P(⋅)

Dθ(xi) + ∑
zi∼N(0,I)

(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

• this is a finite sample approximation of the following expectation

min
w

max
θ

4x∼P(⋅)[Dθ(x)]+ 4z∼N(0,I)[1 − Dθ(GW(z))]

• let denote the distribution of the generator Q(⋅) Gw(zi)
min
Q(⋅)

max
θ

4x∼P(⋅)[Dθ(x)]+ 4x∼Q(⋅)[1 − Dθ(x)]

• at this point, we can solve the maximization w.r.t. assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4=">AAACbnicdVFda9RAFJ2kftT4ta3gg0W8uCgr4pL4gUIVivrg4xbctrCzLJPZm+zQySTO3EiXsI/+Qd/8Db70J3Q2zYO2emDgcO65Z5IzaaWVozj+FYQbV65eu755I7p56/adu72t7QNX1lbiWJa6tEepcKiVwTEp0nhUWRRFqvEwPf60nh9+R+tUab7SssJpIXKjMiUFeWnW+/F5xmmBJAYnz4DvfuC7wDVmxBuIeIq5Mo2wVixXjdWr6HkCHk+BE55QAyqDFYz8Js/xG+y3ETx68R8TvG8tEUcz70IjblW+oOGs14+HcQu4TJKO9FmH0az3k89LWRdoSGrh3CSJK5r6VFJSo8+tHVZCHoscJ54aUaCbNm1dK3jilTlkpfXHELTqnxuNKJxbFql3FoIW7uJsLf5rNqkpezdtlKlqQiPPL8pqDVTCunuYK4uS9NITIa3y3wpyIayQ5F8o8iUkF3/5Mjl4OUxeDd/sv+7vfezq2GQ77DEbsIS9ZXvsCxuxMZPsd7AVPAh2gtPwfvgwfHRuDYNu5x77C+HgDBOZtI0=</latexit>

Theoretical intuition behind PacGAN

60

min
Q(⋅)

max
θ

4x∼P(⋅)[Dθ(x)]+ 4x∼Q(⋅)[1 − Dθ(x)]

• at this point, we can solve the maximization w.r.t. assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4=">AAACbnicdVFda9RAFJ2kftT4ta3gg0W8uCgr4pL4gUIVivrg4xbctrCzLJPZm+zQySTO3EiXsI/+Qd/8Db70J3Q2zYO2emDgcO65Z5IzaaWVozj+FYQbV65eu755I7p56/adu72t7QNX1lbiWJa6tEepcKiVwTEp0nhUWRRFqvEwPf60nh9+R+tUab7SssJpIXKjMiUFeWnW+/F5xmmBJAYnz4DvfuC7wDVmxBuIeIq5Mo2wVixXjdWr6HkCHk+BE55QAyqDFYz8Js/xG+y3ETx68R8TvG8tEUcz70IjblW+oOGs14+HcQu4TJKO9FmH0az3k89LWRdoSGrh3CSJK5r6VFJSo8+tHVZCHoscJ54aUaCbNm1dK3jilTlkpfXHELTqnxuNKJxbFql3FoIW7uJsLf5rNqkpezdtlKlqQiPPL8pqDVTCunuYK4uS9NITIa3y3wpyIayQ5F8o8iUkF3/5Mjl4OUxeDd/sv+7vfezq2GQ77DEbsIS9ZXvsCxuxMZPsd7AVPAh2gtPwfvgwfHRuDYNu5x77C+HgDBOZtI0=</latexit>

• Plugging this back in to the loss, we get

min
Q(⋅)

DTV(P, Q) = 4x∼P(⋅)[1 − Q(x)
P(x)]

P(x)
Q(x)

Theoretical intuition behind PacGAN

61

Theoretical intuition behind PacGAN

62

Theoretical intuition behind PacGAN

63

Deep Image prior

64

• in standard de-noising/inpainting with trained GAN  
we want to recover original image from some distortion

• if we have a GAN trained on similar class of images, then we can use the latent
space and the manifold of natural images to recover the image as follows

z x

z[1]

z[2]
Gw(⋅)

Unknown  
original  
image

observed perturbed image

Deep Image prior

65

• Given a trained generator that knows the manifold of natural images,  
find the latent vector that 
 

• let be the recovered image

w
z

minimizez ℓ(Gw(z),)
Gw(z)

z x

z[1]

z[2]
Gw(⋅)

Unknown  
original  
image

observed perturbed image

Deep image prior
• deep image prior does amazing recovery, without training

66

Deep image prior

• fix to be something random and find that  
 

  
 
and let be the recovered image

z w

minimizez ℓ(Gw(z),)
Gw(z)

67

68

https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be

Questions?

Questions?

