
Lecture 25:
Spectral clustering

- Unsupervised learning 
- Dimensionality reduction 

- PCA 
- Auto-encoder 

- Clustering 
- -means 
- Spectral,t-SNE,UMAP 

- Generative models 
- Density estimation

k

 



-means and GMMs are inherently lineark
• It tries to find linear boundaries between centers

• It fails completely on non-linearly clustered datasets such as

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]

• Any suggestions?



Spectral clustering
• Main idea: 


• Transform the dataset into a graph encoding similarities

• Use eigenvalues (also called spectrum) and vectors of a 

graph to cluster

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]



Step 1. From dataset to a graph
• Given , create a graph with  nodes and weighted 

edges , where each node represents each sample and each edge 
measures the similarity between the two nodes

• Example 1: Gaussian kernel 

           


• Example 2: -nearest neighbor graph 
            if  is one of -nearest neighbors of  or  
                            is one of -nearest neighbors of 

! = {xi ∈ ℝd}n
i=1 n

{wij}

wij = e− ∥xi − xj∥22
σ2

k
wij = 1 j k i

i k j

Step 1:

Step 2:



Step 2. Graph partitioning
• Once we have a similarity graph, how do we partition it?

• Can we use minimum cut for a graph ?


• Set of nodes 

• Set of edges 


• If it is a weighted graph we have weights 


• Minimum cut of a graph is a partition  and  
such that  
               

                   

G(V, E)
V = {1,…, n}
E = {(i, j)}

{wij}(i, j)∈E

A ∪ B = V A ∩ B = ∅

arg min
A,B ∑

i∈A
∑
j∈B

wi, j

cut(A,B)



Step 2. Graph partition using Graph Laplacian
• Definitions (we will define it for unweighted graphs, 

but everything naturally generalizes to weighted 
graphs)

• Adjacency matrix of a graph  

      if  
               0 otherwise


• Degree of a node is  , which is 

number of edges connected to node 

• Define  as a diagonal matrix with the 

degrees of each node in the diagonal 

• The Graph Laplacian of a graph is defined as  

                            

A ∈ ℝn×n

Aij = 1 (i, j) ∈ E

i, di =
n

∑
j=1

Aij

i
D ∈ ℝn×n

LG = D − A

A =

0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0
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D =

2 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 6



Step 2. Graph partition using Graph Laplacian
• Graph Laplacian  can capture some structure of the graph


• Consider placing each node in 1-dim line at positions 
LG = D − A

x = [x1, x2, …, xn]
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2xixj

2xixj

di = ∑
j:(i, j)∈E

1

n

∑
i=1

∑
j:(i, j)∈E

1 =
n

∑
i=1

di = 2 |E | = ∑
(i, j)∈E
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Step 2. Graph partition using Graph Laplacian

• Graph Laplacian  can capture some structure of the graph


• Consider placing each node in 1-dim line at positions 
LG = D − A

x = [x1, x2, …, x2]
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x7

xT LGx = ∑
(i, j)∈E

(xi − xj)2

• If we want a good graph partition, we want to place nodes such that the 
distance between connected nodes are smaller


• This naturally leads to the following problem:
arg min

x∈ℝn
xT LGx = ∑

(i, j)∈E
(xi − xj)2

• There is a trivial solution to this problem:  for all ,  
which achieves the minimum value of zero, so we change it to

xi = 1 i

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2 subject to xT1 = 0



Step 2. Graph partition using Graph Laplacian
• To solve graph partitioning, we solve  

 
 
 
 
 
 
 
and place nodes as per , and find a partition using simple algorithms 
like -means


• It turns out that the above optimization has a efficient solver, because  
The optimal  turns out to be the second smallest eigen vector of  
the graph Laplacian  


• Since, eigen values of a matrix is also called a spectrum, this is called a 
spectral clustering algorithm

x
k

x
LG

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2

subject to xT1 = 0
∥x∥2 = 1



Spectral clustering

• Step 1. Define a similarity graph 

• Step 2. Compute the Graph Laplacian 

                    

where is a diagonal matrix with 


• let  be the Eigen vector corresponding to the second smallest 
Eigen value


• Place samples according to  and apply -means clustering


• instead of using just the second smallest Eigen pair, you can use 
multiple smallest Eigen pairs

G(V, E, W )

LG = D − W
D Dii =

n

∑
j=1

wij

x

x k



Questions?



Deep Generative Models
- Unsupervised learning 

- Dimensionality reduction 
- PCA 
- Auto-encoder 

- Clustering 
- -means 
- Spectral,t-SNE,UMAP 

- Generative models 
- Density estimation

k

https://www.whichfaceisreal.com/



Deep generative model
• traditional parametric generative model


• Gaussian:  
      


• Gaussian Mixture Models (GMM) 
 

    


• deep generative model

• easy to sample

• high representation power 

• but no tractable evaluation of the density (i.e. p.d.f.)

fμ,σ(x) = 1
2πσ2

e− (x − μ)2
2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)2

2σ2
i



Deep generative model
• sampling from a deep generative model, parametrized by 


• first sample a latent code  of small dimension , 
from a simple distribution like standard Gaussian 


• pass the code through a neural network of your choice, with 
parameter 


• the output sample  is the sample of this deep 
generative model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)

w
x ∈ ℝd

14

⋮z[1]

z[k]

x[1]

⋮ ⋮
x[d]



Deep generative model 
using deep deconvolutional layers

15



Generative model
• a task of importance in unsupervised learning is fitting a 

generative model

• classically, if we fit a parametric model like mixture of 

Gaussians, we write the likelihood function explicitly in terms of 
the model parameters, and maximize it using some algorithms 

•               


• deep generative models use neural networks, but the likelihood 
of deep generative models cannot be evaluated easily, so we 
use alternative methods

maximizew

n

∑
i=1

log ( Pw(xi) )

16



Goal

• Given examples  coming i.i.d from an unknown 
distribution , train a generative model that can 
generate samples from a distribution close to 

{xi}n
i=1

P(x)
P(x)



Adversarial training
• Classification


• Consider the example of SPAM detection

• Each sample  is an email

• Distribution of true email is 

• Suppose spammers generate spams with distribution 

• Spam detection: Typical classification task


• Generate samples from true emails and label them 

• Generate samples from spams and label them 

• Using these as training data, train a classifier  

that outputs 
 
               
 
for some neural network  with parameter  
(this is the logistic model for binary classification)

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃ 1
1 + e−fθ(x)

fθ( ⋅ ) θ
18



Adversarial training
• Applying logistic regression, we want to solve  

 
           


• in adversarial training, it is customary to write  
    
 
which is called a discriminator 

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution 

max
θ ∑

i:yi=1
log( 1

1 + e−fθ(xi) ) + ∑
i:yi=0

log(1 − 1
1 + e−fθ(xi) )

Dθ(x) = 1
1 + e−fθ(x)

max
θ

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

P( ⋅ )
Q( ⋅ )

19



Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, then the 

spammer’s job is to generate spams that can fool the detector by making the 
likelihood of the spams being classified as spams small: 
 
 


• where 0 labelled examples are coming from the distribution , which is 
modeled by a deep neural network generative model, i.e.  where 

.

• The minimization can be solved by finding. The “best” generative model that 

can fool the discriminator 
 

min
Q(⋅)

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

Q( ⋅ )
xi = Gw(zi)

zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log( 1 − Dθ( Gw(zi) ) )

20



Adversarial training
• Now we have a game between the spammer and the spam 

detector: 
 




• Where  is the distribution of real data (true emails), and 
 is the distribution of the generated data (spams) that we 

want to train with a deep generative model 
• jointly training the discriminator and the generator is called 

adversarial training

• Alternating method is used to find the solution

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

P( ⋅ )
Q( ⋅ )

21



Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed w) 
         
          


• First sample  examples from real data (in the training set) and the 
generator data   
(for the current iterate of the generator weight )


• compute the gradient for those  samples using back-propagation

• Update the discriminator weight  by subtracting the gradient with a 

choice of a step size

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

xi∼Q(⋅)
log(1 − Dθ(xi))

n
xi ∼ Gw(zi)

w
2n
θ

22



Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed )  
 
     


• Consider the gradient update on a single sample 
 
      
for a single  sampled from a Gaussian


• The gradient update is 
 
    
         
 
with  
        

θ

min
w ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) ∇x Dθ(x) −1

1 − Dθ(x)
x = Gw(zi)

23



This gives a new way to train a deep generative model

24



Not only is GAN amazing in generating realistic samples

25

http://whichfaceisreal.com



It opens new doors to exciting applications
• Cycle-GAN

26



27



28 https://www.youtube.com/watch?v=PCBTZh41Ris



Style transfer with generative model
• If we have paired training data,


• And want to train a generative model G(x,z)=y, 


• This can be posed as a regression problem

29

x Y

z



How do we do style transfer without paired data? Cycle-GAN

30



How do we do style transfer without paired data? Cycle-GAN

31

z

Adversarial training

Cycle loss

https://www.youtube.com/watch?v=PCBTZh41Ris


Super resolution

32



The learned latent space is important

33

z x

z[1]

z[2]
Gw( ⋅ )

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage



How do we check if we found the right manifold (of faces)?

• latent traversal

34



Can we make the relation between the latent 
space and the image space more meaningful?

35

• Disentangling 
• GANs learn arbitrary mapping from z to x 
• As the loss only depends on the marginal distribution of 

x and not the conditional distribution of x given z (how z 
is mapped to x)



Disentangling seeks meaningful mapping from  to z x

36
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Fully-supervised case

38

c1 c2 c3

Train a conditional GAN, where 


 is a numerical representation of the labels 

given in the training data, and  is drawn from Gaussian

(c1, c2, c3)
z



However, some properties are hard to represent numerically

39



Unsupervised training of Disentangled GAN

40



Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want  to look 
like training data (which is achieved by adversarial loss 
provided by a discriminator)


• 2. We also want the controllable latent code  to be 
predictable from the image


• add a NN regressor that predicts , and train the 
generator that makes the prediction accuracy high 
(note that both this predictor and the generator works 
to make the prediction accurate, unlike adversarial 
loss)


• 3. We also want each code to control distinct properties 

• add a NN that predicts which code was changed 

    

Gw(z)

c

̂c(x)

41

c1
c2
c3

D(        ) = {real,fake}

minimize ∥ ̂c( ) − c∥2

̂i( ) ≃ i



Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer

42

Discriminator  
encourages 
output  to be realisticx

Predictor makes sure that  
the changes in  make  

noticeable changes in 

c
x

̂c(X)

̂i(x1, x2)
Contrastive regularizer 
detects which latent code  

was the same in a paired 

ci
(x1, x2)



But is still challenging

43

• Synthetic training data (with planted disentangled 
representation)

• Trained Disentangled GAN (latent traversal)



Challenges in training GANs
• GAN training suffers from mode collapse

• this refers to the phenomenon where the generated 

samples are not as diverse as the training samples

44



Mode collapse

45

Training data

Trained generative model



Mode collapse

46



Mode collapse

47



Principled approach to mode collapse
• Lack of diversity is easier to detect if we see multiple samples

• Consider MNIST hand-written digits


• If we have a generator that generates 1,3,5,7 perfectly, it is hard to tell from 
a single sample that mode collapse has happened


• But easier to tell from a collection of, say, 5 samples all from wither training 
data or all from generated data

48



Principled approach to mode collapse
• Turning this intuition into a training algorithm:

49



Principled approach to mode collapse: PacGAN, 2018

• Turning this intuition into a training algorithm:

50



Principled approach to mode collapse

51



Principled approach to mode collapse

52



Principled approach to mode collapse

53

• Could PacGAN be cheating, as it is a larger discriminator 
network?



54

Principled approach to mode collapse
• Could PacGAN be cheating, as it is a larger discriminator 

network?



55

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?



56

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?



57

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each 

mini-batch?



Theoretical intuition behind PacGAN

58

• Typical Gan training loss is

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

• We will consider 

min
w

max
θ ∑

xi∼P(⋅)
Dθ(xi) + ∑

zi∼N(0,I)
(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x



Theoretical intuition behind PacGAN

59

• We will consider 
min

w
max

θ ∑
xi∼P(⋅)

Dθ(xi) + ∑
zi∼N(0,I)

(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

• this is a finite sample approximation of the following expectation

min
w

max
θ

4x∼P(⋅)[ Dθ(x) ]+ 4z∼N(0,I)[ 1 − Dθ(GW(z)) ]

• let  denote the distribution of the generator Q( ⋅ ) Gw(zi)
min
Q(⋅)

max
θ

4x∼P(⋅)[ Dθ(x) ]+ 4x∼Q(⋅)[ 1 − Dθ(x) ]

• at this point, we can solve the maximization w.r.t.  assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is 

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4="></latexit>



Theoretical intuition behind PacGAN

60

min
Q(⋅)

max
θ

4x∼P(⋅)[ Dθ(x) ]+ 4x∼Q(⋅)[ 1 − Dθ(x) ]

• at this point, we can solve the maximization w.r.t.  assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is 

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4="></latexit>

• Plugging this back in to the loss, we get

min
Q(⋅)

DTV(P, Q) = 4x∼P(⋅)[ 1 − Q(x)
P(x) ]

P(x)
Q(x)



Theoretical intuition behind PacGAN
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Theoretical intuition behind PacGAN
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Theoretical intuition behind PacGAN
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Deep Image prior

64

• in standard de-noising/inpainting with trained GAN  
we want to recover original image from some distortion 

• if we have a GAN trained on similar class of images, then we can use the latent 
space and the manifold of natural images to recover the image as follows

z x

z[1]

z[2]
Gw( ⋅ )

Unknown  
original  
image

observed perturbed image



Deep Image prior

65

• Given a trained generator  that knows the manifold of natural images,  
find the latent vector  that 
 

         


• let  be the recovered image

w
z

minimizez ℓ(Gw(z), )
Gw(z)

z x

z[1]

z[2]
Gw( ⋅ )

Unknown  
original  
image

observed perturbed image



Deep image prior
• deep image prior does amazing recovery, without training

66



Deep image prior

• fix  to be something random and find  that  
 

    
 
and let  be the recovered image

z w

minimizez ℓ(Gw(z), )
Gw(z)

67



68

https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be



Questions?



Questions?


