Lecture 25:
Spectral clustering

- Unsupervised learning
- Dimensionality reduction
- PCA
- Auto-encoder
- Clustering
- k-means
,t-SNE,UMAP
- Generative models
- Density estimation




k-means and GMMs are inherently linear

e |t tries to find linear boundaries between centers
e |t fails completely on non-linearly clustered datasets such as

K-means

two circles, 2 clusters (K-means)

e Any suggestions?

[Shi,Malik,’00],[Ng,Jordan,Weiss, 01]



Spectral clustering

e Main idea:
» Transform the dataset into a graph encoding similarities

e Use eigenvalues (also called spectrum) and vectors of a
graph to cluster

Spectral clustering

twocircles, 2 clusters

K-means

two circles, 2 clusters (K-means)
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Step 1. From dataset to a graph

e GivenY = {x; € IRd}?:l, create a graph with n nodes and weighted
edges { wl-j}, where each node represents each sample and each edge
measures the similarity between the two nodes

e Example 1: Gaussianzkernel
_ llx; = xjll3
Wij = e 62
e Example 2: k-nearest neighbor graph

Wi = 1 if j is one of k-nearest neighbors of i or
i is one of k-nearest neighbors of j

Step 1:

Step 2:




Step 2. Graph partitioning

e Once we have a similarity graph, how do we partition it?
e Can we use minimum cut for a graph G(V, E)?

e Setofnodes V= 1{1,...,n}

e Setofedges £ = {(i,))}

o Ifitis a weighted graph we have weights {w;;}; s

e Minimum cut of a graph is a partition A UB = VandANB =g

such that
arg IE’IBU Z z Wi éﬁ’m y (utCh,B)7 (‘/‘(F’) %[J
IEA jEB i% B —
cut(A,B)




Step 2. Graph partition using Graph Laplacian

e Definitions (we will define it for unweighted graphs,
but everything naturally generalizes to weighted
graphs)

 Adjacency matrix of a graph A € R™"
A;=1if@G,)) € E

O otherwise [0£1)0 1 000000 0 0]
n 1 01 1011LOOOOO
.o . . . 01 01110O0O0O0O0O0
DegreeOfanOdel,|Sdi:ZAij,Wh|Ch|S 111011000000
¢ ‘ 0011010000T10
j=1 _ A |0 T 11 0000001
number of edges connected to node 1 0 1000 0F00 100 I
0000O0OO0O0O0TT1T11
e Define D € R™" as a diagonal matrix with the O oo o o G
degrees of each node in the diagonal 00001 0% 10101
00000 11 111 10]

* The Graph Laplacian of a graph is defined as )
2000000O0O0O0O0OTO
LG:D—A 05000O0O0O0O0O0O0OO
0040000O0O0O0OO0OO
000S50000O0O0O0OTO 0
0000300O0O0O0O0O0
DZOOOOOSOOOOOO
0000O0O0O30O0O0O0°O0
0000O0O0OO0O30O0O0O0
00 00O0OO0OO0OO0OS4CO0O0O0
0000O0O0OO0OOO0OM4CO0O0
00 00O0O0OOO0OO0OO0OZ4OQO0
10 0O0O0OO0OO0OO0O0O0O0O0G©G6




Step 2. Graph partition using Graph Laplacian

e Graph Laplacian L; = D — A can capture some structure of the graph

« Consider placing each node in 1-dim line at positions x = [x{, X5, ..., X,,]

X7

AV aVda /ﬂ/\ >
U\)\/

quadratic form of L¢ is useful in capturing the structure of the graph:

Loz Zdzm — Z 2Tz — xT1AX

. P 5T ()EE
D-A
-3 GBS L
JG.)EE i j:(5,))EE (4.4)EE
Z > 1_Zd—2|EI L= > 2l -2y,
i=1 j:(i,j)€E (@.))EE (1J)EE

x L, x P A
() 1,J

A y . = > (m-z)
xé_ﬁ (1.J)€E



Step 2. Graph partition using Graph Laplacian

e Graph Laplacian L; = D — A can capture some structure of the graph

« Consider placing each node in 1-dim line at positions x = [x{, X5, ..., X5]

e |f we want a good graph partition, we want to place nodes such that the
distance between connected nodes are smaller

e This naturally leads to the following problem:
argmin x'L;x = Z (x; —39)2
xeR" 2
(i,))eE

« There is a trivial solution to this problem: x; = 1 for all i,
which achieves the minimum value of zero, so we change it to

arg min M Lgx= ) (x—x) subject to x’1 =0
X
(i.))EE



Step 2. Graph partition using Graph Laplacian

e To solve graph partitioning, we solve

arg min xTLGx = z (x; —xj)2
xeR”

(i,))eE
v . M
subjecttox’1=0 = 2 2 P EE— A / ’_2_ X
Ixl,=1 = (|

r

: " : : /] .
and place nodes as per x, and find a partition using simple algorithms
like k-means

e |t turns out that the above optimization has a efficient solver, because
The optimal x turns out to be the second smallest eigen vector of
the graph Laplacian L

e Since, eigen values of a matrix is also called a spectrum, this is called a
spectral clustering algorithm



Spectral clustering

e Step 1. Define a similarity graph G(V, E, W)
* Step 2. Compute the Graph Laplacian

Lo=D—-W T le .
where Dis a diagonal matrix with D,; = 2 w; 7 =5 w5 5))
j=1 e
e |et x be the Eigen vector corresponding to the second smallest
Eigen value

e Place samples according to x and apply k-means clustering

* instead of using just the second smallest Eigen pair, you can use

multiple smallest Eigen pairs
(;te;av(s( PGt L~ V,eR -—-\?m

C(ugé
k-Meaus




Questions?



https://www.whichfaceisreal.com/

Deep Generative Models

- Unsupervised learning
- Dimensionality reduction
- PCA
- Auto-encoder
- Clustering
- k-means
- Spectral,t-SNE,UMAP

- Density estimation




Deep generative model

e traditional parametric generative model
e Gaussian:
1 _(x—/t)2

fu ,O(x) = e 202
2no?

e Gaussian Mixture Models (GMM)

1 G ui)*

k
‘f{/’li}’{ai}’{”i}(x) = Z ni—/—¢ 20[2
i=1 4 /2707
e deep generative model
e easy to sample
* high representation power
e but no tractable evaluation of the density (i.e. p.d.f.)
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Deep generative model

e sampling from a deep generative model, parametrized by w

e first sample a latent code 7 € R of small dimension k << d,
from a simple distribution like standard Gaussian N(0,I,.;)

e pass the code through a neural network of your choice, with
parameter w

e the output sample x € R? s the sample of this deep
generative model

1
1L "C-D/'O i

Z[ k]




Deep generative model
using deep deconvolutional layers

Code Project and
reshape

15
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Generative model

» atask of importance in unsupervised learning is fitting a
generative model

e classically, if we fit a parametric model like mixture of
Gaussians, we write the likelihood function explicitly in terms of
the model parameters, and maximize it using some algorithms

. maximize, ) log (Pw(x,-) )
Z‘ -
pLA

* deep generative models use neural networks, but the likelihood
of deep generative models cannot be evaluated easily, so we
use alternative methods



Goal

e Given examples {x;}'_, coming i.i.d from an unknown

distribution P(x), train a generative model that can
generate samples from a distribution close to P(x)

These are computer generated images from the “bigGAN".
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Adversarial training

e (Classification
e Consider the example of SPAM detection

Each sample x; is an email

Distribution of true email is P(x)

Suppose spammers generate spams with distribution Q(x)
Spam detection: Typical classification task

e Generate samples from true emails and label them y, = 1

» Generate samples from spams and label them y, = 0

* Using these as training data, train a classifier
that outputs

P(y;=1]x) ~ |+ oo

for some neural network f,( - ) with parameter 6
(this is the logistic model for binary classification)
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Adversarial training

e Applying logistic regression, we want to solve

1 1
mﬁax Z o8 1 + e~Jolx) + Z 08 1 + e—/fox)

iy=1 ity =0
* in adversarial training, it is customary to write
D,(x) =
) =

which is called a discriminator

e and find the “best” discriminator by solving for

max Z(0) = Y logDyx)+ Y log(l — Dy(xy)
0
x~P(-) x~0()
as 1 labelled examples come from real distribution P( - )
and 0 labelled examples come from spam distribution Q( - )

)
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Adversarial training

Suppose now that the spam detector (i.e. the discriminator) is fixed, then the
spammer’s job is to generate spams that can fool the detector by making the
likelihood of the spams being classified as spams small:

min Z©0) = Y logDyx) + Y log(l = Dy(xy)
Q() XiNP(') xiNQ(')

does not depend on Q)

where 0 labelled examples are coming from the distribution Q( - ), which is
modeled by a deep neural network generative model, i.e. x; = G, (z;) where
Zi ~ N(O’Ika)

The minimization can be solved by finding. The “best” generative model that
can fool the discriminator

min Zov.0) = Y, logDx) + Y, log(1-D,(G,@) )
Y x~P(*) x~0()

does not depend on Q()
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Adversarial training

* Now we have a game between the spammer and the spam
detector:

min max 2 log D,(x,) + Z log(1 — Dy(Gy/(z,)))
w0 x~P(") z~N(0,I)

e Where P( - ) is the distribution of real data (true emails), and

Q( - ) is the distribution of the generated data (spams) that we
want to train with a deep generative model

* jointly training the discriminator and the generator is called
adversarial training

e Alternating method is used to find the solution
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Alternating gradient descent for adversarial training

Gradient update for the discriminator (for fixed w)

max Z log Dy(x;) + 2 log(1 — Dy(x;))
O PO 3~ Q)
e First sample n examples from real data (in the training set) and the
generator data x; ~ G, (z;)
(for the current iterate of the generator weight w)

e compute the gradient for those 2n samples using back-propagation

e Update the discriminator weight 6 by subtracting the gradient with a
choice of a step size



Alternating gradient descent for adversarial training

» gradient update for the generator (for fixed 6)

min ) logDy(x)+ Y. log(1 —Dy(G,(z)))
Y x~P() z~NOD

e Consider the gradient update on a single sample

min £(w,z;) = log(l — Dy(G,(z;)))

for a single z; ~ N(0,I) sampled from a Gaussian
* The gradient update is

w=w-nV, ZWw,z)
= w—-—1nV,G,(z) V,Dyx)

1 = Dy(x)

withx = G, (z;)

23



This gives a new way to train a deep generative model

Real data

A8

n EI by X resl 1ol fake  real D(X)
" ][
2| [ .H

‘ -
Discriminator D(X

Generator G(Z)

min max V(G, D)
G D
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Not only is GAN amazing in generating realistic samples

http://whichfaceisreal.com




It opens new doors to exciting applications

e Cvcle-GAN

26

orange — apple
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Figure 3: Street scene image translation results. For each pair, left is input and right is the translated image.
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https://www.youtube.com/watch?v=PCBTZh41Ris



Style transfer with generative model

X

* |f we have paired training data,

* And want to train a generative model G(x,z)=y,

* This can be posed as a regression problem

29
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How do we do style transfer without paired data? Cycle-GAN
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How do we do style transfer without paired data? Cycle-GAN

—

Adversarial training

Cycle loss


https://www.youtube.com/watch?v=PCBTZh41Ris
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Super resolution




The learned latent space is important

< x*
-
G,(-)

z[2]

l.
-

Average of two face images
in z-space ?

Average of two face images in x-space
gives garbage

33
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How do we check if we found the right manifold (of faces)?

o |atent traversal

source

destination

Coarse styles copied

A

s -
Sk . viw !
= &5

3

v\ ¥
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Can we make the relation between the latent
space and the image space more meaningful?

 Disentangling
e GANSs learn arbitrary mapping from z to x

e As the loss only depends on the marginal distribution of
x and not the conditional distribution of x given z (how z

is mapped to x)

Latent z distribution Target x distribution
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Disentangling seeks meaningful mapping from Z to X

@ there is no formal (mathematical) universally agreed upon definition
of disentangling

@ informally, we seek latent codes that

» are "informative” or make " noticeable” changes
» are "uncorrelated” or make "distinct” changes



Decompose data into a set of underlying
human-interpretable factors of variation

/ Blue sky

Pink wall

\ Green floor

Small purple ball

37

Explainable models

What is in the scene?

Controllable generation

Generate a red ball instead



Fully-supervised case

Strategy: Label everything

Controllable generation as label-conditional
generative modeling

] C 1 C o) C 3
q {dark blue wall, green floor, green oval} green wall, red floor, blue cylinder

|

! {green wall, red floor, green cylinder} |

‘ {red wall, green floor, pink ball} -

Q\CX) o PCX )
Fakk@ Re.. |

Train a conditional GAN, where

(Cl s Cr, C3) is a numerical representation of the labels

X given in rainin , is drawn from Gaussian

G
z

38 \
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However, some properties are hard to represent numerically

What kind of Generate this guy with this hair
hairstyle?

What kind of
glasses?




Unsupervised training of Disentangled GAN

Latent code value
-1 -06 -02 02 0.6 1

40 \
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Disentangled GAN training: InfoGAN-CR, 2019

o 1. Asin standard GAN training, we want GW(Z) to look

:Ci)lﬁg \;cirjléréinbgyo;aé?s((\:/\r/i?ri]ci:gaifoerl)chieved by adversarial loss Clnn----
D = {real,fake ;9&04) P CX Cznnn---

(I ) = treal.fake}
ANENNN

e 2. We also want the controllable latent code C to be
predictable from the image

« add a NN regressor that predicts C(X), and train the
generator that makes the prediction accuracy high G
(note that both this predictor an the generator works
to make the predlctlopndé'ém iktiKe adversarial I

|
“Mirimize I c(n )}ll2 T

e 3. We also want each code to control distinct properties

X

41
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Disentangling with contrastive regularizer

e To train a disentangled GAN, we use contrastive regularizer

D(X)
N Discriminator
encourages
G HXxX— I
I > output X to be realistic

K()()
Predictor makes sure that

I the changes in C make

noticeable changes in X

A

\l\%)(é)
Contrastive regularizer

detects which latent code C i

was the same in a paired (.Xfl, X9




But is still challenging z

* Synthetic training data (with planted disentangled

representation) Q j D

Synthetic data with two attributes (angle,radius)

chofe
cy —P
T o

* Trained Disentangled GAN (latent traversal)

43



Challenges in training GANs

* GAN training suffers from mode collapse

* this refers to the phenomenon where the generated
samples are not as diverse as the training samples

v' e

Arjovsky et al., 2017

44
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Mode collapse

Training data

Trained generative model
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Mode collapse

Target

@ True distribution is a mixture of Gaussians

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017

@ The generator distribution keeps oscillating between different modes
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Mode collapse

@ “A tennis player in a blue polo shirt is looking down at the green
court.”

[ “Generating interpretable images with controllable structure”, by Reed et al., 2016]
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Principled approach to mode collapse

e Lack of diversity is easier to detect if we see multiple samples
e Consider MNIST hand-written digits

* |f we have a generator that generates 1,3,5,7 perfectly, it is hard to tell from
a single sample that mode collapse has happened

e But easier to tell from a collection of, say, 5 samples all from wither training

data or all from generated data
AEEIEA




Principled approach to mode collapse

e Turning this intuition into a training algorithm:

Real data

B £ -4 B el e ron
oo ||
g, SB[

Discriminator D(X

Generator G(Z)

49



Principled approach to mode collapse: PacGAN, 2018

e Turning this intuition into a training algorithm:

D(X1, X3)

real

real real fake

§

1 1 0

50



Principled approach to mode collapse

Target

4 L] .

GAN

PacGANZ

Modes

(Max 25)

GAN 17.3
PacGAN2 23.8
PacGAN3 24.6
PacGAN4 24.8
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Real data

Principled approach to mode collapse

99.0

Modes (Max 1000)

DCGAN
AL

16.0

48.7
150.0
1000.0

Unrolled GAN
VEEGAN

PacDCGAN2

1000.0

PacDCGAN3

1000.0

PacDCGAN4
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Principled approach to mode collapse

e Could PacGAN be cheating, as it is a larger discriminator
network?

1. Discriminator size

mmlbatch size = 64

minibatch size = 64

real real fake real
D (X1, X2
real fake real

==

GAN PacGAN2




Principled approach to mode collapse

e Could PacGAN be cheating, as it is a larger discriminator

network?

1. Discriminator size

4 o . -« - L

2 v » . \J .

0 - L ] » L]

2 - . L . .

4 L J a . * »
-6

# modes captured

25 A

24

23 A

22 A

21 A

20 A

19 1

18 4

17 4,

W

—&— GAN
PacGAN2

—8— PacGAN3

—&— PacGAN4

0

100000 200000 300000 400000 500000 600000

# of parameters in D(-)




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

1. Discriminator size

mmlbatch size = 64

minibatch size = 64

real real fake real D (Xl : X2

real fake real

aes |1 GEGE

GAN PacGAN2

3)




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

2. Minibatch size

mlnlbatch size = 32
minibatch size = 64

amia |1 GEEAHT

GAN PacGAN2




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

2. Minibatch size

kw&m@%b&

39
4 4
S 4
b &
6 4
95
g &

Modes
DCGAN 99.0
PacDCGAN2 1000.0




Theoretical intuition behind PacGAN

* Typical Gan training loss is

minmax ) logDy(x)+ Y, log(l — Dy(Gy(z)))
w0 TP 2~N(O,I)

e \We will consider

mvgn max Z Dy(x;) + Z (1 = Dy(Gy(zy))

O PO G~NO.I)
subjectto  |Dy(x)| <1, for all x

58



Theoretical intuition behind PacGAN

e \We will consider
min max Z Dy(x,) + 2 (1 = Dy(Gy(z))))
w 0
xiNP(-) Zl'NN(OaI)
subject to  |Dy(x)| £ 1, for all x

e this is a finite sample approximation of the following expectation
minmax E,_p, | Dy@) |+ E,.yon| I = Do(Gy(2) |
w

o let Q( . ) denote the distribution of the generator Gw(Zi)

an(lgl meax [EXNP(,)[DQ(X)] + [EXNQ(,)[ 1 - Dg(x)]

subject to  |Dy(x)| £ 1, for all x

« at this point, we can solve the maximization w.r.t. D@ assuming it can represent any functions
(for the purpose of theoretical analysis)

» the optimal solution is B +1 if P(Q?) Z Q(aj)
Do(z) = { —1 if P(z) < Q(x)

59



Theoretical intuition behind PacGAN

18(11)1 mgax E.pey [Dg(x)] + IEXNQ(,)[ 1 - Dg(x)]

subjectto  |Dy(x)| <1, for all x

e at this point, we can solve the maximization w.r.t. DQ assuming it can represent any functions
(for the purpose of theoretical analysis)

 the optimal solution is B +1 if P(w) Z Q($)
Dy(x) = { —1 if P(x) < Q(z)

e Plugging this back in to the loss, we get

min Dry(P,Q) = Epp,| ‘ 1 - LW
Q)

P(x)

|

P(x)

60



Theoretical intuition behind PacGAN

Target distribution P 0:7 i
0.6 _
P
051 _
03 .
1 ¢ drv(P, Q1) = drv (P, Q2) = 0.2
0.1 r
o . . . .
1 2 3 4 5 6
size of packing
Generator ), Generator Qo
with mode collapse without mode collapse
Q1

1.25

0.2 1

drv(P, Q1) = 0.2 drv(P,Q2) = 0.2



Theoretical intuition behind PacGAN

Target distribution P 07
0.6
05 |
dTV (P 27 Q%)
P xP 04 1
1 03 |
0.2
o1 L dTV(P2aQ§)
0 . . . .
1 2 3 4 5 6
Generator ()q Generator Q-
with mode collapse without mode collapse
1.4°

Q2 X Q2

0.5 1

0.2 1

drv(P x P,Q1 X Q1) = 0.36 drv(P x P,Q2 X Q2) = 0.24



Theoretical intuition behind PacGAN

Target distribution P 07 | drv(P™,QT")
0.6
05
PxP 04 1
1 .l drv(P™,Q3")
0.2 ]
0.1
0 ' .
1 2 3 m 4 5 6
Generator Q1 Generator Q)2
with mode collapse without mode collapse
1.47

0.2 1 0.5 1

drv(P X P,Q1 X Q1) = 0.36 drv(P X P,Q2 X Q2) =0.24 -



Deep Image prior

* in standard de-noising/inpainting with trained GAN

i
a

Corrupted Corrupted (;onuptedi ) Corrupted

e if we have a GAN trained on similar class of images, then we can use the latent
space and the manifold of natural images to recover the image as follows

observed perturbed image

£

G,.()

w

z[2]

i |
Unknown

original

(1]
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Deep Image prior

e Given a trained generator W that knows the manifold of natural images,

find the latent vector ¢ that

minimizeZ 4 (

o let GW(Z) be the recovered image

observed perturbed image

£

G,.()

w

z[2]

> |
Unknown
original

(1]

65
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Deep image prior

* deep image prior does amazing recovery, without training

Corrupted Corrupted

Deep image prior Deep image prior/ Deep image prior

Deep image prior
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Deep image prior

e fix  to be something random and f|nd W that

minmnize, ¢ (

and let GW(Z) be the recovered image
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https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be



Questions?



Questions?



