Demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Lecture 24.
k-means clustering and
spectral clustering

- Unsupervised learning
- Dimensionality reduction
- PCA
- Auto-encoder
- Clustering

,E-SNE,UMAP
- Generative models

UNIVERSITY of WASHINGTON - Density estimation



Clustering images
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Clustering web search results

web news images wikipedia blogs jobs more »

D e

preferences

Cluster Human contains 8 documents.

clusters JELITGEH]

All Results (238) remix 4 Race (classification of human beings) - Wikipedia, the free ... & Q &

Q@ Car 25 The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial
categories are based on visible traits (especially skin color, cranial or facial features and hair texture), and self-identification. Conceptions of race, as well as specific ways of grouping races, vary

© Race cars (1) by culture and over time, and are often controversial for scientific as well as social and political reasons.History - Modern debates - Political and ...

© Photos, Races Scheduled (5) en.wikipedia.org/wiki/Race_(classification_of_human_beings) - [cache] - Live, Ask
© Game (4) 2. Race - Wikipedia, the free encyclopedia & Q &
@ Track (3) General. Racing competitions The Race (yachting race), or La course du millénaire, a no-rules round-the-world sailing event; Race (biology), classification of flora and fauna; Race (classification

of human beings) Race and ethnicity in the United States Census, official definitions of "race" used by the US Census Bureau; Race and genetics, notion of racial classifications based on
genetics. Historical definitions of race; Race (bearing), the inner and outer rings of a rolling-element bearing. RACE in molecular biology "Rapid ... General - Surnames - Television - Music -
@ Equipment And Safety (2) Literature - Video games

en.wikipedia.org/wiki/Race - [cache] - Live, Ask

@ Nascar (2)

@ Other Topics (7)

© Photos 2) 3. Publications | Human Rights Watch & A &

The use of torture, unlawful rendition, secret prisons, unfair trials, ... Risks to Migrants, Refugees, and Asylum Seekers in Egypt and Israel ... In the run-up to the Beijing Olympics in August 2008,

© Game (14)

© Definition (13) www.hrw.org/backgrounder/usalrace - [cache] - Ask

© Team (1) 4. Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich ... & A &

© Human (8) Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich, Frank Miele: Books ... From Publishers Weekly Sarich, a Berkeley emeritus anthropologist, and Miele, an editor ...

www.amazon.com/Race-Reality-Differences-Vincent-Sarich/dp/0813340861 - [cache] - Live
@ Classification Of Human (2)

5. AAPA Statement on Biological Aspects of Race & A &

AAPA Statement on Biological Aspects of Race ... Published in the American Journal of Physical Anthropology, vol. 101, pp 569-570, 1996 ... PREAMBLE As scientists who study human
evolution and variation, ...

@ Statement, Evolved (2)

@ Other Topics (4)

© Weekend (s) www.physanth.org/positions/race.html - [cache] - Ask
© Ethnicity And Race (7) 6. race: Definition from Answers.com & Q &
© Race for the Cure (5) race n. A local geographic or global human population distinguished as a more or less distinct group by genetically transmitted physical

www.answers.com/topic/race-1 - [cache] - Live
@ Race Information (8)

more | all clusters 7. Dopefish.com & & &
Site for newbies as well as experienced Dopefish followers, chronicling the birth of the Dopefish, its numerous appearances in several computer games, and its eventual take-over of the human
find in clusters: race. Maintained by Mr. Dopefish himself, Joe Siegler of Apogee Software.

(Find ) www.dopefish.com - [cache] - Open Directory



Some Data

e K-mean algorithm assumes
this kind of structured data
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{ﬂl’“"ﬂs}
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{15 ps}

3. Each datapoint finds out
which Center it’s closest to.
(Thus each Center “owns” a
set of datapoints)
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{15 ps}
3. Each datapoint finds out
which Center it’s closest to.
4. Each Center finds the
centroid of the points it
owns

Auton’s Graphics
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{ﬂla“'aﬂ5}

3. Each datapoint finds out
which Center it’s closest to.

4. Each Center finds the
centroid of the points it
owns...

5. ..and jumps there

6. ...Repeat until terminated!
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K-means

1. Choose k, how many clusters to find
2. Randomly initialize k centers
[M(O), . 150)] = Rdxk
. UsuaIIy randomly chosen from the data points,
to make sure they are in the right domain
3. Assign each point je{1,...,n} to its nearest center:

C®(j) — argmin ||u; — | |?
7

4. Recenter: u; becomes centroid of its point:

2
py 0 arg [l — 5]

L'? JC(J)—% l
- Equivalent to /j":- Z ;(5 T

[cady,

(+1) average of all the 50|nts asé|gned to ,

K

5. Repeat 3-4.

Assignment:




Which one is a snapshot of a converged k-means

When k-means is converged, there should be a set of centers and assignments
that do not change when applying 1 step of k-means

Example (a) Example (b)
o O anll
<0 =
o O
o

-
7
Example (d)
o
0, O °
) O O'/S
0 Mg e My ®
/] ° ®
o o




Does k-means converge??

n
C é i\i/ " ICE

> k-means is trying to minimize the following objective

k
minmin F(p, 0) = minmin > 37 [jui—a,||?
he bC =0G)=ino—
- -
via alternating minimization AU, )
(equivalent to coordinate descent)
> Fix u, optimize C

> Fix C optimize u

> Does this converge? Does this terminate in finite time?



Does k-means converge??

« there is only a finite set of values that { C(j) }]’.’=1 e {1,...,k}" can take
(k" is large but finite)

e so there is only finite, k" at most, values for cluster-centers also

e each time we update them, we will never increase the objective

k
function Z Z ||xj—,ui||%

i=1 j:C(j)=i
* the objective is lower bounded by zero

o after at most k" steps, the algorithm must converge
(as the assignments { C()) }]’.l=1 cannot return to previous assignments

in the course of k-means iterations)



downsides of k-means

1. it requires the number of clusters K to be specified by us

2. the final solution depends on the initialization
(does not find global minimum of the objective)
Initial position of centers final converged assignment

15

10 ® o - 10

. :.’.: . L ] o-
Trial 1 o Sowst v
+ % .? e o
ste :.5.‘ .: * * S
°..'$b; .

- L L L L L L L L -10 L L L L L L L L
-10 8 6 -4 -2 0 2 4 6 8 —10\—8 -6 -4 -7 0 2 4 6 8
15 — —

NS

10

Trial 2




k-means++: a smart initialization

Smart initialization: =

1. Choose first cluster center y; uniformly at random from data points
2. Fork=2,... K

3. For each data point x;, compute distance d; to nearest cluster center
4. Choose new cluster center from amongst data points, with probability

of x; being chosen proportional to (a,'l-)2

precisely,
d;< min ||g;— x|, forall i that is not chosen already
jell,...k—1}
(d)*
Prob(x; chosen as the next center) = ~ 5
Zbﬂ (dz,”)
)
o o
e apply standard K-means after this initialization A j, °
9 o{ 5



* K-means algorithm fails, when

. _ different
disparate cluster sizes shaped/oriented

clusters

e What can we do?



Gaussian Mixture Model

: . n o d
e input:data {x;};_, in R )(2 o~ T
* parameters of a Gaussian Mixture Model A = phy - - e
e mixing weights: 2 2
. = P(cluster membership =) forj € {1"”’K}'EP>’
S o] 2
* means: \
. a &0
« ,ER forj € {1,...,K} —1> ]
— ¢
e covariance matrices: (O &
. CeR™ forje{l,.. K} M A2

* we suppose that the given data has been generated from a GMM, and try to find the
best GMM parameters (this naturally will define clustering of the training data)

e under the GMM, the i-th sample is drawn as follows
o first sample acluster z; € {1,...,K}, fromz = [n, ..., 7]

» conditioned on this cluster, x; is sampled from
'xl ~ N(/’tzl.’ CZi)

demo: https://lukapopijac.github.io/gaussian-mixture-model/


https://lukapopijac.github.io/gaussian-mixture-model/

Maximum likelihood estimation (MLE)

e we can find the best GMM, by MLE
 for simplicity, supposed = 1 and K = 2
e Model parameters are 7, 7, i, ir, C;, C, € R

 the probability of observing a sample x; can be written as

1 _Gi—pp? 1 _ iz
P(Xi; Ty Ty K15 Ko Cl’ Cz) = T — € €+ V%) — € 2C;

\/27C, \/27C,

= N(xi§//l1scl) £ N(xi;/"Z’CZ)

e MLE tries to find

arg  max Z log P(x;; 7y, 705, py, o, €1, Cy)

701, sH1H2,C 1, C i=1

* however, unlike least squared or logistic regression, this is not a concave function of
the parameters (thus hard to find the optimal solution)

* in general, MLE of a mixture model is not convex/concave optimization



Recall lecture 2: fitting a single Gaussian model
o given {x;}’_, € Rfit the best Gaussian model with mean u € R and variance C € R
e using MLE we want to solve

. - (x; — ﬂ)z
maximize, ¢ Z£(u,C) = g} ( " Toc log(\/27tC)>

log N(x;|u,C)

* we compute gradient and set it to zero:

1 n
V20 = = ) (1t =x)
i=1

1 n
which is zero fory = — Z X;
n-
i=1
(which makes sense as it is the empirical mean)

v g( C) _ Z?zl('xi_lu)z n
A S 2C2 2C

1 n
which is zero for|C = — Z (x; — 1>
A

(which makes sense as it is the empirical variance)



MLE for GMM

e we want to fit a model by solving

. | 1 _% 1 _ %
- 1 - :
IIlEleIIllZGiZl’]Tz,lul’ﬂz’cbc2 lzzl 0g<ﬂ1 \/TCI e + V%) \/Tcz e >
£ N(xapy,Cp) 2 N(xipp.Cy)
P(z; = 1,x)

definer; = P(z;=1|x,) =
=

P(z; = Lx;) + P(z; = 2,x;)

o N(x; 1y, Cp)

mNQxi; py, Cp) + NG pp, Co)

e setting the gradient to zero, we get
n

N N, x
Ty =—lwhereN1 = Z r;, and 7z2=—2WhereN2= 2(1 —l"l-)

* n n Py
—2 and ,Ltz——Z(l
1

.Cl—Nl r(x Ml)zandcz——Z(l ) — )

i=1 i=1
¢ both LHS and RHS depend on the parameters, and no closed form solution exists

» note that if we know r;’s it is trivial to compute parameters, and vice versa



Expectation Maximization (EM) algorithm

e EMis a popular method to solve MLE for mixture models
e input: training data{x;}’_,

e output: my, Ty, 4y, 4, C1,Cy ER

e initialization: randomly initialize the parameters
e repeat
e E-step (Expectation): parameters — soft membership
N py, Cp)
T N(x;; py, Cp) + 7o N(xj; o, Cy)

e M-step (Maximization): soft membership — parameters
n

. i

n i=1 n i=1
=—2 and ,uz——Z(l—r)x
11
1
. Ci=+ r(x u,)> andCz——Z(l ) — po)?
1

i=1 i=1

N N. \
n = L where N, = Z r;, and m, = 2 where N, = Z (1-r)




For general number of clusters K and dimension d

we can derive EM for general case, in an analogous way

e |Initialize parameters: 7y, ..., g, Pis -5 Uiy Cis oo, Cie
o E-step:

e Fork=1,....K

- m N(x; |y, Cp)
ik — K
ijl ﬂjN(xin, Cj)

e M-step:

e Fork=1,..K

Z?zl ri,k

n

n

2 I’l-’kxl- and Ck =
i=1

Ny
m,=— where N, =
n
1
My = —
k

D rial = ) = )"

1
Ne i=1

« once GMM is learned, clustering is straight forward: cluster according to the ri’k's



GMM for real data

these are generated samples, from GMM trained on CelebA dataset
image: 64*64*3=288 dimension

covariance: restricted to rank-10 matrices

mixture: K=1,000

Images from “on GANs and GMMs”, 2018, Richardson &Weiss



Principal |
components

 top: center of a cluster i, and
the diagonal entries of the covariance matrix C,

e note that we have trained 10-dimensional covariance matrix Ck = AAT, with
A € R8I0 and let AY) be the j-th column

* bottom: each row corresponds to different j, and we show
™ + AW, 0.54+AW, ﬂk_A(J)

Images from “on GANs and GMMs”, 2018, Richardson &Weiss



.n

) | 3
{ {
| |
j |
l.
{ |
| |
..

Principal
Component
direction 2
Principal Component direction 1
e middel:

e Each row: middel + ¢ X A
e Each column: middle + ¢ X A®

Images from “on GANs and GMMs”, 2018, Richardson &Weiss



Mixture model for documents

e Input: n documents {x;}"_,
e Each document is a sequence of words of length T
xX; = (W, Wy, ooy Wr)
e Bag-of-words model:
e parameters:

e mixing weights: 7, = P(topic = k) fork € {1,..., K}
« word probability: b, = P(word = w | topic = k)
* the generative model
e first sample topic from 7 = (z, ..., 7g)
« nextsample T'words i.i.d. from by = (b, 1 -5 by, o o0)
e to make the problem tractable, this completely ignores the order of the
words in the document (but still very successful in document clustering)

P(topic z; = k,x; = (Wy, ..., wp)) = mb,, ;D ¢



Topic modeling

to fit a topic model, we solve the foI,Ilowing

maximize,cgucr zepr Y, 10g P(x| b, 7)
i=1
e we can apply EM algorithm

e initialize b,

e E-step: parameters — soft assignments
ﬂkbwlk' - bwTk

K
Zk/=1 ﬂk/bwlk/. e bWTk/

ry = P(topic z; = k|x;) =

e M-step: soft assignments — parameters

N, C
L= — where N, = Zrik

i=1
1 « Count(w in x,)
. by = Fk Z Fik T

i=1



Dynamic topic modeling (over time)

1881 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
force motion magnet force atom ray energy energy radiat electron electron electron state
energy force electric magnet theory measure measure radiat energy energy energy atom energy
motion magnet measure theory electron energy electron ray electron atom particle energy electron
differ energy force electric energy theory light electron measure measure field structur magnet
light [ measure (> theory | atom [» measure » light [ atom (> measure > ray [ radiat > radiat [ field | field

measure differ system system ray wave particle atom atom field model model atom

magnet direct motion measure electr radiat ray particle field ray atom state system
direct line line line line atom radiat two two model two two two
matter result point energy force electric point light particle particle ray magnet quantum
result light differ body value value theory absorpt observe magnet measure ray physic

"Atomic Physics"

electron

quantum ¢

1880

1900

T
1920

1940

1960

1980

2000

1881 On Matter as a form of Energy

1892 Non-Euclidean Geometry

1900 On Kathode Rays and Some Related Phenomena

1917 “Keep Your Eye on the Ball"

1920 The Arrangement of Atoms in Some Common Metals

1933 Studies in Nuclear Physics

1943 Aristotle, Newton, Einstein. Il

1950 Instrumentation for Radioactivity

1965 Lasers

1975 Particle Physics: Evidence for Magnetic Monopole Obtained
1985 Fermilab Tests its Antiproton Factory

1999 Quantum Computing with Electrons Floating on Liquid Helium

From ‘“Dynamic Topic Models” Blei & Lafferty 2006



Dynamic topic modeling (over time)

1881 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
brain movement brain movement movement stimulate record respons response respons cell cell neuron
movement eye eye brain sound muscle nerve record stimulate cell neuron channel active
action right movement sound muscle sound stimulate stimulate record potential response neuron brain
right hand right nerve active movement response nerve condition stimul active ca2 cell
eye >  brain left > active [» nerve | response (> muscle | muscle [ active | neuron | brain | active [ fig
hand left hand muscle stimulate nerve electrode active potential active stimul brain response
left action nerve left fiber frequency active frequency stimulus nerve muscle receptor channel
muscle muscle vision eye reaction fiber brain electrode nerve eye system muscle receptor
nerve sound sound right brain active fiber potential subject record nerve respons synapse
sound experiment muscle nervous response brain potential study eye abstract receptor current signal

"Neuroscience"

neuron

1887 Mental Science

1900 Hemianopsia in Migraine

1912 A Defence of the ""New Phrenology"

1921 The Synchronal Flashing of Fireflies

1932 Myoesthesis and Imageless Thought

1943 Acetylcholine and the Physiology of the Nervous System

1952 Brain Waves and Unit Discharge in Cerebral Cortex

1963 Errorless Discrimination Learning in the Pigeon

1974 Temporal Summation of Light by a Vertebrate Visual Receptor
1983 Hysteresis in the Force-Calcium Relation in Muscle

1993 GABA-Activated Chloride Channels in Secretory Nerve Endings

1880 1900 1920 1940

1960

1980

2000

From ‘“Dynamic Topic Models” Blei & Lafferty 2006



k-means and GMMs are inherently linear

e |t tries to find linear boundaries between centers
e |t fails completely on non-linearly clustered datasets such as

K-means

two circles, 2 clusters (K-means)

[Shi,Malik,’00],[Ng,Jordan,Weiss, 01]



Spectral clustering

e Main idea:
e Transform the dataset into a graph

e Use eigenvalues (also called spectrum) and vectors of a
graph to cluster

Spectral clustering

twocircles, 2 clusters
two circles, 2 clusters (K-means) 5r
5¢
4.5
4.5
4}
4}
35
3.5
3}
3}
25F
25
2t r
15k 1.5F
1F 1t
0.5 0.5
0 N N . . N N N N s ; 0
0 0.5 1 15 2 25 3 3.5 4 4.5 5 0 0.5 1 15 2 25 3 35 4 45 5

[Shi,Malik,’00],[Ng,Jordan,Weiss, 01]



Step 1. From dataset to a graph

e GivenY = {x; € IRd}?:l, create a graph with n nodes and
weighted edges {wl-j}, where each node represents each sample
and each edge measures the similarity between the two nodes

e Example 1: Gaussian2kernel
_ llx; = xjll3
Wij = e 62
e Example 2: k-nearest neighbor graph

Wi = 1 if j is one of k-nearest neighbors of i or
i is one of k-nearest neighbors of j




Step 2. Graph partitioning

e Once we have a similarity graph, how do we partition it?
e Can we use minimum cut for a graph G(V, E)?

e Setofnodes V= 1{1,...,n}

e Setofedges £ = {(i,))}

o If it is a weighted graph we have weights {wl-j}(,-’j)eE

e Minimum cut of a graph is a partition A UB = VandANB =g
such that

arg min Z z W
AB

i€A jEB

cut(A,B)




Step 2. Graph partition using Graph Laplacian

e Definitions (we will define it for unweighted graphs,
but everything naturally generalizes to weighted
graphs)

 Adjacency matrix of a graph A € R™"
A;=1if@G,)) € E

0 otherwise 01010000000 0]
n 1 01 10110O0O0O0O0
. . . . 01011 10O0O0O0O0OFPO0
Degree of a node l, 1S di = Z Al] , which is 111011000000
¢ 4 0011010000°T10
j=1 _ 4_l01 1110000001
number of edges connected to node 1 010000001001
0000O0OO0OO0OO0OT1TTI1T171
e Define D € R™" as a diagonal matrix with the OO S
degrees of each node in the diagonal 000010010101
00000111111 0]
* The Graph Laplacian of a graph is defined as ]
2000000O0O0O0OO0O0O
LG — D - A 05000O00O0O0O0O0O0O0
00400O0O0O0O0OO0OO0O0O0
0005000O0O0O0OO0O0O0
000O0300O0O0O0OO0O0O0
D= 000O0O0OS5O0O0O0O0OO0O0O0
000O0OO0O0O30O0O0O0O0O0
000O0O0OO0OO0O30O0O00O0
000O0O0OO0OO0OO0O40O00
000O0OO0O0OO0OO0OOM4O00
000O0O0OO0OO0OO0OOOM4O
10000 O0OO0OO0O0O0O0O0G©G6




Step 2. Graph partition using Graph Laplacian

e Graph Laplacian L; = D — A can capture some structure of the graph

e Consider placing each node in 1-dim line
at positions x = [x, Xy, ..., X,]

quadratic form of Lg is useful in capturing the structure of the graph:

2 Loz = Zdiziz— Z 2z;z;

(i.j)EB
D SD D = S
i J:(4,))EE (1.J)EE
= Z 2:z:i2—2xixj

(i,.9)EE

(2,5)€EE

= ) (m-z)

(i,9)EE



Step 2. Graph partition using Graph Laplacian

e Graph Laplacian L; = D — A can capture some structure of the graph

« Consider placing each node in 1-dim line at positions x = [x{, X5, ..., X5]

e |f we want a good graph partition, we want to place nodes such that the
distance between connected nodes are smaller

e This naturally leads to the following problem:
argmin x'L;x = Z (x; —39)2
xeR" 2
(i,))eE

« There is a trivial solution to this problem: x; = 1 for all i,
which achieves the minimum value of zero, so we change it to

arg min M Lgx= ) (x—x) subject to x’1 =0
X
(i.))EE



Step 2. Graph partition using Graph Laplacian

e To solve graph partitioning, we solve

arg min xTLGx = z (x; — xj)2
eR”
* (ij)EE

subject tox’1 =0
Ixll, =1
and place nodes as per x, and find a partition using simple algorithms

like k-means

e |t turns out that the above optimization has a efficient solver, because
The optimal x turns out to be the second smallest eigen vector of
the graph Laplacian L

e Since, eigen values of a matrix is also called a spectrum, this is called a
spectral clustering algorithm



Spectral clustering

e Step 1. Define a similarity graph G(V, E, W)
* Step 2. Compute the Graph Laplacian

n
where Dis a diagonal matrix with D,; = 2 Wi
J=1
e |et x be the Eigen vector corresponding to the second smallest
Eigen value

e Place samples according to x and apply k-means clustering

* instead of using just the second smallest Eigen pair, you can use
multiple smallest Eigen pairs



Questions?



Deep Generative Models

- Unsupervised learning
- Dimensionality reduction
- PCA
- Auto-encoder
- Clustering
- k-means
- Spectral,t-SNE,UMAP

- Density estimation




Deep generative model

e traditional parametric generative model
e Gaussian:
1 _(x—/t)2

fu ,O(x) = e 202
2no?

e Gaussian Mixture Models (GMM)

1 G ui)*

k
‘f{/’li}’{ai}’{”i}(x) = Z ni—/—¢ 20[2
i=1 4 /2707
e deep generative model
e easy to sample
* high representation power
e but no tractable evaluation of the density (i.e. p.d.f.)
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Deep generative model

e sampling from a deep generative model, parametrized by W

« first sample a latent code 7 & Rk of small dimension K <& d,

from a simple distribution like standard Gaussian N(O’Ikxk)
e pass the code through a neural network of your choice, with

parameter W

« the output sample X € Rd is the sample of this deep generative

model 1
1L "C-D/'O i

Z[ k]




Deep generative model

1024

4:

Code Project and
reshape

43




Generative model

e atask of importance in unsupervised learning is fitting a generative
model

e classically, if we fit a parametric model like mixture of Gaussians,
we write the likelihood function explicitly in terms of the model
parameters, and maximize it using some algorithms

n

maximize,, Z log ( P, (x;) )
=lpd A

* deep generative models use neural networks, but the likelihood of
deep generative models cannot be evaluated easily, so we use
alternative methods



Goal

o Given examples {xi}?zl coming i.i.d from an unknown

distribution PP (X) train a generative model that can
] r [ LY e 1 ' D/'\/‘\
These are computer generated images from the “bigGAN".

45
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Adversarial training

e Classification
e Consider the example of SPAM detection

Each sample Xl- is an email

Distribution of true email is P()C)

Suppose spammers generate spams with distribution Q(X)
Spam detection: Typical classification task

o Generate samples from true emails and label them yi = 1

o Generate samples from spams and label them yi = O

* Using these as training data, train a classifier
that outputs

for some neural networkf:g( . ) with parameter 0
(this is the logistic model for binary classification)



Adversarial training

e Applying logistic regression, we want to solve

1 |
Inng Z 10g< 1+ e—fe(xi)> T Z 10g<1 1 + e_f9(xi)>

iy=1 i:y;=0

which is called a disq

e and find the “best” discriminator by solving for

max Z(0) = Z log Dy(x;) + Z log(1 — Dy(x;))
‘ x~P() x~0()
as 1 labelled examples come from real distribution P( . )

- and 0 labelled examples come from spam distribution Q( . )
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Adversarial training

Suppose now that the spam detector (i.e. the discriminator) is fixed, then the
spammer’s job is to generate spams that can fool the detector by making the likelihood of
the spams being classified as spams smaill.:

min 2(0) = Y logDyx) + Y log(l — Dyx))
o) x~P() x~0()

does not depend on Q)

where 0 labelled examples are coming from the distribution Q( . ) which is modeled

by a deep neural network generative model, i.e. Xi == Gw(Zi) where

z; ~ N(O, L.

The minimization can be solved by finding. The “best” generative model that can fool the
discriminator

min Lw,0) = Y logDyx) |+ ) log( L= Dy(Gu(3)) )
v x~P(-) x~0(")
does not depend on g& NV ( o, thm>
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Adversarial training

* Now we have a game between the spammer and the spam
detector:

minmax ) logDy(x)+ Y log(l — DyGy(z,))
w0 RO 2~N(O,I)

e Where P( y ) is the distribution of real data (true emails), and

Q( y ) is the distribution of the generated data (spams) that
we want to train with a deep generative model

* jointly training the discriminator and the generator is called
adversarial training

* Alternating method is used to find the solution



50

Alternating gradient descent for adversarial training

Gradient update for the discriminator (for fixed w)

meax Z log Dy(x;) + Z log(1 — Dy(x,))
x;~P(-) x;~0(+)
« First sample 71 examples from real data (in the training set) and the generator
data X; ~ GW(Zi)
(for the current iterate of the generator weight W)

e compute the gradient for those 27l samples using back-propagation

o Update the discriminator weight 9 by subtracting the gradient with a choice of
a step size
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Alternating gradient descent for adversarial training

e gradient update for the generator (for fixed 0)

min ) logDyx)+ D log(l —DyG, ()
" x~P() z~NO,I)

o Consider the gradient update on a single sample

min L (w,z) = log(l — Dy(G,(z))))

for a single Zi ~ N(O,I) sampled from a Gaussian

e The gradient update is

w=w-nV, ZW,z)
= w—-1nV,G,(z) V,Dyx)

1 — Dy(x)

with X = G, (z;)



This gives a new way to train a deep generative model

Real data

A8

n EI by X resl 1ol fake  real D(X)
" ][
2| [ .H

‘ -
Discriminator D(X

Generator G(Z)

min max V(G, D)
G D
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Not only is GAN amazing in generating realistic samples

http://whichfaceisreal.com




It opens new doors to exciting applications

e Cvcle-GAN

54

orange — apple
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Figure 3: Street scene image translation results. For each pair, left is input and right is the translated image.
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Style transfer with generative model

X

* |f we have paired training data,

* And want to train a generative model G(x,z)=y,

* This can be posed as a regression problem

57
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How do we do style transfer without paired data? Cycle-GAN
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How do we do style transfer without paired data? Cycle-GAN

—

Adversarial training

Cycle loss


https://www.youtube.com/watch?v=PCBTZh41Ris
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Super resolution

https://www.youtube.com/watch?v=PCBTZh41Ris



The learned latent space is important

< x*
-
G,(-)

z[2]

l.
-

Average of two face images
in z-space ?

Average of two face images in x-space
gives garbage

61
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How do we check if we found the right manifold (of faces)?

o |atent traversal

source

destination

Coarse styles copied

A

s -
Sk . viw !
= &5

3

v\ ¥
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Can we make the relation between the latent
space and the image space more meaningful?

 Disentangling
e GANSs learn arbitrary mapping from z to x

e As the loss only depends on the marginal distribution of
x and not the conditional distribution of x given z (how z

is mapped to x)

Latent z distribution Target x distribution
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Disentangling seeks meaningful mapping from Z to X

@ there is no formal (mathematical) universally agreed upon definition
of disentangling

@ informally, we seek latent codes that

» are "informative” or make " noticeable” changes
» are "uncorrelated” or make "distinct” changes



Decompose data into a set of underlying
human-interpretable factors of variation

/ Blue sky

Pink wall

\ Green floor

Small purple ball

65

Explainable models

What is in the scene?

Controllable generation

Generate a red ball instead



Fully-supervised case

Strategy: Label everything

Controllable generation as label-conditional
generative modeling

] C 1 C o) C 3
q {dark blue wall, green floor, green oval} green wall, red floor, blue cylinder

|

! {green wall, red floor, green cylinder} |

‘ {red wall, green floor, pink ball} -

Q\CX) o PCX )
Fakk@ Re.. |

Train a conditional GAN, where

(Cl s Cr, C3) is a numerical representation of the labels

X given in rainin , is drawn from Gaussian

G
z

66 \
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However, some properties are hard to represent numerically

What kind of Generate this guy with this hair
hairstyle?

What kind of
glasses?




Unsupervised training of Disentangled GAN

Latent code value
-1 -06 -02 02 0.6 1

68 \
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Disentangled GAN training: InfoGAN-CR, 2019

o 1. Asin standard GAN training, we want GW(Z) to look

:Ci)lﬁg \;cirjléréinbgyo;aé?s((\:/\r/i?ri]ci:gaifoerl)chieved by adversarial loss Clnn----
D = {real,fake ;9&04) P CX Cznnn---

(I ) = treal.fake}
ANENNN

2. We also want the controllable latent code C to be
predictable from the image

« add a NN regressor that predicts C(X), and train the
generator that makes the prediction accuracy high G
(note that both this predictor an the generator works
to make the predlctlopndé'ém iktiKe adversarial I

|
“Mirimize I c(n )}ll2 T

3. We also want each code to control distinct properties

X

69
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Disentangling with contrastive regularizer

e To train a disentangled GAN, we use contrastive regularizer

D(X)
N Discriminator
encourages
G HXxX— I
I > output X to be realistic

K()()
Predictor makes sure that

I the changes in C make

noticeable changes in X

A

\l\%)(é)
Contrastive regularizer

detects which latent code C i

was the same in a paired (.Xfl, X9




But is still challenging z

* Synthetic training data (with planted disentangled

representation) Q j D

Synthetic data with two attributes (angle,radius)

chofe
cy —P
T o

* Trained Disentangled GAN (latent traversal)

71



Challenges in training GANs

* GAN training suffers from mode collapse

* this refers to the phenomenon where the generated
samples are not as diverse as the training samples

v' e

Arjovsky et al., 2017
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Mode collapse

Training data

Trained generative model
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Mode collapse

Target

@ True distribution is a mixture of Gaussians

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017

@ The generator distribution keeps oscillating between different modes
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Mode collapse

@ “A tennis player in a blue polo shirt is looking down at the green
court.”

[ “Generating interpretable images with controllable structure”, by Reed et al., 2016]
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Principled approach to mode collapse

e Lack of diversity is easier to detect if we see multiple samples
e Consider MNIST hand-written digits

* |f we have a generator that generates 1,3,5,7 perfectly, it is hard to tell from
a single sample that mode collapse has happened

e But easier to tell from a collection of, say, 5 samples all from wither training

data or all from generated data
AEEIEA




Principled approach to mode collapse

e Turning this intuition into a training algorithm:

Real data

B £ -4 B el e ron
oo ||
g, SB[

Discriminator D(X

Generator G(Z)
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Principled approach to mode collapse: PacGAN, 2018

e Turning this intuition into a training algorithm:

D(X1, X3)

real

real real fake

§

1 1 0
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Principled approach to mode collapse

Target

4 L] .

GAN

PacGANZ

Modes

(Max 25)

GAN 17.3
PacGAN2 23.8
PacGAN3 24.6
PacGAN4 24.8




St Grnes

B O &S NN &N

N T R e
s T T ™
) o B3 ™o ) T
T wd W @ B D B

7 WS ﬂh Wi W, W, e

DCGAN

Tl eyswrWeson®)
Ll TN ST S

NER R T WO B e |

SO TTRFNS

ey wvsSv el

9
2
v
;
5
q
§
4

Y- A Ny 790 DRI O
Sy MmO NN D
Vo P Db v o0
rYabT,m=

Real data

Principled approach to mode collapse

99.0

Modes (Max 1000)

DCGAN
AL

16.0

48.7
150.0
1000.0

Unrolled GAN
VEEGAN

PacDCGAN2

1000.0

PacDCGAN3

1000.0

PacDCGAN4
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Principled approach to mode collapse

e Could PacGAN be cheating, as it is a larger discriminator
network?

1. Discriminator size

mmlbatch size = 64

minibatch size = 64

real real fake real
D (X1, X2
real fake real

==

GAN PacGAN2




Principled approach to mode collapse

e Could PacGAN be cheating, as it is a larger discriminator

network?

1. Discriminator size

4 o . -« - L

2 v » . \J .

0 - L ] » L]

2 - . L . .

4 L J a . * »
-6

# modes captured

25 A

24

23 A

22 A

21 A

20 A

19 1

18 4

17 4,

W

—&— GAN
PacGAN2

—8— PacGAN3

—&— PacGAN4

0

100000 200000 300000 400000 500000 600000

# of parameters in D(-)




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

1. Discriminator size

mmlbatch size = 64

minibatch size = 64

real real fake real D (Xl : X2

real fake real

aes |1 GEGE

GAN PacGAN2

3)




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

2. Minibatch size

mlnlbatch size = 32
minibatch size = 64

amia |1 GEEAHT

GAN PacGAN2




Principled approach to mode collapse

e Could PacGAN be cheating, as it uses more samples at each
mini-batch?

2. Minibatch size

kw&m@%b&

39
4 4
S 4
b &
6 4
95
g &

Modes
DCGAN 99.0
PacDCGAN2 1000.0




Theoretical intuition behind PacGAN

* Typical Gan training loss is

minmax ) logDy(x)+ Y, log(l — Dy(Gy(z)))
w0 TP 2~N(O,I)

e \We will consider

mvgn max Z Dy(x;) + Z (1 = Dy(Gy(zy))

O PO G~NO.I)
subjectto  |Dy(x)| <1, for all x
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Theoretical intuition behind PacGAN

e \We will consider
min max Z Dy(x,) + 2 (1 = Dy(Gy(z))))
w 0
xiNP(-) Zl'NN(OaI)
subject to  |Dy(x)| £ 1, for all x

e this is a finite sample approximation of the following expectation
minmax E,_p, | Dy@) |+ E,.yon| I = Do(Gy(2) |
w

o let Q( . ) denote the distribution of the generator Gw(Zi)

an(lgl meax [EXNP(,)[DQ(X)] + [EXNQ(,)[ 1 - Dg(x)]

subject to  |Dy(x)| £ 1, for all x

« at this point, we can solve the maximization w.r.t. D@ assuming it can represent any functions
(for the purpose of theoretical analysis)

» the optimal solution is B +1 if P(Q?) Z Q(aj)
Do(z) = { —1 if P(z) < Q(x)
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Theoretical intuition behind PacGAN

18(11)1 mgax E.pey [Dg(x)] + IEXNQ(,)[ 1 - Dg(x)]

subjectto  |Dy(x)| <1, for all x

e at this point, we can solve the maximization w.r.t. DQ assuming it can represent any functions
(for the purpose of theoretical analysis)

 the optimal solution is B +1 if P(w) Z Q($)
Dy(x) = { —1 if P(x) < Q(z)

e Plugging this back in to the loss, we get

min Dry(P,Q) = Epp,| ‘ 1 - LW
Q)

P(x)

|

P(x)
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Theoretical intuition behind PacGAN

Target distribution P 0:7 i
0.6 _
P
051 _
03 .
1 ¢ drv(P, Q1) = drv (P, Q2) = 0.2
0.1 r
o . . . .
1 2 3 4 5 6
size of packing
Generator ), Generator Qo
with mode collapse without mode collapse
Q1

1.25

0.2 1

drv(P, Q1) = 0.2 drv(P,Q2) = 0.2



Theoretical intuition behind PacGAN

Target distribution P 07
0.6
05 |
dTV (P 27 Q%)
P xP 04 1
1 03 |
0.2
o1 L dTV(P2aQ§)
0 . . . .
1 2 3 4 5 6
Generator ()q Generator Q-
with mode collapse without mode collapse
1.4°

Q2 X Q2

0.5 1

0.2 1

drv(P x P,Q1 X Q1) = 0.36 drv(P x P,Q2 X Q2) = 0.24



Theoretical intuition behind PacGAN

Target distribution P 07 | drv(P™,QT")
0.6
05
PxP 04 1
1 .l drv(P™,Q3")
0.2 ]
0.1
0 ' .
1 2 3 m 4 5 6
Generator Q1 Generator Q)2
with mode collapse without mode collapse
1.47

0.2 1 0.5 1

drv(P X P,Q1 X Q1) = 0.36 drv(P X P,Q2 X Q2) =0.24 -



Deep Image prior

* in standard de-noising/inpainting with trained GAN

i
a

Corrupted Corrupted (;onuptedi ) Corrupted

e if we have a GAN trained on similar class of images, then we can use the latent
space and the manifold of natural images to recover the image as follows

observed perturbed image

£

G,.()

w

z[2]

i |
Unknown

original

(1]
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Deep Image prior

e Given a trained generator W that knows the manifold of natural images,

find the latent vector ¢ that

minimizeZ 4 (

o let GW(Z) be the recovered image

observed perturbed image

£

G,.()

w

z[2]

> |
Unknown
original

(1]
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Deep image prior

* deep image prior does amazing recovery, without training

Corrupted Corrupted

Deep image prior Deep image prior/ Deep image prior

Deep image prior
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Deep image prior

e fix  to be something random and f|nd W that

minmnize, ¢ (

and let GW(Z) be the recovered image
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https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be



Questions?



Questions?



