
Lecture 24:
-means clustering and

spectral clustering
k

- Unsupervised learning
- Dimensionality reduction

- PCA
- Auto-encoder

- Clustering
- -means
- Spectral,t-SNE,UMAP

- Generative models
- Density estimation

k

Demo: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

©Kevin Jamieson 2018

Clustering images

[Goldberger et al.]

Set of Images

©Kevin Jamieson 2018

Clustering web search results

©Kevin Jamieson 2018

Some Data

• K-mean algorithm assumes
this kind of structured data

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations
{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.
(Thus each Center “owns” a
set of datapoints)

{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

R3

R5

R2 R3

R4

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.
4. Each Center finds the

centroid of the points it
owns

{μ1, …, μ5}

R3

R5

R2 R3

R4
μ1

μ2 μ3

μ4

μ5

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.
4. Each Center finds the

centroid of the points it
owns…

5. …and jumps there
6. …Repeat until terminated!

{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

©Kevin Jamieson 2018

1. Choose , how many clusters to find
2. Randomly initialize centers

• = [, …,]

• Usually randomly chosen from the data points,  
to make sure they are in the right domain

3. Assign each point j∈{1,…,n} to its nearest center: 
 
 

4. Recenter: becomes centroid of its point:
•

• Equivalent to  
 ← average of all the points assigned to  

5. Repeat 3-4.

k
k

μ(0) μ(0)
1 μ(0)

k ∈ ℝd×k

μi

μ(t+1)
i μ(t)

i

K-means

R3

R5

R2 R3

R4
μ1

μ2 μ3

μ4

μ5

μ1

μ2 μ3

μ4

μ5

R3

R5

R2 R3

R4

Assignment:

Recenter:

Which one is a snapshot of a converged -meansk

Example (a)

Example (c) Example (d)

Example (b)

When -means is converged, there should be a set of centers and assignments
that do not change when applying 1 step of -means

k
k

©Kevin Jamieson 2018

> -means is trying to minimize the following objective  
 
 
 
 
via alternating minimization  
(equivalent to coordinate descent)
> Fix , optimize C
> Fix C optimize  

> Does this converge? Does this terminate in finite time?

k

μ
μ

Does -means converge??k

• there is only a finite set of values that can take  
(is large but finite)

• so there is only finite, at most, values for cluster-centers also

• each time we update them, we will never increase the objective

function

• the objective is lower bounded by zero

• after at most steps, the algorithm must converge  

(as the assignments cannot return to previous assignments
in the course of -means iterations)

{C(j)}n
j=1 ∈ {1,…, k}n

kn

kn

k

∑
i=1

∑
j:C(j)=i

∥xj − μi∥2
2

kn

{C(j)}n
j=1

k

Does -means converge??k

downsides of -means k
1. it requires the number of clusters K to be specified by us

2. the final solution depends on the initialization  

(does not find global minimum of the objective)

Trial 1

Trial 2

Initial position of centers final converged assignment

-means++: a smart initializationk
Smart initialization:
1. Choose first cluster center uniformly at random from data points

2. For k=2,… K

 3. For each data point , compute distance to nearest cluster center

 4. Choose new cluster center from amongst data points, with probability
of being chosen proportional to  
 precisely,

 , for all that is not chosen already  

 Prob(chosen as the next center) =  

• apply standard K-means after this initialization

μ1

xi di

xi (di)2

di ← min
j∈{1,….k−1}

∥μj − xi∥ i

xi
(di)2

∑ℓ (dℓ)2

• K-means algorithm fails, when

• What can we do?

Gaussian Mixture Model
• input: data in

• parameters of a Gaussian Mixture Model

• mixing weights:

• for

• means:

• for

• covariance matrices:

• for

• we suppose that the given data has been generated from a GMM, and try to find the

best GMM parameters (this naturally will define clustering of the training data)

• under the GMM, the -th sample is drawn as follows

• first sample a cluster , from

• conditioned on this cluster, is sampled from  

{xi}n
i=1 ℝd

πj = P(cluster membership = j) j ∈ {1,…, K}

μj ∈ ℝd j ∈ {1,…, K}

Cj ∈ ℝd×d j ∈ {1,…, K}

i
zi ∈ {1,…, K} π = [π1 , …, πK]

xi
xi ∼ N(μzi

, Czi
)

demo: https://lukapopijac.github.io/gaussian-mixture-model/

https://lukapopijac.github.io/gaussian-mixture-model/

Maximum likelihood estimation (MLE)
• we can find the best GMM, by MLE

• for simplicity, suppose and

• Model parameters are

• the probability of observing a sample can be written as  
 

• MLE tries to find 
 

• however, unlike least squared or logistic regression, this is not a concave function of
the parameters (thus hard to find the optimal solution)

• in general, MLE of a mixture model is not convex/concave optimization

d = 1 K = 2
π1, π2, μ1, μ2, C1, C2 ∈ ℝ

xi

P(xi; π1, π2, μ1, μ2, C1, C2) = π1
1

2πC1
e− (xi − μ1)2

2C1

≜ N(xi;μ1,C1)

+ π2
1

2πC2
e− (xi − μ2)2

2C2

≜ N(xi;μ2,C2)

arg max
π1,π2,μ1,μ2,C1,C2

n

∑
i=1

log P(xi; π1, π2, μ1, μ2, C1, C2)

Recall lecture 2: fitting a single Gaussian model
• given ,fit the best Gaussian model with mean and variance

• using MLE we want to solve  

• we compute gradient and set it to zero:

•  

 
which is zero for  

 
(which makes sense as it is the empirical mean)

•  
 
which is zero for  

 
(which makes sense as it is the empirical variance)

{xi}n
i=1 ∈ ℝ μ ∈ ℝ C ∈ ℝ

maximizeμ,C ℒ(μ, C) =
n

∑
i=1

(− (xi − μ)2

2C − log(2πC))
log N(xi|μ,C)

∇μℒ(μ, C) = 1
C

n

∑
i=1

(μ − xi)

μ = 1
n

n

∑
i=1

xi

∇Cℒ(μ, C) =
∑n

i=1 (xi − μ)2

2C2 − n
2C

C = 1
n

n

∑
i=1

(xi − μ)2

MLE for GMM
• we want to fit a model by solving 

 

• define  
 

• setting the gradient to zero, we get

• where , and where

• and

• and

• both LHS and RHS depend on the parameters, and no closed form solution exists

• note that if we know ’s it is trivial to compute parameters, and vice versa

maximizeπ1,π2,μ1,μ2,C1,C2

n

∑
i=1

log(π1
1

2πC1
e− (xi − μ1)2

2C1

≜ N(xi;μ1,C1)

+ π2
1

2πC2
e− (xi − μ2)2

2C2

≜ N(xi;μ2,C2)

)

ri = P(zi = 1 |xi) = P(zi = 1,xi)
P(zi = 1,xi) + P(zi = 2,xi)

= π1N(xi; μ1, C1)
π1N(xi; μ1, C1) + π2N(xi; μ2, C2)

π1 = N1
n

N1 =
n

∑
i=1

ri π2 = N2
n

N2 =
n

∑
i=1

(1 − ri)

μ1 = 1
N1

n

∑
i=1

rixi μ2 = 1
N2

n

∑
i=1

(1 − ri)xi

C1 = 1
N1

n

∑
i=1

ri(xi − μ1)2 C2 = 1
N2

n

∑
i=1

(1 − ri)(xi − μ2)2

ri

Expectation Maximization (EM) algorithm
• EM is a popular method to solve MLE for mixture models

• input: training data

• output:

• initialization: randomly initialize the parameters

• repeat

• E-step (Expectation): parameters soft membership

•

• M-step (Maximization): soft membership parameters

• where , and where

• and

• and

{xi}n
i=1

π1, π2, μ1, μ2, C1, C2 ∈ ℝ

→

ri = π1N(xi; μ1, C1)
π1N(xi; μ1, C1) + π2N(xi; μ2, C2)

→

π1 = N1
n

N1 =
n

∑
i=1

ri π2 = N2
n

N2 =
n

∑
i=1

(1 − ri)

μ1 = 1
N1

n

∑
i=1

rixi μ2 = 1
N2

n

∑
i=1

(1 − ri)xi

C1 = 1
N1

n

∑
i=1

ri(xi − μ1)2 C2 = 1
N2

n

∑
i=1

(1 − ri)(xi − μ2)2

E-step

M-step

For general number of clusters and dimension K d
• we can derive EM for general case, in an analogous way

• Initialize parameters:

• E-step:

• For k=1,…,K 

• M-step:

• For k=1,..,K  

  

 where  
 
 and

• once GMM is learned, clustering is straight forward: cluster according to the 's

π1, …, πK, μ1, …, μK, C1, …, CK

ri,k = πk N(xi |μk, Ck)
∑K

j=1 πj N(xi |μj, Cj)

πk = Nk

n
Nk =

∑n
i=1 ri,k

n

μk = 1
Nk

n

∑
i=1

ri,kxi Ck = 1
Nk

n

∑
i=1

ri,k(xi − μk)(xi − μk)T

ri,k

GMM for real data

• these are generated samples, from GMM trained on CelebA dataset

• image: 64*64*3=288 dimension

• covariance: restricted to rank-10 matrices

• mixture: K=1,000

Images from “on GANs and GMMs”, 2018, Richardson &Weiss

• top: center of a cluster and  
the diagonal entries of the covariance matrix

• note that we have trained 10-dimensional covariance matrix , with
, and let be the j-th column

• bottom: each row corresponds to different , and we show 

μk
Ck

Ck = AAT

A ∈ ℝ288×10 A(j)

j
μk + A(j), 0.5 + A(j), μk − A(j)

Images from “on GANs and GMMs”, 2018, Richardson &Weiss

Principal
components

Center

• middel:

• Each row: middel +

• Each column: middle +

μk
c × A(1)

c × A(2)

Images from “on GANs and GMMs”, 2018, Richardson &Weiss

Principal Component direction 1

Principal
Component
direction 2

Mixture model for documents
• Input: documents

• Each document is a sequence of words of length  

• Bag-of-words model:

• parameters:

• mixing weights: for

• word probability:

• the generative model

• first sample topic from

• next sample words i.i.d. from

• to make the problem tractable, this completely ignores the order of the
words in the document (but still very successful in document clustering) 
 

n {xi}n
i=1

T
xi = (w1, w2, …, wT)

πk = P(topic = k) k ∈ {1,…, K}
bwk = P(word = w | topic = k)

π = (π1, …, πK)
T bk = (bw1k, …, bw200,000k)

P(topic zi = k, xi = (w1, …, wT)) = πkbw1k⋯bwTk

Topic modeling
• to fit a topic model, we solve the following 

• we can apply EM algorithm

• initialize

• E-step: parameters soft assignments

•

• M-step: soft assignments parameters

• where

•

maximizeb∈ℝK×T,π∈ℝK

n

∑
i=1

log P(xi |b, π)

b, π
→

rik = P(topic zi = k |xi) =
πkbw1k⋯bwTk

∑K
k′ =1 πk′ bw1k′ ⋯bwTk′

→

πk = Nk

n
Nk =

n

∑
i=1

rik

bwk = 1
Nk

n

∑
i=1

rik
Count(w in xi)

T

Dynamic topic modeling (over time)

From “Dynamic Topic Models” Blei & Lafferty 2006

Dynamic topic modeling (over time)

From “Dynamic Topic Models” Blei & Lafferty 2006

-means and GMMs are inherently lineark
• It tries to find linear boundaries between centers

• It fails completely on non-linearly clustered datasets such as

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]

Spectral clustering
• Main idea:

• Transform the dataset into a graph

• Use eigenvalues (also called spectrum) and vectors of a

graph to cluster

[Shi,Malik,’00],[Ng,Jordan,Weiss,’01]

Step 1. From dataset to a graph
• Given , create a graph with nodes and

weighted edges , where each node represents each sample
and each edge measures the similarity between the two nodes

• Example 1: Gaussian kernel 

• Example 2: -nearest neighbor graph 
 if is one of -nearest neighbors of or  
 is one of -nearest neighbors of

/ = {xi ∈ ℝd}n
i=1 n

{wij}

wij = e− ∥xi − xj∥22
σ2

k
wij = 1 j k i

i k j

Step 2. Graph partitioning
• Once we have a similarity graph, how do we partition it?

• Can we use minimum cut for a graph ?

• Set of nodes

• Set of edges

• If it is a weighted graph we have weights

• Minimum cut of a graph is a partition and  
such that  
  

G(V, E)
V = {1,…, n}
E = {(i, j)}

{wij}(i, j)∈E

A ∪ B = V A ∩ B = ∅

arg min
A,B ∑

i∈A
∑
j∈B

wi, j

cut(A,B)

Step 2. Graph partition using Graph Laplacian
• Definitions (we will define it for unweighted graphs,

but everything naturally generalizes to weighted
graphs)

• Adjacency matrix of a graph  

 if  
 0 otherwise

• Degree of a node is , which is

number of edges connected to node

• Define as a diagonal matrix with the

degrees of each node in the diagonal

• The Graph Laplacian of a graph is defined as  

A ∈ ℝn×n

Aij = 1 (i, j) ∈ E

i, di =
n

∑
j=1

Aij

i
D ∈ ℝn×n

LG = D − A

A =

0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0

1 2

3
4

5
6

7
8

9

10
11

12

D =

2 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 6

Step 2. Graph partition using Graph Laplacian

• Graph Laplacian can capture some structure of the graph

• Consider placing each node in 1-dim line 

at positions

LG = D − A

x = [x1, x2, …, x2]

1 2

3
4

5
6

7
8

9

10
11

12

1 2

x1 x2
3

x3
7

x7

2xixj

2xixj

Step 2. Graph partition using Graph Laplacian

• Graph Laplacian can capture some structure of the graph

• Consider placing each node in 1-dim line at positions
LG = D − A

x = [x1, x2, …, x2]

1 2

3
4

5
6

7
8

9

10
11

12 1 2

x1 x2
3

x3
7

x7

xT LGx = ∑
(i, j)∈E

(xi − xj)2

• If we want a good graph partition, we want to place nodes such that the
distance between connected nodes are smaller

• This naturally leads to the following problem:
arg min

x∈ℝn
xT LGx = ∑

(i, j)∈E
(xi − xj)2

• There is a trivial solution to this problem: for all ,  
which achieves the minimum value of zero, so we change it to

xi = 1 i

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2 subject to xT1 = 0

Step 2. Graph partition using Graph Laplacian
• To solve graph partitioning, we solve  

 
 
 
 
 
 
 
and place nodes as per , and find a partition using simple algorithms
like -means

• It turns out that the above optimization has a efficient solver, because  
The optimal turns out to be the second smallest eigen vector of  
the graph Laplacian

• Since, eigen values of a matrix is also called a spectrum, this is called a
spectral clustering algorithm

x
k

x
LG

arg min
x∈ℝn

xT LGx = ∑
(i, j)∈E

(xi − xj)2

subject to xT1 = 0
∥x∥2 = 1

Spectral clustering

• Step 1. Define a similarity graph

• Step 2. Compute the Graph Laplacian 

  

where is a diagonal matrix with

• let be the Eigen vector corresponding to the second smallest
Eigen value

• Place samples according to and apply -means clustering

• instead of using just the second smallest Eigen pair, you can use
multiple smallest Eigen pairs

G(V, E, W)

LG = D − W
D Dii =

n

∑
j=1

wij

x

x k

Questions?

Deep Generative Models
- Unsupervised learning

- Dimensionality reduction
- PCA
- Auto-encoder

- Clustering
- -means
- Spectral,t-SNE,UMAP

- Generative models
- Density estimation

k

Deep generative model
• traditional parametric generative model

• Gaussian:  

• Gaussian Mixture Models (GMM) 
 

• deep generative model

• easy to sample

• high representation power

• but no tractable evaluation of the density (i.e. p.d.f.)

fμ,σ(x) = 1
2πσ2

e− (x − μ)2
2σ2

f{μi},{σi},{πi}(x) =
k

∑
i=1

πi
1

2πσ2
i

e
− (x − μi)2

2σ2
i

Deep generative model

• sampling from a deep generative model, parametrized by

• first sample a latent code of small dimension ,
from a simple distribution like standard Gaussian

• pass the code through a neural network of your choice, with
parameter

• the output sample is the sample of this deep generative
model

w
z ∈ ℝk k ≪ d

N(0,Ik×k)

w
x ∈ ℝd

42

⋮z[1]

z[k]

x[1]

⋮ ⋮
x[d]

Deep generative model

43

Generative model
• a task of importance in unsupervised learning is fitting a generative

model

• classically, if we fit a parametric model like mixture of Gaussians,

we write the likelihood function explicitly in terms of the model
parameters, and maximize it using some algorithms 

•

• deep generative models use neural networks, but the likelihood of
deep generative models cannot be evaluated easily, so we use
alternative methods

maximizew

n

∑
i=1

log (Pw(xi))

44

Goal

• Given examples coming i.i.d from an unknown

distribution , train a generative model that can
generate samples from a distribution close to

{xi}n
i=1

P(x)
P(x)

45

Adversarial training
• Classification

• Consider the example of SPAM detection

• Each sample is an email

• Distribution of true email is

• Suppose spammers generate spams with distribution

• Spam detection: Typical classification task

• Generate samples from true emails and label them

• Generate samples from spams and label them

• Using these as training data, train a classifier 

that outputs 
 

  

 
for some neural network with parameter  
(this is the logistic model for binary classification)

xi
P(x)

Q(x)

yi = 1
yi = 0

ℙ(yi = 1 |xi) ≃ 1
1 + e−fθ(x)

fθ(⋅) θ
46

Adversarial training
• Applying logistic regression, we want to solve  

 

• in adversarial training, it is customary to write  

  

 
which is called a discriminator  

• and find the “best” discriminator by solving for  
 

 

as 1 labelled examples come from real distribution  
and 0 labelled examples come from spam distribution

max
θ ∑

i:yi=1
log(1

1 + e−fθ(xi)) + ∑
i:yi=0

log(1 − 1
1 + e−fθ(xi))

Dθ(x) = 1
1 + e−fθ(x)

max
θ

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi) + ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

P(⋅)
Q(⋅)

47

Adversarial training
• Suppose now that the spam detector (i.e. the discriminator) is fixed, then the

spammer’s job is to generate spams that can fool the detector by making the likelihood of
the spams being classified as spams small: 
 

• where 0 labelled examples are coming from the distribution , which is modeled
by a deep neural network generative model, i.e. where

.

• The minimization can be solved by finding. The “best” generative model that can fool the

discriminator 
 

min
Q(⋅)

ℒ(θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(xi))

Q(⋅)
xi = Gw(zi)

zi ∼ N(0,Ik×k)

min
w

ℒ(w, θ) = ∑
xi∼P(⋅)

log Dθ(xi)

does not depend on Q(⋅)

+ ∑
xi∼Q(⋅)

log(1 − Dθ(Gw(zi)))

48

Adversarial training
• Now we have a game between the spammer and the spam

detector: 
 

• Where is the distribution of real data (true emails), and
 is the distribution of the generated data (spams) that

we want to train with a deep generative model
• jointly training the discriminator and the generator is called

adversarial training

• Alternating method is used to find the solution

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

P(⋅)
Q(⋅)

49

Alternating gradient descent for adversarial training

• Gradient update for the discriminator (for fixed w) 
  

• First sample examples from real data (in the training set) and the generator

data  

(for the current iterate of the generator weight)

• compute the gradient for those samples using back-propagation

• Update the discriminator weight by subtracting the gradient with a choice of
a step size

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

xi∼Q(⋅)
log(1 − Dθ(xi))

n
xi ∼ Gw(zi)

w
2n
θ

50

Alternating gradient descent for adversarial training

• gradient update for the generator (for fixed) 
 

• Consider the gradient update on a single sample 
 
  

for a single sampled from a Gaussian

• The gradient update is 

 
  

  

 
with  

θ
min

w ∑
xi∼P(⋅)

log Dθ(xi) + ∑
zi∼N(0,I)

log(1 − Dθ(Gw(zi)))

min
w

ℒ(w, zi) = log(1 − Dθ(Gw(zi)))
zi ∼ N(0,I)

w = w − η∇w ℒ(w, zi)
= w − η ∇wGw(zi) ∇xDθ(x) −1

1 − Dθ(x)
x = Gw(zi)

51

This gives a new way to train a deep generative model

52

Not only is GAN amazing in generating realistic samples

53

http://whichfaceisreal.com

It opens new doors to exciting applications
• Cycle-GAN

54

55

56

Style transfer with generative model
• If we have paired training data,

• And want to train a generative model G(x,z)=y,

• This can be posed as a regression problem

57

x Y

z

How do we do style transfer without paired data? Cycle-GAN

58

How do we do style transfer without paired data? Cycle-GAN

59

z

Adversarial training

Cycle loss

https://www.youtube.com/watch?v=PCBTZh41Ris

Super resolution

60

https://www.youtube.com/watch?v=PCBTZh41Ris

The learned latent space is important

61

z x

z[1]

z[2]
Gw(⋅)

Average of two face images  
in z-space ?

Average of two face images in x-space  
gives garbage

How do we check if we found the right manifold (of faces)?

• latent traversal

62

Can we make the relation between the latent
space and the image space more meaningful?

63

• Disentangling
• GANs learn arbitrary mapping from z to x
• As the loss only depends on the marginal distribution of

x and not the conditional distribution of x given z (how z
is mapped to x)

Disentangling seeks meaningful mapping from to z x

64

65

Fully-supervised case

66

c1 c2 c3

Train a conditional GAN, where

 is a numerical representation of the labels 

given in the training data, and is drawn from Gaussian

(c1, c2, c3)
z

However, some properties are hard to represent numerically

67

Unsupervised training of Disentangled GAN

68

Disentangled GAN training: InfoGAN-CR, 2019

• 1. As in standard GAN training, we want to look
like training data (which is achieved by adversarial loss
provided by a discriminator)

• 2. We also want the controllable latent code to be
predictable from the image

• add a NN regressor that predicts , and train the
generator that makes the prediction accuracy high 
(note that both this predictor and the generator works
to make the prediction accurate, unlike adversarial
loss)

• 3. We also want each code to control distinct properties

• add a NN that predicts which code was changed 

Gw(z)

c

̂c(x)

69

c1
c2
c3

D() = {real,fake}

minimize ∥ ̂c() − c∥2

̂i() ≃ i

Disentangling with contrastive regularizer
• To train a disentangled GAN, we use contrastive regularizer

70

Discriminator  
encourages 
output to be realisticx

Predictor makes sure that
the changes in make

noticeable changes in

c
x

̂c(X)

̂i(x1, x2)
Contrastive regularizer
detects which latent code  

was the same in a paired

ci
(x1, x2)

But is still challenging

71

• Synthetic training data (with planted disentangled
representation)

• Trained Disentangled GAN (latent traversal)

Challenges in training GANs
• GAN training suffers from mode collapse

• this refers to the phenomenon where the generated

samples are not as diverse as the training samples

72

Mode collapse

73

Training data

Trained generative model

Mode collapse

74

Mode collapse

75

Principled approach to mode collapse
• Lack of diversity is easier to detect if we see multiple samples

• Consider MNIST hand-written digits

• If we have a generator that generates 1,3,5,7 perfectly, it is hard to tell from
a single sample that mode collapse has happened

• But easier to tell from a collection of, say, 5 samples all from wither training
data or all from generated data

76

Principled approach to mode collapse
• Turning this intuition into a training algorithm:

77

Principled approach to mode collapse: PacGAN, 2018

• Turning this intuition into a training algorithm:

78

Principled approach to mode collapse

79

Principled approach to mode collapse

80

Principled approach to mode collapse

81

• Could PacGAN be cheating, as it is a larger discriminator
network?

82

Principled approach to mode collapse
• Could PacGAN be cheating, as it is a larger discriminator

network?

83

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

84

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

85

Principled approach to mode collapse
• Could PacGAN be cheating, as it uses more samples at each

mini-batch?

Theoretical intuition behind PacGAN

86

• Typical Gan training loss is

min
w

max
θ ∑

xi∼P(⋅)
log Dθ(xi) + ∑

zi∼N(0,I)
log(1 − Dθ(GW(zi)))

• We will consider

min
w

max
θ ∑

xi∼P(⋅)
Dθ(xi) + ∑

zi∼N(0,I)
(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

Theoretical intuition behind PacGAN

87

• We will consider
min

w
max

θ ∑
xi∼P(⋅)

Dθ(xi) + ∑
zi∼N(0,I)

(1 − Dθ(GW(zi)))

subject to |Dθ(x) | ≤ 1 , for all x

• this is a finite sample approximation of the following expectation

min
w

max
θ

:x∼P(⋅)[Dθ(x)]+ :z∼N(0,I)[1 − Dθ(GW(z))]

• let denote the distribution of the generator Q(⋅) Gw(zi)
min
Q(⋅)

max
θ

:x∼P(⋅)[Dθ(x)]+ :x∼Q(⋅)[1 − Dθ(x)]

• at this point, we can solve the maximization w.r.t. assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4=">AAACbnicdVFda9RAFJ2kftT4ta3gg0W8uCgr4pL4gUIVivrg4xbctrCzLJPZm+zQySTO3EiXsI/+Qd/8Db70J3Q2zYO2emDgcO65Z5IzaaWVozj+FYQbV65eu755I7p56/adu72t7QNX1lbiWJa6tEepcKiVwTEp0nhUWRRFqvEwPf60nh9+R+tUab7SssJpIXKjMiUFeWnW+/F5xmmBJAYnz4DvfuC7wDVmxBuIeIq5Mo2wVixXjdWr6HkCHk+BE55QAyqDFYz8Js/xG+y3ETx68R8TvG8tEUcz70IjblW+oOGs14+HcQu4TJKO9FmH0az3k89LWRdoSGrh3CSJK5r6VFJSo8+tHVZCHoscJ54aUaCbNm1dK3jilTlkpfXHELTqnxuNKJxbFql3FoIW7uJsLf5rNqkpezdtlKlqQiPPL8pqDVTCunuYK4uS9NITIa3y3wpyIayQ5F8o8iUkF3/5Mjl4OUxeDd/sv+7vfezq2GQ77DEbsIS9ZXvsCxuxMZPsd7AVPAh2gtPwfvgwfHRuDYNu5x77C+HgDBOZtI0=</latexit>

Theoretical intuition behind PacGAN

88

min
Q(⋅)

max
θ

:x∼P(⋅)[Dθ(x)]+ :x∼Q(⋅)[1 − Dθ(x)]

• at this point, we can solve the maximization w.r.t. assuming it can represent any functions 
(for the purpose of theoretical analysis)

• the optimal solution is

Dθ

subject to |Dθ(x) | ≤ 1 , for all x

D✓(x) =

⇢
+1 if P (x) � Q(x)
�1 if P (x) < Q(x)

<latexit sha1_base64="ID79xGBJoQnvMgmt+Nz19kZ95y4=">AAACbnicdVFda9RAFJ2kftT4ta3gg0W8uCgr4pL4gUIVivrg4xbctrCzLJPZm+zQySTO3EiXsI/+Qd/8Db70J3Q2zYO2emDgcO65Z5IzaaWVozj+FYQbV65eu755I7p56/adu72t7QNX1lbiWJa6tEepcKiVwTEp0nhUWRRFqvEwPf60nh9+R+tUab7SssJpIXKjMiUFeWnW+/F5xmmBJAYnz4DvfuC7wDVmxBuIeIq5Mo2wVixXjdWr6HkCHk+BE55QAyqDFYz8Js/xG+y3ETx68R8TvG8tEUcz70IjblW+oOGs14+HcQu4TJKO9FmH0az3k89LWRdoSGrh3CSJK5r6VFJSo8+tHVZCHoscJ54aUaCbNm1dK3jilTlkpfXHELTqnxuNKJxbFql3FoIW7uJsLf5rNqkpezdtlKlqQiPPL8pqDVTCunuYK4uS9NITIa3y3wpyIayQ5F8o8iUkF3/5Mjl4OUxeDd/sv+7vfezq2GQ77DEbsIS9ZXvsCxuxMZPsd7AVPAh2gtPwfvgwfHRuDYNu5x77C+HgDBOZtI0=</latexit>

• Plugging this back in to the loss, we get

min
Q(⋅)

DTV(P, Q) = :x∼P(⋅)[1 − Q(x)
P(x)]

P(x)
Q(x)

Theoretical intuition behind PacGAN

89

Theoretical intuition behind PacGAN

90

Theoretical intuition behind PacGAN

91

Deep Image prior

92

• in standard de-noising/inpainting with trained GAN  
we want to recover original image from some distortion

• if we have a GAN trained on similar class of images, then we can use the latent
space and the manifold of natural images to recover the image as follows

z x

z[1]

z[2]
Gw(⋅)

Unknown  
original  
image

observed perturbed image

Deep Image prior

93

• Given a trained generator that knows the manifold of natural images,  
find the latent vector that 
 

• let be the recovered image

w
z

minimizez ℓ(Gw(z),)
Gw(z)

z x

z[1]

z[2]
Gw(⋅)

Unknown  
original  
image

observed perturbed image

Deep image prior
• deep image prior does amazing recovery, without training

94

Deep image prior

• fix to be something random and find that  
 

  
 
and let be the recovered image

z w

minimizez ℓ(Gw(z),)
Gw(z)

95

96

https://www.youtube.com/watch?v=kSLJriaOumA&feature=youtu.be

Questions?

Questions?

