Lecture 23:
Principal Component AnaIyS|s

- Unsupervised learning
- Dimensionality reduction

- Clustering

- k-means

- Spectral,t-SNE,UMAP
- Generative models
- Density estimation

W



The principal component analysis

e so far we considered finding ONE principal component u &€ R4

* it is the eigenvector corresponding to the maximumﬁgenvalue
of the covariance matrix Aé //Q

1
C= XTX € R¥d | onE MaX EM/]
n

* We can also use the Singular Value Decomposition (SVD) to find
such eigen vector

* note that is the data is not centered at the origin, we should re-
center the data before applying SVD

* in general we define and use multiple principal components

e if we need r principal components, we take r eigenvectors
corresponding to the largest r eigenvalues of C



Algorithm: Principal Component Analysis

input: data points {x;}_, target dimension r < d

output: r-dimensional subspace U
algorithm:

1
compute mean x = —

i=1
o compute covarlance matrix

Z (= D) =)'

o let(ug,...,u,) be the set of (normalized) eigenvectors with
corresponding to the largest r eigenvalues of C
e retunU=[U U, - U]

further the data points can be represented compactly via



How do we compute singular vectors?

e |n practice: Lanczos method
e We will learn: power iteration

e Let C = USUT € R% pe SVD of the matrix we want to compute
the top one singular vector
e U = [uy,u,,...,u,;] are the singular vectors
(ordered in the decreasing order of the corresponding singular values)
e We also assume A; > A, in order to ensure uniqueness of u,




Power iteration
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Matrix completion for recommendation systems
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e users provide ratings on a few movies, and we want to predict the

missing entries in this ratings matrix, so that we can make

recommendations

e without any assumptions, the missing entries can be anything, and

no prediction is possible



Matrix completion

however, the ratings are not arbitrary, but people with similar tastes
rate similarly

such structure can be modeled using low dimensional representation
of the data as follows

we will find a set of principal component vectors

U — [ul uz ur] e Rd)(r
such that that ratings x; € R of user i, can be represented as
x, = a[l]u; + ---alr]u,
= Ug,

for some lower-dimensional a; € R’ for i-th user and some r < d

for example, u; € R4 means how horror movie fans like each of the d
movies,

and a,[ 1] means how much user i is fan of horror movies
U=

Sf], Weve
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Matrix completion

e letX=[X X - X,] € R pe the ratings matrix, and
assume it is fully observed, i.e. we know all the entries

¢ then we want to find U € R and

A=[a a, - a,] € R that approximates X
X ~ U A
Movie ] —
d
T n e if we observe all errlitries of X, then we can solve
User i minimizey; Z lx; — Ua|l3

i=1

which can be solved using PCA (i.e. SVD)



Matrix completion

e in practice, we only observe X partially
e let Syain = {(isj)}o_, denote N observed ratings for user i, on movie j,

x" s~ UuA l

| | T
.. B a; for user i
|
_ vI for movie j
[ | B 5 — .V ]
d |
n

o let va denote the j-th row of U and a; denote i-th column of A

« then user I’s rating on movie J, i.e. Xﬁ is approximated by vaal-, which is the inner

product of V; (a column vector) and a column vector g;

o . T
« we can also write it as (v;, a;) = v; ¢,



Matrix completion

e a natural approach to fit vj’s and a;s to given training data is to solve
. . . T 2
minimizey o Z X —via)
(i,j)EStrain

* this can be solved, for example via gradient descent or alternating
minimization
* this can be quite accurate, with small number of samples



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

For illustration,
we zoom in to a
50x50 submatrix

Gradient descent output UA squared error Xj— (UA)ji)Z
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA squared error (X, i = (UA);)
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

1.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X

Gradient descent output UA
Ez!' .!:-'u*!

sampled matrix
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Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

- .

squared error (X;— (UA);)?

1.75% sampled



Matrix completion

minimizey, ), (X;—v/a)?

(i’j)EStrain

« Gradient descent on {vj}J‘.i=1 and {g;}’_, can be implemented via

-1 —INT (-1 -1

vj(t) - vj(t ) — 2y Z ((vj(t )) ai(t ) _ in)ai(t )
i€S;

forallj € {1,...,d}, where S; is the set of users who rated movie j and

(0 (=1 _ (t=INT ,(t=1) _ (t=1)
a’’ < a 2172((\)}. ) a, in)vj

l
JES;
foralli € {1,...,n}, where §; is the set of movies that were rated by user i
B .
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Matrix completion

. . . T 2
minimizey 5 2 X — v; a;)
(i’j)estrain
e alternating minimization

* repeat

« fix v/s and find optimal a;s

» for each i, set the gradient to zero:
2 Z ((vj(t_l))Tai — in)vj(t_l) = (, which gives

JES;
T\ _
“i( 2 ) = 2 Xy
JES; JE_SI
— T
4 = (Z Vivi > 2 X
JES; JES;

o fix a;s and find optimal v;’s (similarly)



Autoencoders

e PCA is great in capturing variations in linear subspaces
e |t finds the best linear subspace for dimensionality reduction

e PCA fails when variation 1s iIn non-linear manifolds

e A non-linear encoding of data x; for dimensionality reduction
for these examples is to store the slope a; = x;[1]/x,[2]
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Autoencoders

e Neural network perspective of PCA
e Recall PCA reconstruction is £; = UU x;, which can be encoded as a
neural networks as follows
e This is a special neural network for unsupervised learning (or label is the
same as input), with first layer weight UT € R™4 with no activation
function and second layer weight U € R

@ @ » We train the weights
% of this neural network
o/ to minimize
x[2] "A,, 5 N~ 1@ the squared loss
SOOI ”

4 ‘ 1 X
%:5@3\3& @ arg min Dl = %113
@ i=1
PCA is the optimal

@ , v \ ‘@ . solution of this
@%, ; ‘\\\V@ neural network training
=

d=26 Output has the same dimension
and data is centered d=26



Autoencoders

e Autoencoders use neural networks to learn non-linear manifolds that
minimize the reconstruction loss

e % = g (f(x,), where the encoder f;; : RY — R’ and
the decoder gy, : R” — R are neural networks

e \We are essentially trying to learn the identity function, but with smaller
(non-linear) dimensionality

e We train the weights
of this neural network
to minimize
the squarednloss

- 112
arg min Z |lx; — X115
-

;L

(VY

Jw(+) gy(+)
d=26 r=3 Output has the same dimension
and data is centered a; = fw(x;) d=26



Example

* Autoencoder trained on Fashion MNIST dataset with r=64
and 2 fully connected layers for encoder and decoder

original

original original

reconstructed recor v>t ucted reconstructed reconstructed reconstructed reconstructed reconstructed

sl | LIS 0]1

reconstructed reconstructed

64-dimensional manifold
https://www.tensorflow.org/tutorials/generative/autoencoder



Example

e An autencoder trained on clean data can be used
to denoise noisy data

original + noise  original + noise  original + noise  original + noise  original + noise original + noise original + noise  original + noise  original + noise  original + noise

reconstructed reconstructed

reconstructed

reconstructed reconstructed

64-dimenstbnal manifold

https: atorials/generative/autoencoder



Questions?

e Beyond obvious data compression and dimensionality reduction,
such autoencoders have several important applications such as
de-noising and anomaly detection



Lecture 24:
Clustering with k-means

- Unsupervised learning
- Dimensionality reduction
- PCA
- Auto-encoder
- Clustering

- Spectral,t-SNE,UMAP
- Generative models
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Clustering images
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Clustering web search results

web news images wikipedia blogs jobs more »

D e

preferences

Cluster Human contains 8 documents.

clusters JELITGEH]

All Results (238) remix 4 Race (classification of human beings) - Wikipedia, the free ... & Q &

Q@ Car 25 The term race or racial group usually refers to the concept of dividing humans into populations or groups on the basis of various sets of characteristics. The most widely used human racial
categories are based on visible traits (especially skin color, cranial or facial features and hair texture), and self-identification. Conceptions of race, as well as specific ways of grouping races, vary

© Race cars (1) by culture and over time, and are often controversial for scientific as well as social and political reasons.History - Modern debates - Political and ...

© Photos, Races Scheduled (5) en.wikipedia.org/wiki/Race_(classification_of_human_beings) - [cache] - Live, Ask
© Game (4) 2. Race - Wikipedia, the free encyclopedia & Q &
@ Track (3) General. Racing competitions The Race (yachting race), or La course du millénaire, a no-rules round-the-world sailing event; Race (biology), classification of flora and fauna; Race (classification

of human beings) Race and ethnicity in the United States Census, official definitions of "race" used by the US Census Bureau; Race and genetics, notion of racial classifications based on
genetics. Historical definitions of race; Race (bearing), the inner and outer rings of a rolling-element bearing. RACE in molecular biology "Rapid ... General - Surnames - Television - Music -
@ Equipment And Safety (2) Literature - Video games

en.wikipedia.org/wiki/Race - [cache] - Live, Ask

@ Nascar (2)

@ Other Topics (7)

© Photos 2) 3. Publications | Human Rights Watch & A &

The use of torture, unlawful rendition, secret prisons, unfair trials, ... Risks to Migrants, Refugees, and Asylum Seekers in Egypt and Israel ... In the run-up to the Beijing Olympics in August 2008,

© Game (14)

© Definition (13) www.hrw.org/backgrounder/usalrace - [cache] - Ask

© Team (1) 4. Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich ... & A &

© Human (8) Amazon.com: Race: The Reality Of Human Differences: Vincent Sarich, Frank Miele: Books ... From Publishers Weekly Sarich, a Berkeley emeritus anthropologist, and Miele, an editor ...

www.amazon.com/Race-Reality-Differences-Vincent-Sarich/dp/0813340861 - [cache] - Live
@ Classification Of Human (2)

5. AAPA Statement on Biological Aspects of Race & A &

AAPA Statement on Biological Aspects of Race ... Published in the American Journal of Physical Anthropology, vol. 101, pp 569-570, 1996 ... PREAMBLE As scientists who study human
evolution and variation, ...

@ Statement, Evolved (2)

@ Other Topics (4)

© Weekend (s) www.physanth.org/positions/race.html - [cache] - Ask
© Ethnicity And Race (7) 6. race: Definition from Answers.com & Q &
© Race for the Cure (5) race n. A local geographic or global human population distinguished as a more or less distinct group by genetically transmitted physical

www.answers.com/topic/race-1 - [cache] - Live
@ Race Information (8)

more | all clusters 7. Dopefish.com & & &
Site for newbies as well as experienced Dopefish followers, chronicling the birth of the Dopefish, its numerous appearances in several computer games, and its eventual take-over of the human
find in clusters: race. Maintained by Mr. Dopefish himself, Joe Siegler of Apogee Software.

(Find ) www.dopefish.com - [cache] - Open Directory



Some Data

e K-mean algorithm assumes
this kind of structured data
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{ﬂl’“"ﬂs}
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{15 ps}

3. Each datapoint finds out
which Center it’s closest to.
(Thus each Center “owns” a
set of datapoints)
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{15 ps}
3. Each datapoint finds out
which Center it’s closest to.
4. Each Center finds the
centroid of the points it
owns

Auton’s Graphics
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K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

{ﬂla“'aﬂ5}

3. Each datapoint finds out
which Center it’s closest to.

4. Each Center finds the
centroid of the points it
owns...

5. ..and jumps there

6. ...Repeat until terminated!
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K-means

> Randomly initialize k centers
- H(0) =1£1(0);...,14,(0)

> Classify: Assign each point je{1,...N} to nearest center:
- Assignment: () () — arg min ||y; — 2|2
1

> Recenter: ;; becomes centroid of its point:
_ M§t+1) « arg mﬂin Z ||’u_xj||2
§:C(J)=1
- Equivalent to ;< average of all the points assigned to ;!



Which one is a snapshot of a converged k-means

When k-means is converged, there should be a set of centers and assignments
that do not change when applying 1 step of k-means

Example (a) Example (b)
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Example (c) Example (d)
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Does k-means converge??

> k-means is trying to minimize the following objective

> Optimize potential function:
k

minmin F(p,C) = minmin >~ ) ||,u7;—:cj||2
weooc 0 = c()=i

> Via alternating minimization
> Fix u, optimize C
> Fix C optimize u



Does k-means converge??

o there is only a finite set of values that { C(j) }J’.l:1 can take

(k" is large but finite)
e so there is only finite, k" at most, values for cluster-centers also
e each time we update them, we will never increase the objective

k
function Z Z ||)Cj—pti||%

i=1 j:C(j)=i
* the objective is lower bounded by zero

e after at most k" steps, the algorithm must converge
(as the assignments { C(j) }J’.‘:1 cannot return to previous

assignments in the course of k-means iterations)



downsides of k-means

1. it requires the number of clusters K to be specified by us

2. the final solution depends on the initialization
(does not find global minimum of the objective)
Initial position of centers final converged assignment
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k-means++: a smart initialization

Smart initialization:
1. Choose first cluster center uniformly at random from data points
2. Repeat K-1 times

3. For each data point x;, compute distance d; to nearest cluster center
4. Choose new cluster center from amongst data points, with probability

of x; being chosen proportional to (d;)2

e apply standard K-means after the initialization



Questions?



Lecture 25:

- Unsupervised learning
- Dimensionality reduction
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