
Lecture 23:
Principal Component Analysis

- Unsupervised learning

- Dimensionality reduction

- PCA

- Auto-encoder

- Clustering

- -means

- Spectral,t-SNE,UMAP

- Generative models

- Density estimation

k

The principal component analysis

• so far we considered finding ONE principal component

• it is the eigenvector corresponding to the maximum eigenvalue

of the covariance matrix  

• We can also use the Singular Value Decomposition (SVD) to find
such eigen vector

• note that is the data is not centered at the origin, we should re-
center the data before applying SVD

• in general we define and use multiple principal components

• if we need principal components, we take eigenvectors
corresponding to the largest eigenvalues of

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C

Algorithm: Principal Component Analysis
• input: data points , target dimension

• output: -dimensional subspace

• algorithm:

• compute mean

• compute covariance matrix 

• let be the set of (normalized) eigenvectors with
corresponding to the largest eigenvalues of

• return

• further the data points can be represented compactly via 

{xi}n
i=1 r ≪ d

r U

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr

How do we compute singular vectors?

• In practice: Lanczos method

• We will learn: power iteration

• Let be SVD of the matrix we want to compute  

the top one singular vector

• are the singular vectors  

(ordered in the decreasing order of the corresponding singular values)

• We also assume in order to ensure uniqueness of

C = USUT ∈ ℝd×d

U = [u1, u2, …, ud]

λ1 > λ2 u1

ṽt+1 ← Cvt

vt+1 ←
ṽt+1

| ṽt+1 |

Power iteration

ṽt+1 ← Cvt

vt+1 ←
ṽt+1

| ṽt+1 |

Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

• without any assumptions, the missing entries can be anything, and
no prediction is possible

n =

= d

Matrix completion
• however, the ratings are not arbitrary, but people with similar tastes

rate similarly

• such structure can be modeled using low dimensional representation

of the data as follows

• we will find a set of principal component vectors

• such that that ratings of user , can be represented as  
  
  
for some lower-dimensional for -th user and some

• for example, means how horror movie fans like each of the
movies,

• and means how much user is fan of horror movies

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i r ≪ d

u1 ∈ ℝd d

ai[1] i

Matrix completion
• let be the ratings matrix, and

assume it is fully observed, i.e. we know all the entries

• then we want to find and
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j

d n

U A≈

• if we observe all entries of , then we can solve  

 
which can be solved using PCA (i.e. SVD)

X
minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2

Matrix completion
• in practice, we only observe partially

• let denote observed ratings for user on movie
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let denote the -th row of and denote -th column of

• then user ’s rating on movie , i.e. is approximated by , which is the inner
product of (a column vector) and a column vector

• we can also write it as

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai

Matrix completion
• a natural approach to fit ’s and to given training data is to solve  

• this can be solved, for example via gradient descent or alternating
minimization

• this can be quite accurate, with small number of samples

vj a′￼is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2

Gradient descent

X

UA (Xji − (UA)ji)2

For illustration, 
we zoom in to a  
50x50 submatrix

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Matrix completion

•

• Gradient descent on and can be implemented via 
 
  

for all , where is the set of users who rated movie and  
 
  

 
for all , where is the set of movies that were rated by user

minimizeU,A ∑
(i, j)∈Strain

(Xji − vT
j ai)2

{vj}d
j=1 {ai}n

i=1

v(t)
j ← v(t−1)

j − 2η∑
i∈Sj

((v(t−1)
j)Ta(t−1)

i − Xji)a(t−1)
i

j ∈ {1,…, d} Sj j

a(t)
i ← a(t−1)

i − 2η∑
j∈Si

((v(t−1)
j)Ta(t−1)

i − Xji)v(t−1)
j

i ∈ {1,…, n} Si i

18

Matrix completion

•

• alternating minimization

• repeat

• fix ’s and find optimal

• for each , set the gradient to zero: 
, which gives 

 
 

• fix and find optimal ’s (similarly)

minimizeU,A ∑
(i, j)∈Strain

(Xji − vT
j ai)2

vj a′￼is
i

2∑
j∈Si

((v(t−1)
j)Tai − Xji)v(t−1)

j = 0

ai(∑
j∈Si

vjvT
j) = ∑

j∈Si

Xijvj

ai = (∑
j∈Si

vjvT
j)

−1

∑
j∈Si

Xijvj

a′￼is vj

19

Autoencoders
• PCA is great in capturing variations in linear subspaces

• It finds the best linear subspace for dimensionality reduction

• PCA fails when variation is in non-linear manifolds

• A non-linear encoding of data for dimensionality reduction
for these examples is to store the slope

xi
αi = xi[1]/xi[2]

Autoencoders
• Neural network perspective of PCA

• Recall PCA reconstruction is , which can be encoded as a
neural networks as follows

• This is a special neural network for unsupervised learning (or label is the
same as input), with first layer weight with no activation
function and second layer weight

̂xi = UUT xi

UT ∈ ℝr×d

U ∈ ℝr×d

xi[1]

xi[2]

xi[3]

xi[4]

xi[5]

xi[6]

ai[1]

and data is centered
d = 6

r = 3
ai = UT xi

ai[2]

ai[3]

̂xi[1]

̂xi[2]

̂xi[3]

̂xi[4]

̂xi[5]

̂xi[6]

Output has the same dimension

d = 6

• We train the weights  
of this neural network  
to minimize  
the squared loss 

• PCA is the optimal  
solution of this  
neural network training

arg min
U

n

∑
i=1

∥xi − ̂xi∥2
2

Autoencoders
• Autoencoders use neural networks to learn non-linear manifolds that

minimize the reconstruction loss

• , where the encoder and  
the decoder are neural networks

• We are essentially trying to learn the identity function, but with smaller
(non-linear) dimensionality

̂xi = gV(fW(xi)) fW : ℝd → ℝr

gV : ℝr → ℝd

xi[1]

xi[2]

xi[3]

xi[4]

xi[5]

xi[6]

ai[1]

and data is centered
d = 6
r = 3

ai = fW(xi)

ai[2]

ai[3]

̂xi[1]

̂xi[2]

̂xi[3]

̂xi[4]

̂xi[5]

̂xi[6]

Output has the same dimension

d = 6

• We train the weights  
of this neural network  
to minimize  
the squared loss 

arg min
U

n

∑
i=1

∥xi − ̂xi∥2
2

 fW(⋅) gV(⋅)

Example
• Autoencoder trained on Fashion MNIST dataset with r=64  

and 2 fully connected layers for encoder and decoder

https://www.tensorflow.org/tutorials/generative/autoencoder
64-dimensional manifold

Example

https://www.tensorflow.org/tutorials/generative/autoencoder

• An autencoder trained on clean data can be used  
to denoise noisy data

64-dimensional manifold

Questions?

• Beyond obvious data compression and dimensionality reduction,
such autoencoders have several important applications such as
de-noising and anomaly detection

Lecture 24:
Clustering with -meansk

- Unsupervised learning

- Dimensionality reduction

- PCA

- Auto-encoder

- Clustering

- -means

- Spectral,t-SNE,UMAP

- Generative models

- Density estimation

k

©Kevin Jamieson 2018

Clustering images

[Goldberger et al.]

Set of Images

©Kevin Jamieson 2018

Clustering web search results

©Kevin Jamieson 2018

Some Data

• K-mean algorithm assumes  
this kind of structured data

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations
{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.
(Thus each Center “owns” a
set of datapoints)

{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

R3

R5

R2 R3

R4

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.

4. Each Center finds the

centroid of the points it
owns

{μ1, …, μ5}

R3

R5

R2 R3

R4
μ1

μ2
μ3

μ4

μ5

©Kevin Jamieson 2018

K-means

1. Ask user how many clusters
they’d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out

which Center it’s closest to.

4. Each Center finds the

centroid of the points it
owns…

5. …and jumps there

6. …Repeat until terminated!

{μ1, …, μ5}

μ1

μ2
μ3

μ4

μ5

©Kevin Jamieson 2018

> Randomly initialize k centers
– (0) = (0),…, (0)

> Classify: Assign each point j∈{1,…N} to nearest center:
– Assignment:

> Recenter: becomes centroid of its point:
–

– Equivalent to ← average of all the points assigned to !

μ μ1 μk

μi

μi μi

K-means

Which one is a snapshot of a converged -meansk

Example (a)

Example (c) Example (d)

Example (b)

When -means is converged, there should be a set of centers and assignments  
that do not change when applying 1 step of -means

k
k

©Kevin Jamieson 2018

> -means is trying to minimize the following objective

> Optimize potential function:

> Via alternating minimization
> Fix , optimize C
> Fix C optimize

k

μ
μ

Does -means converge??k

• there is only a finite set of values that can take  
(is large but finite)

• so there is only finite, at most, values for cluster-centers also

• each time we update them, we will never increase the objective

function

• the objective is lower bounded by zero

• after at most steps, the algorithm must converge  
(as the assignments cannot return to previous
assignments in the course of -means iterations)

{C(j)}n
j=1

kn

kn

k

∑
i=1

∑
j:C(j)=i

∥xj − μi∥2
2

kn

{C(j)}n
j=1

k

Does -means converge??k

downsides of -means k
1. it requires the number of clusters K to be specified by us

2. the final solution depends on the initialization  

(does not find global minimum of the objective)

Trial 1

Trial 2

Initial position of centers final converged assignment

-means++: a smart initializationk
Smart initialization:
1. Choose first cluster center uniformly at random from data points

2. Repeat K-1 times

 3. For each data point xi, compute distance di to nearest cluster center

 4. Choose new cluster center from amongst data points, with probability
of xi being chosen proportional to (di)2

• apply standard K-means after the initialization

Questions?

Lecture 25:

- Unsupervised learning

- Dimensionality reduction

- PCA

- Auto-encoder

- Clustering

- -means

- Spectral,t-SNE,UMAP

- Generative models

- Density estimation

k

Questions?

Questions?

