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Principal Component Analysis
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The principal component analysis

• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  

                              


• We can also use the Singular Value Decomposition (SVD) to find 
such eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components


• if we need  principal components, we take  eigenvectors 
corresponding to the largest  eigenvalues of  
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Algorithm: Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace 


• algorithm: 


• compute mean    


• compute covariance matrix 

            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via 
           

{xi}n
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ai = UT(xi − x̄) ∈ ℝr



How do we compute singular vectors?

• In practice: Lanczos method

• We will learn: power iteration

• Let  be SVD of the matrix we want to compute  

the top one singular vector

•  are the singular vectors  

(ordered in the decreasing order of the corresponding singular values)

• We also assume  in order to ensure uniqueness of 

C = USUT ∈ ℝd×d

U = [u1, u2, …, ud]

λ1 > λ2 u1

ṽt+1 ← Cvt

vt+1 ←
ṽt+1

| ṽt+1 |



Power iteration

ṽt+1 ← Cvt

vt+1 ←
ṽt+1

| ṽt+1 |



Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and 
no prediction is possible

n =

= d



Matrix completion
• however, the ratings are not arbitrary, but people with similar tastes 

rate similarly

• such structure can be modeled using low dimensional representation 

of the data as follows

• we will find a set of principal component vectors 




• such that that ratings  of user , can be represented as  
               
                    
for some lower-dimensional  for -th user and some 


• for example,  means how horror movie fans like each of the  
movies,


• and  means how much user  is fan of horror movies               

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i r ≪ d

u1 ∈ ℝd d

ai[1] i



Matrix completion
• let  be the ratings matrix, and 

assume it is fully observed, i.e. we know all the entries


• then we want to find  and 
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j

d n

U A≈

• if we observe all entries of , then we can solve  

      


 
which can be solved using PCA (i.e. SVD)

X
minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2



Matrix completion
• in practice, we only observe  partially


• let  denote  observed ratings for user  on movie 
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the inner 
product of  (a column vector) and a column vector  


• we can also write it as 

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai



Matrix completion
• a natural approach to fit ’s and  to given training data is to solve  

                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples

vj a′￼is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2



Gradient descent

X

UA (Xji − (UA)ji)2

For illustration, 
we zoom in to a  
50x50 submatrix



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X
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Gradient descent

X
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Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Matrix completion

•                         


• Gradient descent on  and  can be implemented via 
 
                     

for all , where  is the set of users who rated movie  and  
 
                     

 
for all , where  is the set of movies that were rated by user  
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(Xji − vT
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Matrix completion

•            


• alternating minimization

• repeat


• fix ’s and find optimal 


• for each , set the gradient to zero: 
, which gives 

 
 




• fix  and find optimal ’s (similarly)

minimizeU,A ∑
(i, j)∈Strain

(Xji − vT
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Autoencoders
• PCA is great in capturing variations in linear subspaces


• It finds the best linear subspace for dimensionality reduction


• PCA fails when variation is in non-linear manifolds


• A non-linear encoding of data  for dimensionality reduction 
for these examples is to store the slope 

xi
αi = xi[1]/xi[2]



Autoencoders
• Neural network perspective of PCA


• Recall PCA reconstruction is , which can be encoded as a 
neural networks as follows


• This is a special neural network for unsupervised learning (or label is the 
same as input), with first layer weight  with no activation 
function and second layer weight  

̂xi = UUT xi

UT ∈ ℝr×d

U ∈ ℝr×d

xi[1]

xi[2]

xi[3]

xi[4]

xi[5]

xi[6]

ai[1]



and data is centered
d = 6


r = 3
ai = UT xi

ai[2]

ai[3]

̂xi[1]

̂xi[2]

̂xi[3]

̂xi[4]

̂xi[5]

̂xi[6]

Output has the same dimension

d = 6

• We train the weights  
of this neural network  
to minimize  
the squared loss 

   


• PCA is the optimal  
solution of this  
neural network training

arg min
U

n

∑
i=1

∥xi − ̂xi∥2
2



Autoencoders
• Autoencoders use neural networks to learn non-linear manifolds that 

minimize the reconstruction loss 


• , where the encoder  and  
the decoder  are neural networks


• We are essentially trying to learn the identity function, but with smaller 
(non-linear) dimensionality

̂xi = gV( fW(xi)) fW : ℝd → ℝr

gV : ℝr → ℝd

xi[1]

xi[2]

xi[3]

xi[4]

xi[5]

xi[6]

ai[1]



and data is centered
d = 6 
r = 3

ai = fW(xi)

ai[2]

ai[3]

̂xi[1]

̂xi[2]

̂xi[3]

̂xi[4]

̂xi[5]

̂xi[6]

Output has the same dimension

d = 6

• We train the weights  
of this neural network  
to minimize  
the squared loss 

   
arg min
U

n

∑
i=1

∥xi − ̂xi∥2
2

        fW( ⋅ )         gV( ⋅ )



Example
• Autoencoder trained on Fashion MNIST dataset with r=64  

and 2 fully connected layers for encoder and decoder 

https://www.tensorflow.org/tutorials/generative/autoencoder
64-dimensional manifold



Example

https://www.tensorflow.org/tutorials/generative/autoencoder

• An autencoder trained on clean data can be used  
to denoise noisy data 

64-dimensional manifold



Questions?

• Beyond obvious data compression and dimensionality reduction, 
such autoencoders have several important applications such as 
de-noising and anomaly detection 
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Clustering with -meansk
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Clustering images

[Goldberger et al.]

Set of Images
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Clustering web search results
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Some Data

• K-mean algorithm assumes  
this kind of structured data
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 


2. Randomly guess k cluster 
Center locations 
{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 


2. Randomly guess k cluster 
Center locations 



3. Each datapoint finds out 

which Center it’s closest to. 
(Thus each Center “owns” a 
set of datapoints)

{μ1, …, μ5}

μ1

μ2 μ3

μ4

μ5

R3

R5

R2 R3

R4
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 


2. Randomly guess k cluster 
Center locations 



3. Each datapoint finds out 

which Center it’s closest to.

4. Each Center finds the 

centroid of the points it 
owns

{μ1, …, μ5}

R3

R5

R2 R3

R4
μ1

μ2
μ3

μ4

μ5
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K-means

1. Ask user how many clusters 
they’d like. (e.g. k=5) 


2. Randomly guess k cluster 
Center locations 



3. Each datapoint finds out 

which Center it’s closest to.

4. Each Center finds the 

centroid of the points it 
owns…


5. …and jumps there

6. …Repeat until terminated!

{μ1, …, μ5}

μ1

μ2
μ3

μ4

μ5
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> Randomly initialize k centers
– (0) = (0),…, (0)

> Classify: Assign each point j∈{1,…N} to nearest center:
– Assignment: 

> Recenter:  becomes centroid of its point:
–   

– Equivalent to ← average of all the points assigned to !

μ μ1 μk

μi

μi μi

K-means



Which one is a snapshot of a converged -meansk

Example (a)

Example (c) Example (d)

Example (b)

When -means is converged, there should be a set of centers and assignments  
that do not change when applying 1 step of -means

k
k



©Kevin Jamieson 2018

> -means is trying to minimize the following objective

> Optimize potential function:

> Via alternating minimization
> Fix , optimize C
> Fix C optimize 

k

μ
μ

Does -means converge??k



• there is only a finite set of values that  can take  
(  is large but finite)


• so there is only finite,  at most, values for cluster-centers also

• each time we update them, we will never increase the objective 

function 


• the objective is lower bounded by zero


• after  at most  steps, the algorithm must converge  
(as the assignments  cannot return to previous 
assignments in the course of -means iterations)

{C( j)}n
j=1

kn

kn

k

∑
i=1

∑
j:C( j)=i

∥xj − μi∥2
2

kn

{C( j)}n
j=1

k

Does -means converge??k



downsides of -means k
1. it requires the number of clusters K to be specified by us

2. the final solution depends on the initialization  

(does not find global minimum of the objective)

Trial 1

Trial 2

Initial position of centers       final converged assignment



-means++: a smart initializationk
Smart initialization: 
1. Choose first cluster center uniformly at random from data points

2. Repeat K-1 times

    3. For each data point xi, compute distance di to nearest cluster center

    4. Choose new cluster center from amongst data points, with probability 
of xi being chosen proportional to (di)2


• apply standard K-means after the initialization



Questions?
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