Lecture 23: Principal Component Analysis

- Unsupervised learning
 - Dimensionality reduction
 - PCA
 - Auto-encoder
 - Clustering
 - *k*-means
 - Spectral,t-SNE,UMAP
 - Generative models
 - Density estimation

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can also use the Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- output: r-dimensional subspace U
- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of ${\bf C}$
- return $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

How do we compute singular vectors?

- In practice: Lanczos method
- We will learn: power iteration
- Let $C = USU^T \in \mathbb{R}^{d \times d}$ be SVD of the matrix we want to compute the top one singular vector
 - $U = [u_1, u_2, ..., u_d]$ are the singular vectors (ordered in the decreasing order of the corresponding singular values)
 - We also assume $\lambda_1 > \lambda_2$ in order to ensure uniqueness of u_1

$$\tilde{v}_{t+1} \leftarrow Cv_t$$

$$v_{t+1} \leftarrow \frac{\tilde{v}_{t+1}}{|\tilde{v}_{t+1}|}$$

Power iteration

$$\tilde{v}_{t+1} \leftarrow Cv_t$$

$$v_{t+1} \leftarrow \frac{\tilde{v}_{t+1}}{|\tilde{v}_{t+1}|}$$

Matrix completion for recommendation systems

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$
- such that that ratings $x_i \in \mathbb{R}^d$ of user i, can be represented as

$$x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$
$$= \mathbf{U}a_i$$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies,
- and $a_i[1]$ means how much user i is fan of horror movies

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$ that approximates \mathbf{X}

User i

• if we **observe all entries** of \mathbf{X} , then we can solve minimize $\mathbf{U}_{\mathbf{U},\mathbf{A}} \sum_{i=1}^{n} \|x_i - \mathbf{U}a_i\|_2^2$

which can be solved using PCA (i.e. SVD)

- in practice, we only observe X partially
- let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- let v_j^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. \mathbf{X}_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_j (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_j^T a_i$

- a natural approach to fit v_j 's and $a_i's$ to given training data is to solve $\min \mathbf{Z}_{\mathbf{U},\mathbf{A}} \sum_{(i,j) \in S_{\text{train}}} (\mathbf{X}_{ji} v_j^T a_i)^2$
- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

For illustration, we zoom in to a 50x50 submatrix

sampled matrix

Gradient descent output UA

squared error $(\mathbf{X}_{ji} - (\mathbf{U}\mathbf{A})_{ji})^2$

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

minimize_{U,A}
$$\sum_{(i,j) \in S_{\text{train}}} (\mathbf{X}_{ji} - v_j^T a_i)^2$$

• Gradient descent on $\{v_j\}_{j=1}^d$ and $\{a_i\}_{i=1}^n$ can be implemented via

$$v_j^{(t)} \leftarrow v_j^{(t-1)} - 2\eta \sum_{i \in S_i} ((v_j^{(t-1)})^T a_i^{(t-1)} - \mathbf{X}_{ji}) a_i^{(t-1)}$$

for all $j \in \{1,...,d\}$, where S_j is the set of users who rated movie j and

$$a_i^{(t)} \leftarrow a_i^{(t-1)} - 2\eta \sum_{j \in S_i} ((v_j^{(t-1)})^T a_i^{(t-1)} - \mathbf{X}_{ji}) v_j^{(t-1)}$$

for all $i \in \{1,...,n\}$, where S_i is the set of movies that were rated by user i

minimize_{U,A}
$$\sum_{(i,j)\in S_{\text{train}}} (\mathbf{X}_{ji} - v_j^T a_i)^2$$

- alternating minimization
 - repeat
 - fix v_j 's and find optimal $a_i's$
 - for each i, set the gradient to zero: $2\sum_{j\in S_i}((v_j^{(t-1)})^Ta_i-\mathbf{X}_{ji})v_j^{(t-1)}=0, \text{ which gives}$

$$a_{i} \left(\sum_{j \in S_{i}} v_{j} v_{j}^{T} \right) = \sum_{j \in S_{i}} \mathbf{X}_{ij} v_{j}$$

$$a_{i} = \left(\sum_{j \in S_{i}} v_{j} v_{j}^{T} \right)^{-1} \sum_{j \in S_{i}} \mathbf{X}_{ij} v_{j}$$

• fix $a_i's$ and find optimal v_j 's (similarly)

Autoencoders

- PCA is great in capturing variations in linear subspaces
 - It finds the best linear subspace for dimensionality reduction

- PCA fails when variation is in non-linear manifolds
 - A non-linear encoding of data x_i for dimensionality reduction for these examples is to store the slope $\alpha_i = x_i[1]/x_i[2]$

Autoencoders

Neural network perspective of PCA

and data is centered

- Recall PCA reconstruction is $\hat{x}_i = UU^Tx_i$, which can be encoded as a neural networks as follows
- This is a special neural network for unsupervised learning (or label is the same as input), with first layer weight $U^T \in \mathbb{R}^{r \times d}$ with no activation function and second layer weight $U \in \mathbb{R}^{r \times d}$

d = 6

Autoencoders

- Autoencoders use neural networks to learn non-linear manifolds that minimize the reconstruction loss
 - $\hat{x}_i = g_V(f_W(x_i))$, where the encoder $f_W : \mathbb{R}^d \to \mathbb{R}^r$ and the decoder $g_V : \mathbb{R}^r \to \mathbb{R}^d$ are neural networks
 - We are essentially trying to learn the identity function, but with smaller (non-linear) dimensionality

Example

 Autoencoder trained on Fashion MNIST dataset with r=64 and 2 fully connected layers for encoder and decoder

https://www.tensorflow.org/tutorials/generative/autoencoder

Example

 An autencoder trained on clean data can be used to denoise noisy data

Questions?

 Beyond obvious data compression and dimensionality reduction, such autoencoders have several important applications such as de-noising and anomaly detection

Lecture 24: Clustering with k-means

- Unsupervised learning
 - Dimensionality reduction
 - PCA
 - Auto-encoder
 - Clustering
 - *k*-means
 - Spectral,t-SNE,UMAP
 - Generative models
 - Density estimation

Clustering images

[Goldberger et al.]

Clustering web search results

Some Data

 K-mean algorithm assumes this kind of structured data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations $\{\mu_1,\ldots,\mu_5\}$

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations $\{\mu_1, ..., \mu_5\}$
- Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations $\{\mu_1, ..., \mu_5\}$
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations $\{\mu_1, \ldots, \mu_5\}$
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

> Randomly initialize k centers

$$-\mu(\mathbf{0}) = \mu_1(\mathbf{0}), \dots, \mu_k(\mathbf{0})$$

- > Classify: Assign each point j∈{1,...N} to nearest center:
 - Assignment: $C^{(t)}(j) \leftarrow \arg\min_{i} ||\mu_i x_j||^2$
- > Recenter: μ_i becomes centroid of its point:
 - $\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu x_j||^2$
 - Equivalent to μ_i average of all the points assigned to μ_i !

Which one is a snapshot of a converged k-means

When k-means is converged, there should be a set of centers and assignments that do not change when applying 1 step of k-means

Does *k*-means converge??

- > k-means is trying to minimize the following objective
- > Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- > Via alternating minimization
 - > Fix μ , optimize C
 - > Fix C optimize μ

Does *k*-means converge??

- there is only a finite set of values that $\{C(j)\}_{j=1}^n$ can take (k^n) is large but finite)
- so there is only finite, k^n at most, values for cluster-centers also
- each time we update them, we will never increase the objective function $\sum_{i=1}^k \sum_{j:C(j)=i} \|x_j \mu_i\|_2^2$
- the objective is lower bounded by zero
- after at most k^n steps, the algorithm must converge (as the assignments $\{C(j)\}_{j=1}^n$ cannot return to previous assignments in the course of k-means iterations)

downsides of k-means

- 1. it requires the number of clusters K to be specified by us
- 2. the final solution depends on the initialization (does not find global minimum of the objective)

k-means++: a smart initialization

Smart initialization:

- 1. Choose **first** cluster center uniformly at random from data points
- 2. Repeat *K-1* times
 - 3. For each data point x_i , compute distance d_i to nearest cluster center
- 4. Choose new cluster center from amongst data points, with probability of x_i being chosen proportional to $(d_i)^2$
- apply standard K-means after the initialization

Questions?

Lecture 25:

- Unsupervised learning
 - Dimensionality reduction
 - PCA
 - Auto-encoder
 - Clustering
 - *k*-means
 - Spectral,t-SNE,UMAP
 - Generative models
 - Density estimation

Questions?

Questions?