- Homework 3, due Sunday, February 27 midnight
- We will add more office hours on Saturday and Sunday
- Schedule on Canvas (and more coming)
- Thai Hoang Saturday 9-10 AM
- Hugh Sun Saturday 1:30-2:30 PM
- Sewoong Oh Sunday 10-11 AM 0
- Homework 4, due Sunday, March 13th Midnight
- You are allowed only 3 late days for HW4 even if you have more remaining.
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Lecture 22:
Principal Component AnaIyS|s

- Supervised Learning with labelled data { (x;, y;) }'_,

- Goal: fit a function to predict y
- Regression/Classification
- Linear models / Kernels / Nearest Neighbor / Neural Networks

- Unsupervised Learning with unlabelled data {x;}’_,

- Goal: find pattern in clouds of data {x;}7_,

- Principal Component Analysis
- Clustering




Motivation: dimensionality reduction

it takes 71 X d memory to store data {x;}"_, with x; € R?

but many real data have patterns that repeat over samples
Can we exploit this redundancy? Can we find some patterns and use them?

Can we represent each image compactly,
but still preserve most of information, by exploiting similarities?

d=32x32pixels per image
n images
- d X n real values to store the data




Principal component analysis finds a
compact linear representation

Principal components:
e patterns that capture the distinct _#; € R® " u )
features of the samples is called j
principal component
(to be formally defined later)

e weuser = 25 principal
components




Principal component analysis finds a
compact linear representation

Principal components:
patterns that capture the distinct _u € R® " u | ,
features of the samples is called |
principal component

(to be formally defined later)

we use r = 25 principal
components

* we can represent each sample as ’

a weighted linear combination [7 &
of the principal components, and [
just store the weights :
(as opposed to all pixel values)

@ ~ alllu; + al2]u, + -+ + a[25]u,s

e Each image is now represented by r = 25 numbers a = (a[1], ..., a[25])

e To store n images, it requires memory ofonlyd X r+rXn < dXn
1,000 x 25+ 25 X n 1,000 X n



10 principal components give a pretty good
reconstruction of a face

average face x+a[llu;, x+alllu, +al2]u,

r=2 r=3

Ground truths real face



Assumption

Notice how we started with the average face x = — Z X;

« PCAisappliedto {x; — X}i_,

. For S|mpI|C|ty, we will assume that x;’s are centered such that
PREL

. otherW|se without loss of generality,
everythlng we do can be applled to the re-centered version of the data,

Le. {x; —X}'_,, withXx = —Zx



How do we define the principal components?
(/(STLL'(‘ —o H'C'-?Sj

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € RY, with
||uj||2 = Ifor all j to uniquely define principal components when we can,
such that each data can be represented as linear combination of those direction
vectors, i.e.
@ ~ p; = al[llu + -+ alrlu,

1

_xl.[l] -
a;[1]
X; = ﬁ a, = :
: Dimensionality al-[r]
d=32x32 ' Reduction - -
x;[d]

e Which choice of the principal components, {u,, ..., u,}, are better?
e But first, how do we find @, given x; and {u, ..., u,}?



How do we find the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € R?, with luill, =1

for all j, such that each data can be represented as linear combination of those
direction vectors, i.e.

x; = p; = alllu; + - +ajlrlu, [ x,[1]]
’ afl]

» those directions that minimize the :
average reconstruction error for a dataset Xj . —> a;, =

is called the principal components a;[r]

e given achoice of uy, ..., u,, x[d]
the best representation p; of x;

is the projection of the point onto
the subspace spanned by uj’s, e.

1
T U, X

2
a;lj] = U X, \
=Y Wl % D;

J=1

a;[J]
e we will use these without proving it



Principal components is the subspace that
minimizes the reconstruction error

1“2

minimize —Z ||x; —
n - 4

. 0.
e constract\om Evver

subjectto ||u|, =1 forall jand u].Tuf =0 for allj #7¢
/_

I"

@ Z(ux)u-Zuux— x—UU
Jj= j=1 j=1 Lt( ——

f“z Uy ;

where U = [Uy U, - u] € R LE :( 2

ve con E-\/\’o‘l/

minimize — Z lx; — UU x|
uep Sl )
Ay 5 ‘
subject to UTU =Ly, T Sice
Hﬂ(ﬁ«.ﬁ—@
- Small rank r gives efficiency and large r gives less reconstruction error
- Q. How do we solve this optimization?

S G



Minimizing reconstruction error
to find principal components

i=1

BN Ziawf lX UO'Xy +)((U } mlnlmlze —ZIIX - UU x5
Iy

Tor .
f»c 2~V x(} subjectto U'U=1_,




Minimizing reconstruction error
to find principal components

Minimize Reconstruction Error

1 ¢ L 1 ¢
—Z llx; — UU x||2 minimize — Z llx; — UU” ;|2
st v =

1l’l
_1 12— 20 UUTx + xTU UTU Ux. .
- Y {||x,||2 2xTUU T x,+xTU UTU U x,} subjectto UTU =1,

i=1 1
] & 1 &
=Ykl - =) xuu'y
n i=1 n i=1

does not depend on U v

r n
|
—_ T 2 . o« . . .
=C- Z ; Z (uj x;) Maximizing Variance captured in
J=1 i=1 principal directions

Variance in direction u;

r 1 n
maximize Z — Z (ulx)?
U n /

j=1 " i=1

subjectto U'U=1_,

Recall we assumed x;’s are centered, i.e., zero-mean



Variance maximization vs. reconstruction error minimization

e both give the same principal components as optimal solution,
because Error? + Variance = ||xl-||%

2

X;
X
Pi

Reconstruction error minimization
- - - D . .
finds directions that minimize

the distances to p,’s \
-1

ariance maximization finds directions
that maximizes the spread of p,’s



Maximizing variance to find principal components

maX|m|ze Z Z(u Tx)?

subjectto U'U=1_,

We will solve it for r = 1 case,
and the general case follows similarly

1 & 'T</_L§ IT
maximize — Y ulx)? = WU X QLL
" 2( ) L

w:|[ul[=1

i=1 I~
- C.
©

maximize u’Cu

u:llull=1

How do you find u?



Maximizing variance to find principal components

maximize, u’ Cu >0 (a)

subject to ||u||% =1

e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize,, u!Cu (b)
subject to ||u||% <1
e  Why?



Maximizing variance to find principal components

maximize,, u’ Cu (a)
subject to ||u||% =1

e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize,, u’ Cu (b)
subject to ||u||% <1

e thereason is that, because u'Cu>0foralu e IRd, the optimal
solution of (b) has to have ||u||% =1

e if it did not have ||u||2 = 1, say ||u||2 = 0.9, then we can just multiply
2

this u by a constant factor of 1/ 10/9 and increase the objective by a
factor of 10/9 while still satisfying the constraints



maximize, u’ Cu (b)

subject to ||u||% <1

we are maximizing the variance, while keeping u small

this can be reformulated as an unconstrained problem, with
Lagrangian encoding, to move the constraint into the objective

maximize,ps u! Cu — /1||M||% (¢)

Fg(u)

this encourages small 1 as we want, and we can make this
connection precise: there exists a (unknown) choice of 4 such
that the optimal solution of (¢) is the same as the optimal solution

of (b)

further, for this choice of 4, exists an optimal u* with ||u*|[, = 1



Solving the unconstrained optimization

maximize,cps u' Cu — Allull;

Fy(u)

e to find such A and the corresponding u, we solve the unconstrained
optimization, by setting the gradient to zero

VF(u) = 2Cu—2Au =0

a0
= C' 2;\«4
e the candidate solution satisfiewu = /1[;!, <= .

i.e. an eigenvector of C & (A M;L%CGW fet
e let (AY, uD) denote the largest eigenvalue and corresponding
eigenvector of C,

e We will normalize the eigenvector such that ||u(1)||% =1

e Selecting A = 2D the maximum value of zero is achieved when
u=ub, why?

e No other choice of A gives a solution with ||u||, = 1



The principal component analysis

e so far we considered finding ONE principal component u &€ R4

* it is the eigenvector corresponding to the maximum eigenvalue
of the covariance matrix

1
C = —XTX € R4
n

* We can also use the Singular Value Decomposition (SVD) to find
such eigen vector

* note that is the data is not centered at the origin, we should re-
center the data before applying SVD

* in general we define and use multiple principal components

e if we need r principal components, we take r eigenvectors
corresponding to the largest r eigenvalues of C



Algorithm: Principal Component Analysis

input: data points {x;}_, target dimension r < d

output: r-dimensional subspace U
algorithm:

1
compute mean x = —

i=1
o compute covarlance matrix

Z (= D) =)'

o let(ug,...,u,) be the set of (normalized) eigenvectors with
corresponding to the largest r eigenvalues of C
e retunU=[U U, - U]

further the data points can be represented compactly via



Matrix completion for recommendation systems

2

4

4

1=

=

-
n =5-10 users \
10° queries

A

ssiow (0T - ¢

¥

e users provide ratings on a few movies, and we want to predict the

missing entries in this ratings matrix, so that we can make

recommendations

e without any assumptions, the missing entries can be anything, and

no prediction is possible



Matrix completion

however, the ratings are not arbitrary, but people with similar tastes
rate similarly

such structure can be modeled using low dimensional representation
of the data as follows

we will find a set of principal component vectors

U — [ul u2 ur] e Rd)(r
such that that ratings x; € R of user i, can be represented as
x, = a[l]u; + ---alr]u,
= Ug,

for some lower-dimensional a; € R’ for i-th user and some r < d

for example, u; € R4 means how horror movie fans like each of the d
movies,

and a,[ 1] means how much user i is fan of horror movies



Matrix completion

e letX=[X X - X,] € R pe the ratings matrix, and
assume it is fully observed, i.e. we know all the entries

¢ then we want to find U € R and

A=[a a, - a,] € R that approximates X
X ~ U A
Movie ] —
d
T n e if we observe all errlitries of X, then we can solve
User i minimizey; Z lx; — Ua|l3

i=1

which can be solved using PCA (i.e. SVD)



Matrix completion

e in practice, we only observe X partially
e let Syain = {(isj)}o_, denote N observed ratings for user i, on movie j,

x" s~ UuA l

| | T
.. B a; for user i
|
_ vI for movie j
[ | B 5 — .V ]
d |
n

o let va denote the j-th row of U and a; denote i-th column of A

« then user I’s rating on movie J, i.e. Xﬁ is approximated by vaal-, which is the inner

product of V; (a column vector) and a column vector g;

o . T
« we can also write it as (v;, a;) = v; ¢,



Matrix completion

e a natural approach to fit vj’s and a;s to given training data is to solve
. . . T 2
minimizey o Z X —via)
(i,j)EStrain

* this can be solved, for example via gradient descent or alternating
minimization
* this can be quite accurate, with small number of samples



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

For illustration,
we zoom in to a
50x50 submatrix

Gradient descent output UA squared error Xj— (UA)ji)Z
- ™ = = - = = o - - _--ﬂ
i = =

n
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LN 28 | -m EBNE B EEE RN
LB | n n |

0.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA

S ke BTN B R

- = - - |
- = [ ] =
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| s - | m=s .~ n
oLy E-rr
Il [ ] - =
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0.50% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
-1 = . |
= o e+ i LS

§ |

] d "
e - ola 0% =0 -
- » - - - - -

0 - B
8 ol ull & = =
ol B

e e Bl B
. ---. -
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0.75% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA squared error (X;; — (UA),)?

- " ™ = f el s - = |
R ey =

wle g AR, =" =
e

1.00% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

1.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X

Gradient descent output UA
Ez!' .!:-'u*!

sampled matrix

squared error ( — (UA),)?

i 'h.l =

ol B - .l-‘l. 1 "-'IE"H

1.50% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

- .

squared error (X;— (UA);)?

1.75% sampled



Questions?



