- Homework 3, due Sunday, February 27 midnight
- We will add more office hours on Saturday and Sunday
- Schedule on Canvas (and more coming)
 - Thai Hoang Saturday 9-10 AM
 - Hugh Sun Saturday 1:30-2:30 PM
 - Sewoong Oh Sunday 10-11 AM
- Homework 4, due Sunday, March 13th Midnight
- You are allowed only 3 late days for HW4 even if you have more remaining.

Lecture 22: Principal Component Analysis

- Supervised Learning with labelled data $\{(x_i, y_i)\}_{i=1}^n$
 - Goal: fit a function to predict y
 - Regression/Classification
 - Linear models / Kernels / Nearest Neighbor / Neural Networks
- **Unsupervised Learning** with unlabelled data $\{x_i\}_{i=1}^n$
 - Goal: find pattern in clouds of data $\{x_i\}_{i=1}^n$
 - Principal Component Analysis
 - Clustering

Motivation: dimensionality reduction

- it takes $n \times d$ memory to store data $\{x_i\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$
- but many real data have patterns that repeat over samples
- Can we exploit this redundancy? Can we find some patterns and use them?
- Can we represent each image compactly, but still preserve most of information, by exploiting similarities?

d=32x32pixels per image n images $d \times n$ real values to store the data

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components

Principal components: $u_1 \in \mathbb{R}^d$ u_2

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components
- we can represent each sample as a weighted linear combination of the principal components, and just store the weights (as opposed to all pixel values)

Principal components: $u_1 \in \mathbb{R}^d$ u_2

$$\approx a[1]u_1 + a[2]u_2 + \dots + a[25]u_{25}$$

- Each image is now represented by r = 25 numbers a = (a[1], ..., a[25])
- To store n images, it requires memory of only $d \times r + r \times n \ll d \times n$ $1.000 \times 25 + 25 \times n$ $1.000 \times n$

10 principal components give a pretty good reconstruction of a face

average face $\bar{x} + a[1]u_1 - \bar{x} + a[1]u_1 + a[2]u_2$

Assumption

- Notice how we started with the average face $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- PCA is applied to $\{x_i \bar{x}\}_{i=1}^n$
- For simplicity, we will assume that x_i 's are centered such that

$$\frac{1}{n} \sum_{i=1}^{n} x_i = 0$$

otherwise, without loss of generality, everything we do can be applied to the re-centered version of the data, i.e. $\{x_i - \bar{x}\}_{i=1}^n$, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

i.e.
$$\{x_i - \bar{x}\}_{i=1}^n$$
, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

How do we define the principal components?

Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, ..., u_r \in \mathbb{R}^d$, with $||u_i||_2 = 1$ for all j to uniquely define principal components when we can, such that each data can be represented as linear combination of those direction vectors, i.e.

$$(x_i)$$

$$\approx$$

$$\approx p_i = a_i[1]u_1 + \dots + a_i[r]u_r$$

$$x_{i} = \begin{bmatrix} x_{i}[1] \\ \vdots \\ \vdots \\ \vdots \\ x_{i}[d] \end{bmatrix}$$
Dimensionality
$$a_{i} = \begin{bmatrix} a_{i}[1] \\ \vdots \\ a_{i}[r] \end{bmatrix}$$
Reduction

- Which choice of the principal components, $\{u_1, \ldots, u_r\}$, are better?
- But first, how do we find a_i given x_i and $\{u_1, ..., u_r\}$?

How do we find the principal components?

• Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, \ldots, u_r \in \mathbb{R}^d$, with $\|u_j\|_2 = 1$ for all j, such that each data can be represented as linear combination of those direction vectors, i.e.

$$x_i \approx p_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$
 $x_i \approx p_i = a_i[1]u_1 + \cdots + a_i[r]u_r$
those directions that minimize the

- those directions that minimize the average reconstruction error for a dataset is called the **principal components**
- given a choice of u_1, \ldots, u_r , the best representation p_i of x_i is the projection of the point onto the subspace spanned by u_i 's, i.e.

$$a_{i}[j] = u_{j}^{T} x_{i}$$

$$p_{i} = \sum_{j=1}^{r} (u_{j}^{T} x_{i}) u_{j}$$

$$\underbrace{\sum_{j=1}^{r} (u_{j}^{T} x_{i}) u_{j}}_{a_{i}[j]}$$

we will use these without proving it

Principal components is the subspace that minimizes the reconstruction error

$$\begin{aligned} & \underset{u_1,\ldots,u_r}{\text{minimize}} \ \frac{1}{n} \sum_{i=1}^n \|x_i - p_i\|_2^2 \\ & \text{subject to} \ \|u_j\|_2 = 1 \text{ for all } j \text{ and } \underbrace{u_j^T u_\ell = 0}_{T} \text{ for all } j \neq \ell \\ & p_i = \sum_{j=1}^r (u_j^T x_i) u_j = \sum_{j=1}^r u_j u_j^T x_i = \left(\sum_{j=1}^r u_j u_j^T\right) x_i = \underbrace{\mathbf{U} \mathbf{U}^T x_i}_{y_i = \mathbf{U}^T \mathbf{U}^$$

- Small rank r gives efficiency and large r gives less reconstruction error
- Q. How do we solve this optimization?

Minimizing reconstruction error to find principal components

$$\frac{1}{n} \sum_{i=1}^{n} \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{i=1}^{n} \left\| x_i - \mathbf{U} \mathbf{U}^{\mathsf{T}} x_i \right\|_{2}^{2} \right\} \\
= \left\{ x_i x_i^{\mathsf{T}} - \sum_{$$

Minimizing reconstruction error to find principal components

Minimize Reconstruction Error

$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - UU^T x_i\|_2^2
= \frac{1}{n} \sum_{i=1}^{n} \left\{ \|x_i\|_2^2 - 2x_i^T UU^T x_i + x_i^T U U^T U U^T x_i \right\}
= \mathbf{I} \sum_{i=1}^{n} \left\{ \|x_i\|_2^2 - 2x_i^T U U^T x_i + x_i^T U U^T U U^T x_i \right\}$$

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Maximizing Variance captured in principal directions

Variance in direction
$$u_j$$

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

Recall we assumed x_i 's are centered, i.e., zero-mean

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution, because $\text{Error}^2 + \text{Variance} = ||x_i||_2^2$

Maximizing variance to find principal components

$$\underset{U}{\text{maximize}} \quad \sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

We will solve it for r=1 case, and the general case follows similarly

maximize
$$\frac{1}{n} \sum_{i=1}^{n} (u^{T} x_{i})^{2}$$

maximize $u^{T} C u$
 $u: ||u||_{2} = 1$

maximize $u^{T} C u$
 $u: ||u||_{2} = 1$

How do you find u?

Maximizing variance to find principal components

maximize_{$$u$$} $u^T \mathbf{C} u \geq \mathcal{O}$ (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

$$\text{maximize}_{u} u^{T} \mathbf{C} u \qquad (b) \\
 \text{subject to} \quad ||u||_{2}^{2} \le 1$$

Why?

Maximizing variance to find principal components

maximize_{$$u$$} u^T **C** u (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- the reason is that, because $u^T \mathbf{C} u \ge 0$ for all $u \in \mathbb{R}^d$, the optimal solution of (b) has to have $||u||_2^2 = 1$
- if it did not have $||u||_2^2 = 1$, say $||u||_2^2 = 0.9$, then we can just multiply this u by a constant factor of $\sqrt{10/9}$ and increase the objective by a factor of 10/9 while still satisfying the constraints

maximize_u $u^T \mathbf{C} u$ (b) subject to $||u||_2^2 \le 1$

- we are maximizing the variance, while keeping u small
- this can be reformulated as an unconstrained problem, with Lagrangian encoding, to move the constraint into the objective

$$\max_{u \in \mathbb{R}^d} \underbrace{u^T \mathbf{C} u - \lambda \|u\|_2^2}_{F_i(u)} \qquad (c)$$

- this encourages small u as we want, and we can make this connection precise: there exists a (unknown) choice of λ such that the optimal solution of (c) is the same as the optimal solution of (b)
- further, for this choice of λ , exists an optimal u^* with $||u^*||_2 = 1$

Solving the unconstrained optimization

$$\max_{u \in \mathbb{R}^d} \underbrace{u^T \mathbf{C} u - \lambda \|u\|_2^2}_{F_{\lambda}(u)}$$

to find such λ and the corresponding u, we solve the unconstrained

$$V \Gamma_{\lambda}(u) = 2Cu - 2\lambda u = 0$$
Jution satisfies: $Cu = \lambda u$

- optimization, by setting the gradient to $\Sigma = \nabla F_{\lambda}(u) = 2\mathbf{C}u 2\lambda u = 0$ the candidate solution satisfies: $\mathbf{C}u = \lambda u$, the candidate solution satisfies: $\mathbf{C}u = \lambda u$ and $\mathbf{C}u = \lambda$
- let $(\lambda^{(1)}, u^{(1)})$ denote the largest eigenvalue and corresponding eigenvector of C.
- We will normalize the eigenvector such that $||u^{(1)}||_2^2 = 1$
- Selecting $\lambda = \lambda^{(1)}$, the maximum value of zero is achieved when $u = u^{(1)}$, why?
- No other choice of λ gives a solution with $||u||_2 = 1$

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can also use the Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- **output**: r-dimensional subspace U
- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of $\mathbb C$
- return $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

Matrix completion for recommendation systems

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$
- such that that ratings $x_i \in \mathbb{R}^d$ of user i, can be represented as

$$x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$

= $\mathbf{U}a_i$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies,
- and $a_i[1]$ means how much user i is fan of horror movies

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$ that approximates \mathbf{X}

which can be solved using PCA (i.e. SVD)

- in practice, we only observe X partially
- let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- let v_i^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. \mathbf{X}_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_i (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_i^T a_i$

• a natural approach to fit v_j 's and $a_i's$ to given training data is to solve $\min_{(i,j) \in S_{\text{train}}} (\mathbf{X}_{ji} - v_j^T a_i)^2$

- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

For illustration, we zoom in to a 50x50 submatrix

Gradient descent output UA

squared error $(\mathbf{X}_{ji} - (\mathbf{U}\mathbf{A})_{ji})^2$

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

Questions?