- Homework 3, due Saturday, February 26 midnight

Lecture 21:

Nearest Neighbor Methods

- Yet another non-linear model
- Kernel method
- Neural Network
- Nearest Neighbor method
- A model is called “parametric” if the number of parameters
do not depend on the number of samples
- A model is called “non-parametric” if the number of parameters
increase with the number of samples



Recall Bayes optimal classifier

. Consider an example of binary classification on 1-dimensional x € R
. The problem is fully specified by the ground truths PX’Y(x, V)
- Suppose for simplicity that Py(y =+ 1) = Py(y =—1) = 1/2

- Bayes optimal classifier minimizes the conditional error P(y # y | x) for every X,
which can be written explicitly as

y=+4+1ifP(+1]|x)>P(—1]|x)
—1ifP(+1]|x) < P(—=1]x)

P(y=+1]|x)
A
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In practice we do not have P(x, y)

P(y=+1|x)
A
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- Bayes optimal classifier 3 =+ 1if P(+1]|x) > P(—1]|x)
—1if P(+1]x) < P(=1]|x)
- How do we compare P(y = + 1|x) and P(y = — 1| x) from samples?
samples withy = + 1
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samples withy = — 1
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One way to approximate Bayes Classifier

— |Oca| Statistics - Bayes optimal classifier
y=4+1ifP(H+1]|x)> P(—1]|x)

—1if P(+1]x) < P(—1]%)

Py =+1]x

L P,y =+1)
decision is based on
> Px,y=-1)

considers the k-nearest neighbors and
—-080-0 @ —0—0-0—0——0—0-0-0-0-0— » {gkes a majority vote

y=+1, if (#of +1 samples) > (# of -1 samples)
—1, if (#of +1 samples) < (# of -1 samples)

# of +1 samples

. Decision is based on
# of -1 samples
o Denote the n' as the number of samples within distance r from x with label +1, then
+
n’l"
— — 2rxXPx,y=+1)
n

as we increase n and decrease r.
e |f we take r to be the distance to the k-th neighbor from x, then
# of +1 samples Px,y=+1)

# of -1 samples i Px,y=-1)



Some data, Bayes Classifier

Figures from Hastie et al.

Training data:
O True label: +1

O True label: -1

Optimal “Bayes” classifier:
1
P(Y =1|X =2) =5

Predicted label: +1

Predicted label: -1




Linear Decision Boundary
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Figures from Hastie et al

Training data:

O True label: +1

O True label: -1

Learned:

Linear Decision boundary
2Pw+b=0
Predicted label: +1

Predicted label: -1




k=15 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Yearned:
15 nearest neighbor decision

boundary (majority vote)

Predicted label: +1

Predicted label: -1

e Nearest neighbor gives non-linear decision boundaries
e What happens if we use a small k or a large k?

Figures from Hastie et al



k=1 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Learned:

1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e With a small k, we tend to overfit.

Figures from Hastie et al



k-Nearest Neighbor Error

Model complexity low

k — Number of Nearest Neighbors

Model complexity high
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Figures from Hastie et al

e The error achieved by Bayes optimal classifier provides a

lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,
and we show k = 1nearest neighbor decision boundaries for various choices of distances

L, norm : d(x,y) = ||x — y||,

@

Mahalanobis norm: d(x,y) = (x — y)T Mx-y)

X2
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L, norm (taxi-cab)
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L-infinity (max) norm
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k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

X2

x| X
Dist(xi,x/) = (X, — X/;)? + (XI, — X,)2  Dist(xi, %) =(x; — x,)2+(3xI, — 3x,)?

The relative scalings in the distance metric affect region shapes



1 nearest neighbor guarantee - classification

{(mi,9:0) })iza z; €RY y; €{0,1} (24, y:) “ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = x) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.




1 nearest neighbor guarantee - classification

{(mi,9:0) })iza z; €RY y; €{0,1} (24, y:) “ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =

1|X = x) is smooth everywhere, then as n — oo the 1-NN classification rule has
error at most twice the Bayes error rate.

e Let x,, denote the nearest neighbor at a point x
e First note thatasn — oo, P(y = + 1 |xyy) = P(y =+ 1|x)

e Let p* = min{P(y = + 1|x), P(y = — 1| x)}denote the Bayes error rate
e At a point x,
e Case 1: nearest neighbor is + 1, which happens with P(y = + 1 | x)
and the error rate is P(y = — 1 | x)

e Case 2: nearest neighbor is + 1, which happens with P(y = — 1 | x)
and the error rateis P(y = + 1 | x)
e The average error of a 1-NNis

P(y=+1[x)P(y=—1[x)+P(y =—1|x) P(y =+ 1|x) =2p*(1 — p¥)



Curse of dimensionality Ex. 1
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X is uniformly distributed over [0, 1]P. What is P(X € [0, r]P)?

How many samples do we need so that a nearest neighbor is within a cube of side length r?



Curse of dimensionality Ex. 2

{X;}7_; are uniformly distributed over |—.5, .5]P.
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What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within r?



Nearest neighbor regression
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« What is the optimal classifier that

minimizes MSE E[(§ — y)?]?
y = E[y|x]

. k-nearest neighbor regressor is

fx) =% > Y,

jenearest neighbor

2?21 y; X Ind(x; is a k nearest neighbor)

>, Ind(x; is a k nearest neighbor)



Nearest neighbor regression
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. k-nearest neighbor regressor is

f(x - Z?=1yi X Ind(x; is a k nearest neighbor) ]?(5130) _ Z?:l K(:co, :Ci)yi
o) =

n
Z?zl Ind(x; is a k nearest neighbor) Zizl K(CL'O; 331)




Nearest neighbor regression
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. k-nearest neighbor regressor is n
P Z?zl y; X Ind(x; is a k nearest neighbor) > . Zi:l K($07 xz)yz
xO ==

0) — n
2:;1 Ind(x; is a k nearest neighbor) Zizl K(ZUO, 337,)




Nearest neighbor regression
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_ _ Why just average them?
. k-nearest neighbor regressor is

o) = Z?zlyi X Ind(x; is a k nearest neighbor) ~ . Z?:l K(:EO, |
o) =

f(il?o) =

Z?=1 Ind(x; is a k nearest neighbor) Z?:l K(ZIZO,




Nearest neighbor regression
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Local Linear Regression



Nearest Neighbor Overview

o Very simple to explain and implement

« No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

o You can use other forms of distance (not just Euclidean)

o« Smoothing and local linear regression can improve
performance (at the cost of higher variance)

o With a lot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer (curse of dimensionality).



Questions?



