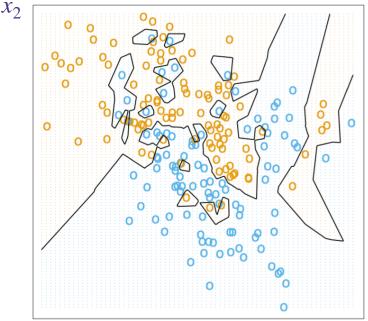
- Homework 3, due Saturday, February 26 midnight



Lecture 21: Nearest Neighbor Methods

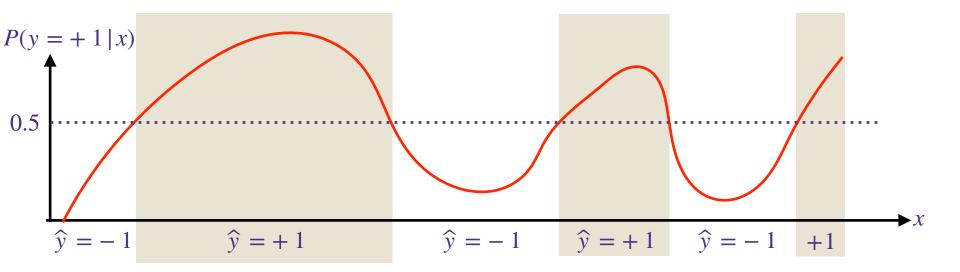
- Yet another non-linear model
 - Kernel method
 - Neural Network
 - Nearest Neighbor method
- A model is called "parametric" if the number of parameters do not depend on the number of samples
- A model is called "non-parametric" if the number of parameters increase with the number of samples

1

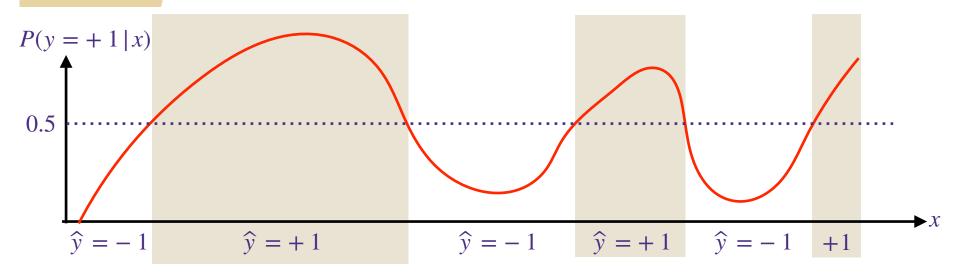
Recall Bayes optimal classifier

- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x,y)$
- Suppose for simplicity that $P_Y(y=+1)=P_Y(y=-1)=1/2$
- Bayes optimal classifier minimizes the conditional error $P(\hat{y} \neq y \mid x)$ for every x, which can be written explicitly as

$$\hat{y} = +1 \text{ if } P(+1 \mid x) > P(-1 \mid x) -1 \text{ if } P(+1 \mid x) < P(-1 \mid x)$$



In practice we do not have P(x, y)

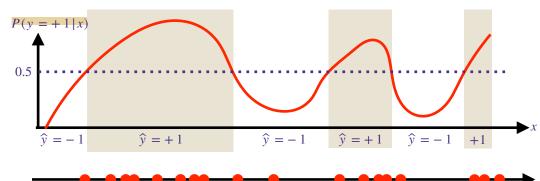


- Bayes optimal classifier $\hat{y} = +1$ if $P(+1 \mid x) > P(-1 \mid x)$ -1 if $P(+1 \mid x) < P(-1 \mid x)$
- How do we compare $P(y=+1\,|\,x)$ and $P(y=-1\,|\,x)$ from samples? samples with y=+1

samples with y = -1

One way to approximate Bayes Classifier

= local statistics



• Bayes optimal classifier $\hat{y} = +1 \text{ if } P(+1 \mid x) > P(-1 \mid x) \\ -1 \text{ if } P(+1 \mid x) < P(-1 \mid x)$

decision is based on $\frac{P(x, y = +1)}{P(x, y = -1)}$

k-nearest neighbors classifier

-1, if (# of +1 samples) < (# of -1 samples)

considers the
$$k$$
-nearest neighbors and takes a majority vote
$$\hat{y} = +1, \quad \text{if } (\# \text{ of } +1 \text{ samples}) > (\# \text{ of } -1 \text{ samples})$$

Decision is based on $\frac{\text{\# of +1 samples}}{\text{\# of -1 samples}}$

• Denote the n_r^+ as the number of samples within distance r from x with label +1, then

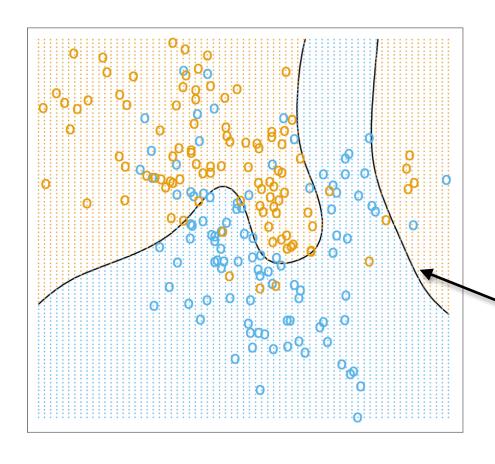
$$\frac{n_r^+}{---} \longrightarrow 2r \times P(x, y = +1)$$

as we increase n and decrease r.

• If we take r to be the distance to the k-th neighbor from x, then

of +1 samples
$$\longrightarrow \frac{P(x, y = +1)}{P(x, y = -1)}$$

Some data, Bayes Classifier



Training data:

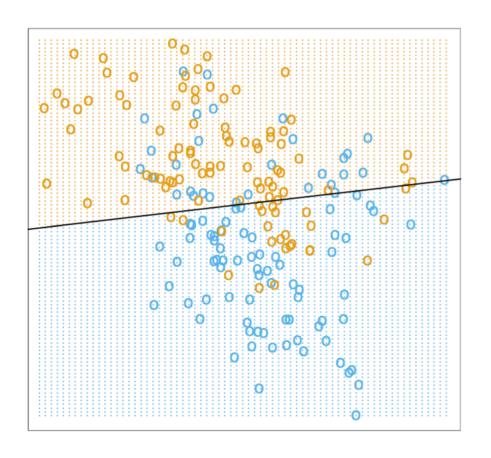
- True label: +1
- True label: -1

Optimal "Bayes" classifier:

$$\mathbb{P}(Y=1|X=x) = \frac{1}{2}$$

- Predicted label: +1
- Predicted label: -1

Linear Decision Boundary



Training data:

True label: +1

True label: -1

Learned:

Linear Decision boundary

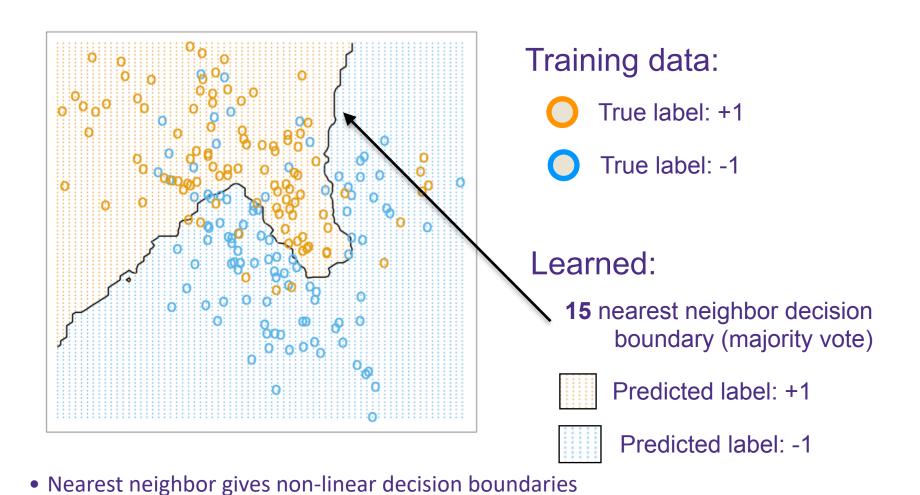
$$x^T w + b = 0$$

Predicted label: +1

Predicted label: -1

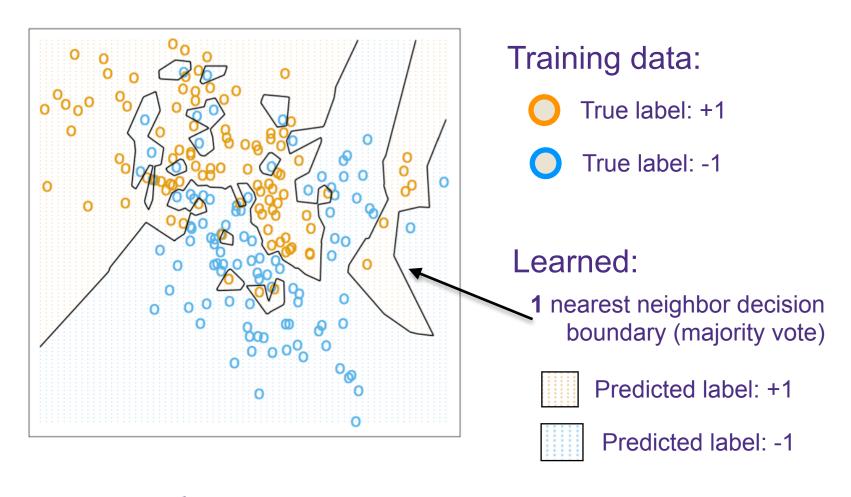
k=15 Nearest Neighbor Boundary

What happens if we use a small k or a large k?



Figures from Hastie et al

k=1 Nearest Neighbor Boundary

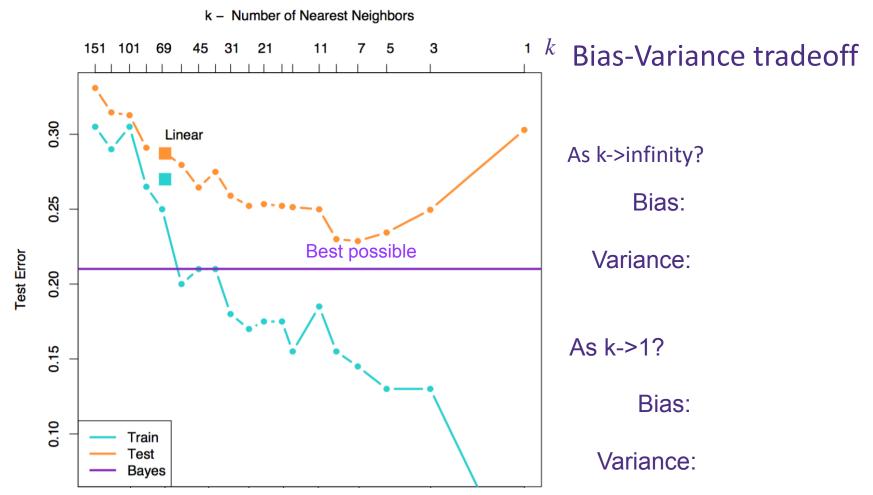


• With a small k, we tend to overfit.

k-Nearest Neighbor Error

Model complexity low

Model complexity high



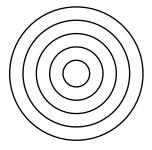
Figures from Hastie et al

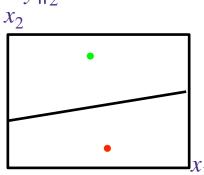
• The error achieved by Bayes optimal classifier provides a lower bound on what any estimator can achieve

Notable distance metrics (and their level sets)

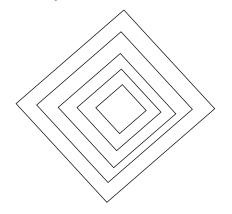
Consider 2 dimensional example with 2 data points with labels green, red, and we show k=1 nearest neighbor decision boundaries for various choices of distances

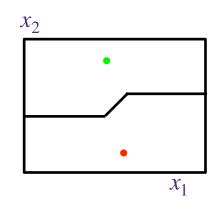
 L_2 norm : $d(x, y) = ||x - y||_2$

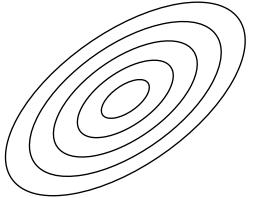


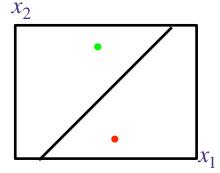


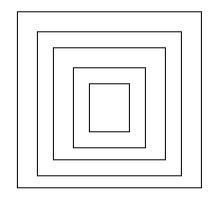
L₁ norm (taxi-cab)

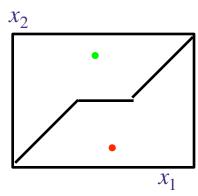










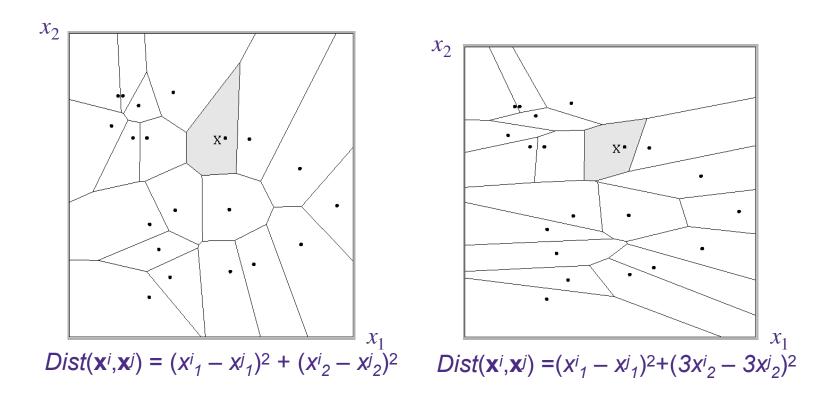


Mahalanobis norm: $d(x, y) = (x - y)^T M (x - y)$

L-infinity (max) norm

k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.



The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

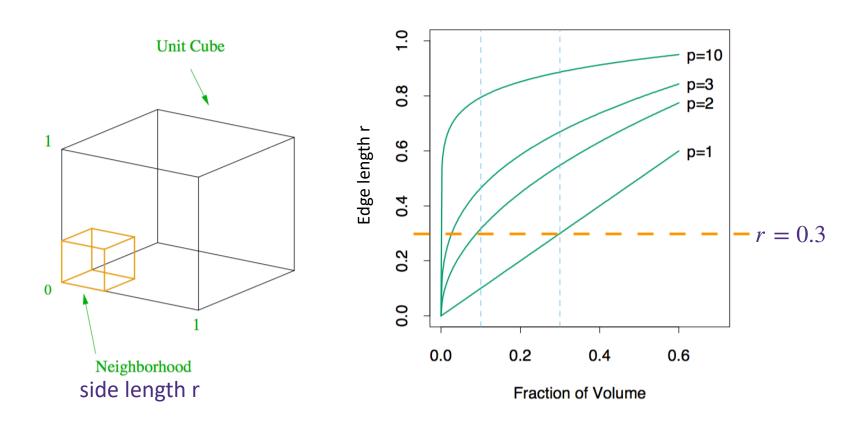
$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let x_{NN} denote the nearest neighbor at a point x
- First note that as $n \to \infty$, $P(y = +1 \mid x_{NN}) \to P(y = +1 \mid x)$
- Let $p^* = \min\{P(y = +1 \mid x), P(y = -1 \mid x)\}$ denote the Bayes error rate
- At a point *x*,
 - Case 1: nearest neighbor is +1, which happens with $P(y=+1 \mid x)$ and the error rate is $P(y=-1 \mid x)$
 - Case 2: nearest neighbor is +1, which happens with $P(y=-1 \mid x)$ and the error rate is $P(y=+1 \mid x)$
- The average error of a 1-NN is

$$P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p*(1-p*)$$

Curse of dimensionality Ex. 1

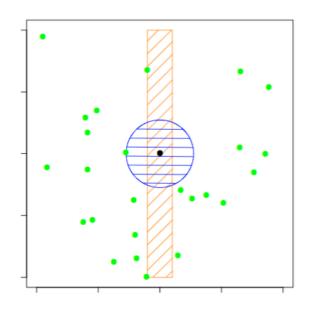


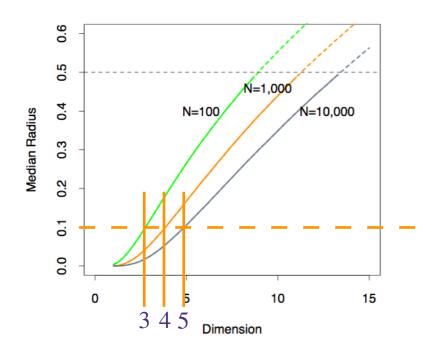
X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

How many samples do we need so that a nearest neighbor is within a cube of side length r?

Curse of dimensionality Ex. 2

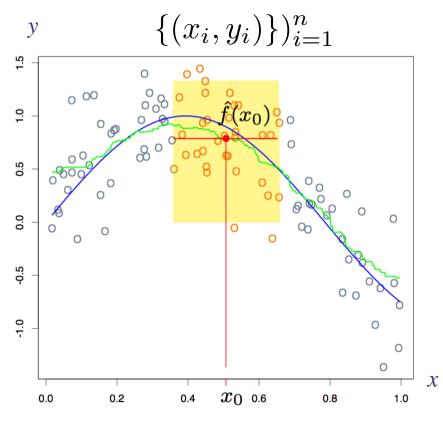
 $\{X_i\}_{i=1}^n$ are uniformly distributed over $[-.5,.5]^p$.





What is the median distance from a point at origin to its 1NN?

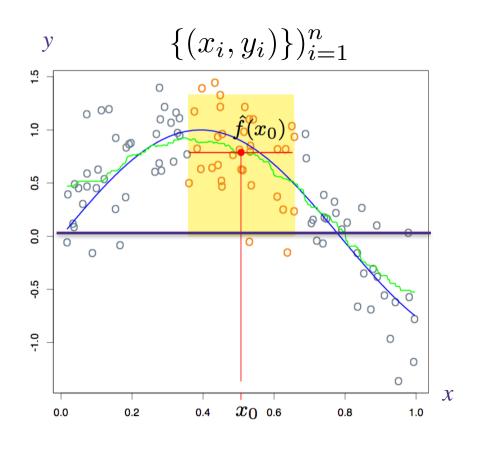
How many samples do we need so that a median Euclidean distance is within r?



- What is the optimal classifier that minimizes MSE $\mathbb{E}[(\hat{y} y)^2]$? $\hat{y} = \mathbb{E}[y \mid x]$
- k-nearest neighbor regressor is

$$\hat{f}(x) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$= \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

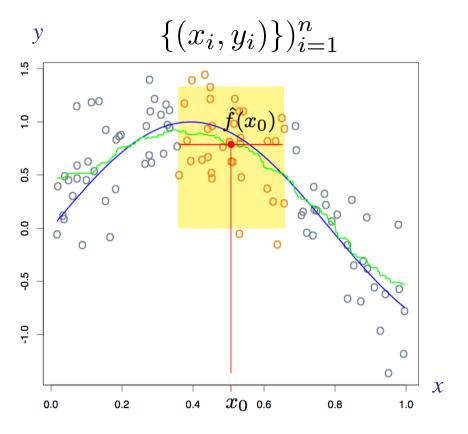


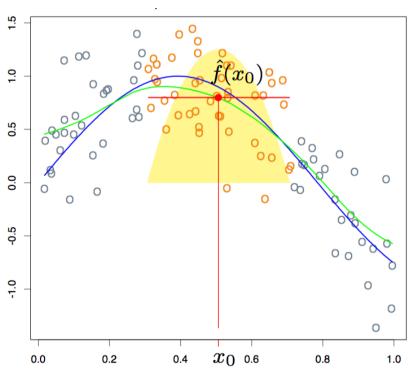
In nearest neighbor methods, the "weight" changes abruptly

smoothing: K(x, y)Epanechnikov Tri-cube $K_{\lambda}(x_0,x)$ -2 2 3

•
$$k$$
-nearest neighbor regressor is
$$\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

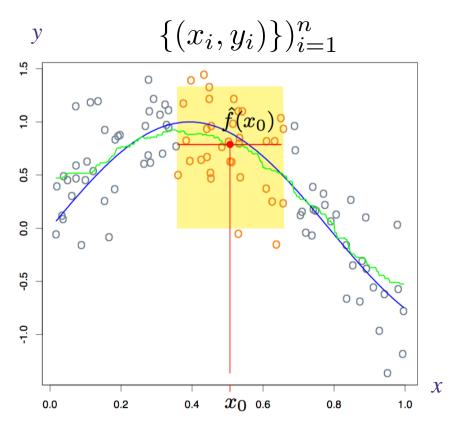
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

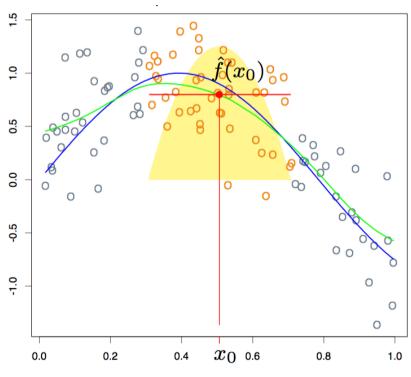




• k-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

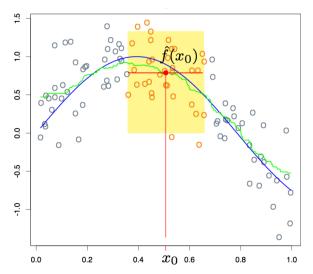


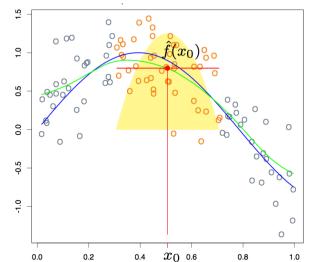


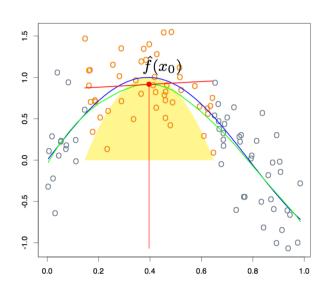
• k-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

Why just average them?
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

$$\{(x_i, y_i)\}_{i=1}^n$$







$$\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)} \qquad \widehat{f}(x_0) = b(x_0) + w(x_0)^T x_0$$

$$w(x_0), b(x_0) = \arg\min_{w,b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Questions?