
Lecture 21: 
Nearest Neighbor Methods

- Homework 3, due Saturday, February 26 midnight 

x1

x2

- Yet another non-linear model 

- Kernel method

- Neural Network

- Nearest Neighbor method


- A model is called “parametric” if the number of parameters  
do not depend on the number of samples


- A model is called “non-parametric” if the number of parameters  
increase with the number of samples



Recall Bayes optimal classifier

• Consider an example of binary classification on 1-dimensional 

• The problem is fully specified by the ground truths 

• Suppose for simplicity that 
• Bayes optimal classifier minimizes the conditional error  for every , 

which can be written explicitly as  
     
             

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2
P( ̂y ≠ y |x) x

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1



In practice we do not have P(x, y)

samples with y = + 1

samples with y = − 1

• How do we compare  and  from samples?P(y = + 1 |x) P(y = − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

• Bayes optimal classifier     
                                                              

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

x



One way to approximate Bayes Classifier
= local statistics

• Denote the  as the number of samples within distance  from  with label , then 

      

as we increase  and decrease . 

• If we take  to be the distance to the -th neighbor from , then  

n+
r r x +1

n+
r

n
⟶ 2r × P(x, y = + 1)

n r
r k x

# of +1 samples
# of -1 samples

⟶
P(x, y = + 1)
P(x, y = − 1)

• Bayes optimal classifier 
     
               
 

decision is based on 

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

P(x, y = + 1)
P(x, y = − 1)

k
k

̂y = + 1,  if  (# of +1 samples) > (# of -1 samples)
−1,  if  (# of +1 samples) < (# of -1 samples)

x

P (y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

x

x

• Decision is based on 
# of +1 samples

# of -1 samples



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



=15 Nearest Neighbor Boundaryk

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision 


boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• Nearest neighbor gives non-linear decision boundaries

• What happens if we use a small  or a large ?k k



k=1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision 


boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• With a small , we tend to overfit.k



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures from Hastie et al

k

Model complexity highModel complexity low

• The error achieved by Bayes optimal classifier provides a 
lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

L1 norm (taxi-cab)

L-infinity (max) normMahalanobis norm: d(x, y) = (x − y)T M (x − y)

L2 norm : d(x, y) = ∥x − y∥2

Consider 2 dimensional example with 2 data points with labels green, red,  
and we show nearest neighbor decision boundaries for various choices of distancesk = 1

x1

x2

x1

x2

x1

x2

x1

x2



1 nearest neighbork =

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

• Let  denote the nearest neighbor at a point 


• First note that as 

• Let denote the Bayes error rate

• At a point , 


• Case 1: nearest neighbor is , which happens with   
and the error rate is 


• Case 2: nearest neighbor is , which happens with   
and the error rate is 


• The average error of a 1-NN is 
          +   

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)



Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
ge

 le
ng

th
 r

r = 0.3

How many samples do we need so that a nearest neighbor is within a cube of side length ?r



Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within ?r

3 4 5



Nearest neighbor regression

{(xi, yi)})ni=1
• What is the optimal classifier that 

minimizes MSE ?  
                
            

• -nearest neighbor regressor is 

 

        

𝔼[( ̂y − y)2]
̂y = 𝔼[y |x]

k
̂f(x) =

1
k ∑

j∈nearest neighbor
yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

In nearest neighbor methods, the 
“weight” changes abruptly

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) =
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

• -nearest neighbor regressor is k
̂f (x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement

• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help)

• You can use other forms of distance (not just Euclidean)

• Smoothing and local linear regression can improve 

performance (at the cost of higher variance)

• With a lot of data, “local methods” have strong, simple 

theoretical guarantees. 

• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?


