- Homework 3, due Saturday, February 26 midnight

Lecture 21: Nearest Neighbor Methods

- Yet another non-linear model
 - Kernel method
 - Neural Network
 - Nearest Neighbor method
- A model is called "parametric" if the number of parameters do not depend on the number of samples
- A model is called "non-parametric" if the number of parameters increase with the number of samples

1

Recall Bayes optimal classifier

- Consider an example of binary classification on 1-dimensional $x \in \mathbb{R}$
- The problem is fully specified by the ground truths $P_{X,Y}(x,y)$
- Suppose for simplicity that $P_Y(y=+1)=P_Y(y=-1)=1/2$
- Bayes optimal classifier minimizes the conditional error $P(\hat{y} \neq y \mid x)$ for every x, which can be written explicitly as

$$\hat{y} = +1 \text{ if } P(+1 \mid x) > P(-1 \mid x) -1 \text{ if } P(+1 \mid x) < P(-1 \mid x)$$

In practice we do not have P(x, y)

- Bayes optimal classifier $\hat{y} = +1$ if $P(+1 \mid x) > P(-1 \mid x)$ -1 if $P(+1 \mid x) < P(-1 \mid x)$
- How do we compare $P(y=+1\,|\,x)$ and $P(y=-1\,|\,x)$ from samples? samples with y=+1

samples with y = -1

One way to approximate Bayes Classifier

= local statistics

• Bayes optimal classifier $\hat{y} = +1 \text{ if } P(+1 \mid x) > P(-1 \mid x) \\ -1 \text{ if } P(+1 \mid x) < P(-1 \mid x)$

decision is based on $\frac{P(x, y = +1)}{P(x, y = -1)}$

k-nearest neighbors classifier

-1, if (# of +1 samples) < (# of -1 samples)

considers the
$$k$$
-nearest neighbors and takes a majority vote
$$\hat{y} = +1, \quad \text{if } (\# \text{ of } +1 \text{ samples}) > (\# \text{ of } -1 \text{ samples})$$

Decision is based on $\frac{\text{\# of +1 samples}}{\text{\# of -1 samples}}$

• Denote the n_r^+ as the number of samples within distance r from x with label +1, then

$$\frac{n_r^+}{---} \longrightarrow 2r \times P(x, y = +1)$$

as we increase n and decrease r.

• If we take r to be the distance to the k-th neighbor from x, then

of +1 samples
$$\longrightarrow \frac{P(x, y = +1)}{P(x, y = -1)}$$

Some data, Bayes Classifier

Training data:

- True label: +1
- True label: -1

Optimal "Bayes" classifier:

$$\mathbb{P}(Y=1|X=x) = \frac{1}{2}$$

- Predicted label: +1
- Predicted label: -1

Linear Decision Boundary

Training data:

True label: +1

True label: -1

Learned:

Linear Decision boundary

$$x^T w + b = 0$$

Predicted label: +1

Predicted label: -1

k=15 Nearest Neighbor Boundary

What happens if we use a small k or a large k?

Figures from Hastie et al

k=1 Nearest Neighbor Boundary

• With a small k, we tend to overfit.

k-Nearest Neighbor Error

Model complexity low

Model complexity high

Figures from Hastie et al

• The error achieved by Bayes optimal classifier provides a lower bound on what any estimator can achieve

Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red, and we show k=1 nearest neighbor decision boundaries for various choices of distances

 L_2 norm : $d(x, y) = ||x - y||_2$

L₁ norm (taxi-cab)

Mahalanobis norm: $d(x, y) = (x - y)^T M (x - y)$

L-infinity (max) norm

k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n$$
 $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$ $(x_i, y_i) \stackrel{iid}{\sim} P_{XY}$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

- Let x_{NN} denote the nearest neighbor at a point x
- First note that as $n \to \infty$, $P(y = +1 \mid x_{NN}) \to P(y = +1 \mid x)$
- Let $p^* = \min\{P(y = +1 \mid x), P(y = -1 \mid x)\}$ denote the Bayes error rate
- At a point *x*,
 - Case 1: nearest neighbor is +1, which happens with $P(y=+1 \mid x)$ and the error rate is $P(y=-1 \mid x)$
 - Case 2: nearest neighbor is +1, which happens with $P(y=-1 \mid x)$ and the error rate is $P(y=+1 \mid x)$
- The average error of a 1-NN is

$$P(y = +1 | x) P(y = -1 | x) + P(y = -1 | x) P(y = +1 | x) = 2p*(1-p*)$$

Curse of dimensionality Ex. 1

X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

How many samples do we need so that a nearest neighbor is within a cube of side length r?

Curse of dimensionality Ex. 2

 $\{X_i\}_{i=1}^n$ are uniformly distributed over $[-.5,.5]^p$.

What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within r?

- What is the optimal classifier that minimizes MSE $\mathbb{E}[(\hat{y} y)^2]$? $\hat{y} = \mathbb{E}[y \mid x]$
- k-nearest neighbor regressor is

$$\hat{f}(x) = \frac{1}{k} \sum_{j \in \text{nearest neighbor}} y_j$$

$$= \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

In nearest neighbor methods, the "weight" changes abruptly

smoothing: K(x, y)Epanechnikov Tri-cube $K_{\lambda}(x_0,x)$ -2 2 3

•
$$k$$
-nearest neighbor regressor is
$$\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

• k-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

• k-nearest neighbor regressor is $\hat{f}(x_0) = \frac{\sum_{i=1}^n y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^n \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$

Why just average them?
$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)}$$

$$\{(x_i, y_i)\}_{i=1}^n$$

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{n} y_i \times \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}{\sum_{i=1}^{n} \operatorname{Ind}(x_i \text{ is a } k \text{ nearest neighbor})}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^{n} K(x_0, x_i) y_i}{\sum_{i=1}^{n} K(x_0, x_i)}$$

$$\widehat{f}(x_0) = \frac{\sum_{i=1}^n K(x_0, x_i) y_i}{\sum_{i=1}^n K(x_0, x_i)} \qquad \widehat{f}(x_0) = b(x_0) + w(x_0)^T x_0$$

$$w(x_0), b(x_0) = \arg\min_{w,b} \sum_{i=1}^n K(x_0, x_i)(y_i - (b + w^T x_i))^2$$

Local Linear Regression

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (KD-trees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer (curse of dimensionality).

Questions?

- Homework 3, due Sunday, February 27 midnight
- We will add more office hours on Saturday and Sunday
- Schedule on Canvas (and more coming)
 - Thai Hoang Saturday 9-10 AM
 - Hugh Sun Saturday 1:30-2:30 PM
 - Sewoong Oh Sunday 10-11 AM
- Homework 4, due Sunday, March 13th Midnight
- You are allowed only 3 late days for HW4 even if you have more remaining.

Lecture 22: Principal Component Analysis

- Supervised Learning with labelled data $\{(x_i, y_i)\}_{i=1}^n$
 - Goal: fit a function to predict y
 - Regression/Classification
 - Linear models / Kernels / Nearest Neighbor / Neural Networks
- **Unsupervised Learning** with unlabelled data $\{x_i\}_{i=1}^n$
 - Goal: find pattern in clouds of data $\{x_i\}_{i=1}^n$
 - Principal Component Analysis
 - Clustering

Motivation: dimensionality reduction

- it takes $n \times d$ memory to store data $\{x_i\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$
- but many real data have patterns that repeat over samples
- Can we exploit this redundancy? Can we find some patterns and use them?
- Can we represent each image compactly, but still preserve most of information, by exploiting similarities?

d=32x32pixels per image n images

 $d \times n$ real values to store the data

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components

Principal components: $\underline{u_1 \in \mathbb{R}^d}$

Principal component analysis finds a compact linear representation

- patterns that capture the distinct features of the samples is called principal component (to be formally defined later)
- we use r = 25 principal components
- we can represent each sample as a weighted linear combination of the principal components, and just store the weights (as opposed to all pixel values)

Principal components: $u_1 \in \mathbb{R}^d$

$$\approx a[1]u_1 + a[2]u_2 + \dots + a[25]u_{25}$$

- Each image is now represented by r = 25 numbers a = (a[1], ..., a[25])
- To store n images, it requires memory of only $d \times r + r \times n \ll d \times n$ $1,000 \times 25 + 25 \times n$ $1,000 \times n$

10 principal components give a pretty good reconstruction of a face

average face $\bar{x} + a[1]u_1 + a[1]u_1 + a[2]u_2$ r=1 r=2 r=3r = 4r = 8r = 7r = 9r = 10

Ground truths real face

Assumption

- Notice how we started with the average face $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- PCA is applied to $\{x_i \bar{x}\}_{i=1}^n$
- For simplicity, we will assume that x_i 's are centered such that $\frac{1}{n}\sum_{i=1}^{n}x_{i}=0$
- otherwise, without loss of generality, everything we do can be applied to the re-centered version of the data, i.e. $\{x_i - \bar{x}\}_{i=1}^n$, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

i.e.
$$\{x_i - \bar{x}\}_{i=1}^n$$
, with $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

How do we define the principal components?

• Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, \ldots, u_r \in \mathbb{R}^d$, with $\|u_j\|_2 = 1$ for all j to uniquely define principal components when we can, such that each data can be represented as linear combination of those direction vectors, i.e.

$$x_i \approx p_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$

d = 32x32

$$x_i = \begin{bmatrix} x_i[1] \\ \vdots \\ \vdots \\ \vdots \\ x_i[d] \end{bmatrix} \xrightarrow{\text{Dimensionality}} a_i = \begin{bmatrix} a_i[1] \\ \vdots \\ a_i[r] \end{bmatrix}$$
Reduction

- Which choice of the principal components, $\{u_1, \ldots, u_r\}$, are better?
- But first, how do we find a_i given x_i and $\{u_1, ..., u_r\}$?

How do we find the principal components?

• Dimensionality reduction (for some $r \ll d$): we would like to have a set of orthogonal directions $u_1, \ldots, u_r \in \mathbb{R}^d$, with $\|u_j\|_2 = 1$ for all j, such that each data can be represented as linear combination of those direction vectors, i.e.

$$x_i \approx p_i = a_i[1]u_1 + \dots + a_i[r]u_r$$

- those directions that minimize the average reconstruction error for a dataset is called the **principal components**
- given a choice of u_1, \ldots, u_r , the best representation p_i of x_i is the projection of the point onto the subspace spanned by u_i 's, i.e.

$$a_{i}[j] = u_{j}^{T} x_{i}$$

$$p_{i} = \sum_{j=1}^{r} (u_{j}^{T} x_{i}) u_{j}$$

$$a_{i}[j]$$

we will use these without proving it

Principal components is the subspace that minimizes the reconstruction error

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - p_i||_2^2$$

subject to $\|u_j\|_2 = 1$ for all j and $u_j^T u_\ell = 0$ for all $j \neq \ell$

$$p_i = \sum_{j=1}^r (u_j^T x_i) u_j = \sum_{j=1}^r u_j u_j^T x_i = \left(\sum_{j=1}^r u_j u_j^T\right) x_i = \mathbf{U} \mathbf{U}^T x_i$$

where
$$\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}_{r \times r}$$

- Small rank r gives efficiency and large r gives less reconstruction error
- Q. How do we solve this optimization?

Minimizing reconstruction error to find principal components

$$\underset{U}{\text{minimize}} \quad \frac{1}{n} \sum_{i=1}^{n} \|x_i - \mathbf{U}\mathbf{U}^T x_i\|_2^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

Minimizing reconstruction error to find principal components

Minimize Reconstruction Error

$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - UU^T x_i\|_2^2
= \frac{1}{n} \sum_{i=1}^{n} \left\{ \|x_i\|_2^2 - 2x_i^T UU^T x_i + x_i^T U \underline{U}^T \underline{U} U^T x_i \right\}
= \mathbf{I}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|x_i\|_2^2 - \frac{1}{n} \sum_{i=1}^{n} x_i^T U U^T x_i$$

does not depend on U

$$= C - \sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_{j}^{T} x_{i})^{2}$$

Variance in direction u_j

Recall we assumed x_i 's are centered, i.e., zero-mean

minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||x_i - \mathbf{U}\mathbf{U}^T x_i||_2^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Maximizing Variance captured in principal directions

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to $\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$

Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution, because $\text{Error}^2 + \text{Variance} = ||x_i||_2^2$

Maximizing variance to find principal components

maximize
$$\sum_{j=1}^{r} \frac{1}{n} \sum_{i=1}^{n} (u_j^T x_i)^2$$

subject to
$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_{r \times r}$$

We will solve it for r = 1 case, and the general case follows similarly

maximize
$$\frac{1}{n} \sum_{i=1}^{n} (u^{T} x_{i})^{2}$$

$$\begin{array}{cc}
\text{maximize} & u^T C u \\
u: \|u\|_2 = 1
\end{array}$$

How do you find u?

Maximizing variance to find principal components

maximize_{$$u$$} $u^T \mathbf{C} u$ (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

Why?

Maximizing variance to find principal components

maximize_{$$u$$} $u^T \mathbf{C} u$ (a)
subject to $||u||_2^2 = 1$

 we first claim that this optimization problem has the same optimal solution as the following inequality constrained problem

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- the reason is that, because $u^T \mathbf{C} u \ge 0$ for all $u \in \mathbb{R}^d$, the optimal solution of (b) has to have $||u||_2^2 = 1$
- if it did not have $||u||_2^2 = 1$, say $||u||_2^2 = 0.9$, then we can just multiply this u by a constant factor of $\sqrt{10/9}$ and increase the objective by a factor of 10/9 while still satisfying the constraints

maximize_{$$u$$} $u^T \mathbf{C} u$ (b)
subject to $||u||_2^2 \le 1$

- we are maximizing the variance, while keeping u small
- this can be reformulated as an unconstrained problem, with Lagrangian encoding, to move the constraint into the objective

$$\max_{u \in \mathbb{R}^d} u^T \mathbf{C} u - \lambda ||u||_2^2 \qquad (c)$$

$$F_{\lambda}(u)$$

- this encourages small u as we want, and we can make this connection precise: there exists a (unknown) choice of λ such that the optimal solution of (c) is the same as the optimal solution of (b)
- further, for this choice of λ , exists an optimal u^* with $\|u^*\|_2 = 1$

Solving the unconstrained optimization

$$\max_{u \in \mathbb{R}^d} \quad \underbrace{u^T \mathbf{C} u - \lambda ||u||_2^2}_{F_{\lambda}(u)}$$

• to find such λ and the corresponding u, we solve the unconstrained optimization, by setting the gradient to zero

$$\nabla F_{\lambda}(u) = 2\mathbf{C}u - 2\lambda u = 0$$

- the candidate solution satisfies: $\mathbf{C}u = \lambda u$, i.e. an eigenvector of \mathbf{C}
- let $(\lambda^{(1)}, u^{(1)})$ denote the largest eigenvalue and corresponding eigenvector of \mathbb{C} ,
- We will normalize the eigenvector such that $||u^{(1)}||_2^2 = 1$
- Selecting $\lambda = \lambda^{(1)}$, the maximum value of zero is achieved when $u = u^{(1)}$, why?
- No other choice of λ gives a solution with $||u||_2 = 1$

The principal component analysis

- so far we considered finding ONE principal component $u \in \mathbb{R}^d$
- it is the eigenvector corresponding to the maximum eigenvalue of the covariance matrix

$$\mathbf{C} = \frac{1}{n} \mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$$

- We can also use the Singular Value Decomposition (SVD) to find such eigen vector
- note that is the data is not centered at the origin, we should recenter the data before applying SVD
- in general we define and use multiple principal components
- if we need r principal components, we take r eigenvectors corresponding to the largest r eigenvalues of \mathbb{C}

Algorithm: Principal Component Analysis

- **input**: data points $\{x_i\}_{i=1}^n$, target dimension $r \ll d$
- output: r-dimensional subspace U
- algorithm:
 - compute mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - compute covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$$

- let $(u_1, ..., u_r)$ be the set of (normalized) eigenvectors with corresponding to the largest r eigenvalues of ${\bf C}$
- return $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$
- further the data points can be represented compactly via $a_i = \mathbf{U}^T(x_i \bar{x}) \in \mathbb{R}^r$

Matrix completion for recommendation systems

- users provide ratings on a few movies, and we want to predict the missing entries in this ratings matrix, so that we can make recommendations
- without any assumptions, the missing entries can be anything, and no prediction is possible

- however, the ratings are not arbitrary, but people with similar tastes rate similarly
- such structure can be modeled using low dimensional representation of the data as follows
- we will find a set of principal component vectors $\mathbf{U} = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix} \in \mathbb{R}^{d \times r}$
- such that that ratings $x_i \in \mathbb{R}^d$ of user i, can be represented as

$$x_i = a_i[1]u_1 + \cdots + a_i[r]u_r$$
$$= \mathbf{U}a_i$$

for some lower-dimensional $a_i \in \mathbb{R}^r$ for i-th user and some $r \ll d$

- for example, $u_1 \in \mathbb{R}^d$ means how horror movie fans like each of the d movies,
- and $a_i[1]$ means how much user i is fan of horror movies

- let $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_n] \in \mathbb{R}^{d \times n}$ be the ratings matrix, and assume it is fully observed, i.e. we know all the entries
- then we want to find $\mathbf{U} \in \mathbb{R}^{d \times r}$ and $\mathbf{A} = [a_1 \ a_2 \ \cdots \ a_n] \in \mathbb{R}^{r \times n}$ that approximates \mathbf{X}

User i

• if we **observe all entries** of \mathbf{X} , then we can solve minimize $\mathbf{U}_{\mathbf{U},\mathbf{A}} \sum_{i=1}^{n} \|x_i - \mathbf{U}a_i\|_2^2$

which can be solved using PCA (i.e. SVD)

- in practice, we only observe X partially
- let $S_{ ext{train}} = \{(i_\ell, j_\ell)\}_{\ell=1}^N$ denote N observed ratings for user i_ℓ on movie j_ℓ

- let v_j^T denote the j-th row of $\mathbf U$ and a_i denote i-th column of $\mathbf A$
- then user i's rating on movie j, i.e. \mathbf{X}_{ji} is approximated by $v_j^T a_i$, which is the inner product of v_j (a column vector) and a column vector a_i
- we can also write it as $\langle v_j, a_i \rangle = v_j^T a_i$

- a natural approach to fit v_j 's and $a_i's$ to given training data is to solve $\min \mathbf{Z}_{\mathbf{U},\mathbf{A}} \sum_{(i,j) \in S_{\text{train}}} (\mathbf{X}_{ji} v_j^T a_i)^2$
- this can be solved, for example via gradient descent or alternating minimization
- this can be quite accurate, with small number of samples

For illustration, we zoom in to a 50x50 submatrix

sampled matrix

Gradient descent output UA

squared error $(\mathbf{X}_{ji} - (\mathbf{U}\mathbf{A})_{ji})^2$

0.25% sampled

0.50% sampled

0.75% sampled

1.00% sampled

1.25% sampled

1.50% sampled

1.75% sampled

Questions?