
Lecture 21: 
Nearest Neighbor Methods

- Homework 3, due Saturday, February 26 midnight 

x1

x2

- Yet another non-linear model 

- Kernel method

- Neural Network

- Nearest Neighbor method


- A model is called “parametric” if the number of parameters  
do not depend on the number of samples


- A model is called “non-parametric” if the number of parameters  
increase with the number of samples



Recall Bayes optimal classifier

• Consider an example of binary classification on 1-dimensional 

• The problem is fully specified by the ground truths 

• Suppose for simplicity that 
• Bayes optimal classifier minimizes the conditional error  for every , 

which can be written explicitly as  
     
             

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2
P( ̂y ≠ y |x) x

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1



In practice we do not have P(x, y)

samples with y = + 1

samples with y = − 1

• How do we compare  and  from samples?P(y = + 1 |x) P(y = − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

• Bayes optimal classifier     
                                                              

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

x



One way to approximate Bayes Classifier
= local statistics

• Denote the  as the number of samples within distance  from  with label , then 

      

as we increase  and decrease . 

• If we take  to be the distance to the -th neighbor from , then  

n+
r r x +1

n+
r

n
⟶ 2r × P(x, y = + 1)

n r
r k x

# of +1 samples
# of -1 samples

⟶
P(x, y = + 1)
P(x, y = − 1)

• Bayes optimal classifier 
     
               
 

decision is based on 

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

P(x, y = + 1)
P(x, y = − 1)

k
k

̂y = + 1,  if  (# of +1 samples) > (# of -1 samples)
−1,  if  (# of +1 samples) < (# of -1 samples)

x

P (y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

x

x

• Decision is based on 
# of +1 samples

# of -1 samples



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al



=15 Nearest Neighbor Boundaryk

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision 


boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• Nearest neighbor gives non-linear decision boundaries

• What happens if we use a small  or a large ?k k



k=1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision 


boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• With a small , we tend to overfit.k



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures from Hastie et al

k

Model complexity highModel complexity low

• The error achieved by Bayes optimal classifier provides a 
lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

L1 norm (taxi-cab)

L-infinity (max) normMahalanobis norm: d(x, y) = (x − y)T M (x − y)

L2 norm : d(x, y) = ∥x − y∥2

Consider 2 dimensional example with 2 data points with labels green, red,  
and we show nearest neighbor decision boundaries for various choices of distancesk = 1

x1

x2

x1

x2

x1

x2

x1

x2



1 nearest neighbork =

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

• Let  denote the nearest neighbor at a point 


• First note that as 

• Let denote the Bayes error rate

• At a point , 


• Case 1: nearest neighbor is , which happens with   
and the error rate is 


• Case 2: nearest neighbor is , which happens with   
and the error rate is 


• The average error of a 1-NN is 
          +   

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)



Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
ge

 le
ng

th
 r

r = 0.3

How many samples do we need so that a nearest neighbor is within a cube of side length ?r



Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within ?r

3 4 5



Nearest neighbor regression

{(xi, yi)})ni=1
• What is the optimal classifier that 

minimizes MSE ?  
                
            

• -nearest neighbor regressor is 

 

        

𝔼[( ̂y − y)2]
̂y = 𝔼[y |x]

k
̂f(x) =

1
k ∑

j∈nearest neighbor
yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

In nearest neighbor methods, the 
“weight” changes abruptly

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) =
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y



Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

• -nearest neighbor regressor is k
̂f (x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)



Nearest Neighbor Overview

• Very simple to explain and implement

• No training! But finding nearest neighbors in large dataset at 

test can be computationally demanding (KD-trees help)

• You can use other forms of distance (not just Euclidean)

• Smoothing and local linear regression can improve 

performance (at the cost of higher variance)

• With a lot of data, “local methods” have strong, simple 

theoretical guarantees. 

• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer (curse of dimensionality). 



Questions?



Lecture 22:
Principal Component Analysis

- Homework 3, due Sunday, February 27 midnight 

- We will add more office hours on Saturday and Sunday

- Schedule on Canvas (and more coming)


- Thai Hoang Saturday 9-10 AM

- Hugh Sun Saturday 1:30-2:30 PM

- Sewoong Oh Sunday 10-11 AM


- Homework 4, due Sunday, March 13th Midnight

- You are allowed only 3 late days for HW4 even if you have more remaining.

- Supervised Learning with labelled data 

- Goal: fit a function to predict 

- Regression/Classification

- Linear models / Kernels / Nearest Neighbor / Neural Networks


- Unsupervised Learning with unlabelled data 

- Goal: find pattern in clouds of data 

- Principal Component Analysis

- Clustering

{(xi, yi)}n
i=1

y

{xi}n
i=1

{xi}n
i=1



Motivation: dimensionality reduction
• it takes  memory to store data  with 


• but many real data have patterns that repeat over samples


• Can we exploit this redundancy? Can we find some patterns and use them?


• Can we represent each image compactly,  
but still preserve most of information, by exploiting similarities?

n × d {xi}n
i=1 xi ∈ ℝd

Input images: Principal components:
=32x32pixels per image

 images


 real values to store the data

d
n
d × n



Principal component analysis finds a 
compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 

r = 25

Input images: Principal components:
u1 ∈ ℝd u2



Principal component analysis finds a 
compact linear representation 

• patterns that capture the distinct 
features of the samples is called 
principal component  
(to be formally defined later)


• we use  principal 
components 


• we can represent each sample as 
a weighted linear combination 
of the principal components, and 
just store the weights  
(as opposed to all pixel values)

r = 25

Input images: Principal components:

Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

u1 ∈ ℝd u2

• Each image is now represented by  numbers 


• To store  images, it requires memory of only 

r = 25 a = (a[1], …, a[25])
n d × r + r × n ≪ d × n

1,000 × 25 + 25 × n 1,000 × n



Ground truths real face

average face
r = 1 r = 2 r = 3

10 principal components give a pretty good 
reconstruction of a face

x̄
x̄ + a[1]u1 x̄ + a[1]u1 + a[2]u2

r = 4

r = 10

r = 7 r = 8 r = 9



Assumption

• Notice how we started with the average face 


• PCA is applied to 


• For simplicity, we will assume that ’s are centered such that 




• otherwise, without loss of generality,  
everything we do can be applied to the re-centered version of the data, 

i.e. , with 

x̄ =
1
n

n

∑
i=1

xi

{xi − x̄}n
i=1

xi
1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ =

1
n

n

∑
i=1

xi



How do we define the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 

for all j to uniquely define principal components when we can,  
such that each data can be represented as linear combination of those direction 
vectors, i.e.  
        

r ≪ d
u1, …, ur ∈ ℝd

∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

d=32x32
Dimensionality

Reduction

• Which choice of the principal components, { }, are better?

• But first, how do we find  given  and ?

u1, …, ur
ai xi {u1, …, ur}



How do we find the principal components?

• Dimensionality reduction (for some ):  
we would like to have a set of orthogonal directions , with 
for all j, such that each data can be represented as linear combination of those 
direction vectors, i.e.  
        

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components 


• given a choice of ,  
the best representation  of   
is the projection of the point onto  
the subspace spanned by ’s, i.e. 
 

  




• we will use these without proving it

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

ai[ j] = uT
j xi

pi =
r

∑
j=1

(uT
j xi)

ai[ j]

uj

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

xi

piu1

{uT
1 xi



Principal components is the subspace that  
minimizes the reconstruction error

   

 
where 

pi =
r

∑
j=1

(uT
j xi)uj =

r

∑
j=1

ujuT
j xi = (

r

∑
j=1

ujuT
j )xi = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize 
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r

subject to  UTU = Ir×r

- Small rank  gives efficiency and large  gives less reconstruction error

- Q. How do we solve this optimization?

r r

subject to ∥uj∥2 = 1 for all j and uT
j uℓ = 0 for all j ≠ ℓ



Minimizing reconstruction error  
to find principal components

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r



Minimizing reconstruction error  
to find principal components

minimize 
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to  UTU = Ir×r










1
n

n

∑
i=1

∥xi − UUT xi∥2
2

=
1
n

n

∑
i=1

{∥xi∥2
2 − 2xT

i UUT xi + xT
i U UTU

⏟
=I

UT xi}
=

1
n

n

∑
i=1

∥xi∥2
2

does not depend on U

−
1
n

n

∑
i=1

xT
i UUT xi

= C −
r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

Variance in direction uj

maximize 
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to  UTU = Ir×r

Minimize Reconstruction Error

Maximizing Variance captured in  
principal directions

Recall we assumed ’s are centered, i.e., zero-meanxi



Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution, 
because Error2 + Variance = ∥xi∥2

2



Maximizing variance to find principal components

maximize 
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to  UTU = Ir×r

We will solve it for  case,  
and the general case follows similarly

r = 1

maximize 
u:∥u∥2=1

1
n

n

∑
i=1

(uT xi)2

maximize 
u:∥u∥2=1

uTCu

How do you find ?u



Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• Why?

maximizeu uTCu

 subject to ∥u∥2
2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)



Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal 
solution as the following inequality constrained problem


• the reason is that, because  for all , the optimal 
solution of  has to have 


• if it did not have , say , then we can just multiply 
this  by a constant factor of  and increase the objective by a 
factor of  while still satisfying the constraints 

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9

maximizeu uTCu

 subject to ∥u∥2
2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)



• we are maximizing the variance, while keeping  small

• this can be reformulated as an unconstrained problem, with 

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small  as we want, and we can make this 
connection precise: there exists a (unknown) choice of  such 
that the optimal solution of  is the same as the optimal solution 
of 


• further, for this choice of ,  exists an optimal  with 

u

u
λ

(c)
(b)

λ u* ∥u*∥2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu∈ℝd uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)



Solving the unconstrained optimization

• to find such  and the corresponding , we solve the unconstrained 
optimization, by setting the gradient to zero 
                           


• the candidate solution satisfies: ,       
i.e. an eigenvector of 


• let  denote the largest eigenvalue and corresponding 
eigenvector of , 


• We will normalize the eigenvector such that 


• Selecting , the maximum value of zero is achieved when 
, why?


• No other choice of  gives a solution with 

λ u

∇Fλ(u) = 2Cu − 2λu = 0
Cu = λu

C
(λ(1), u(1))

C
∥u(1)∥2

2 = 1
λ = λ(1)

u = u(1)

λ ∥u∥2 = 1

maximizeu∈ℝd uTCu − λ∥u∥2
2

Fλ(u)



The principal component analysis

• so far we considered finding ONE principal component 

• it is the eigenvector corresponding to the maximum eigenvalue 

of the covariance matrix  

                              


• We can also use the Singular Value Decomposition (SVD) to find 
such eigen vector


• note that is the data is not centered at the origin, we should re-
center the data before applying SVD


• in general we define and use multiple principal components


• if we need  principal components, we take  eigenvectors 
corresponding to the largest  eigenvalues of  

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C



Algorithm: Principal Component Analysis
• input: data points , target dimension 


• output: -dimensional subspace 


• algorithm: 


• compute mean    


• compute covariance matrix 

            


• let  be the set of (normalized) eigenvectors with 
corresponding to the largest  eigenvalues of 


• return 


• further the data points can be represented compactly via 
           

{xi}n
i=1 r ≪ d

r U

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr



Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the 
missing entries in this ratings matrix, so that we can make 
recommendations


• without any assumptions, the missing entries can be anything, and 
no prediction is possible

n =

= d



Matrix completion
• however, the ratings are not arbitrary, but people with similar tastes 

rate similarly

• such structure can be modeled using low dimensional representation 

of the data as follows

• we will find a set of principal component vectors 




• such that that ratings  of user , can be represented as  
               
                    
for some lower-dimensional  for -th user and some 


• for example,  means how horror movie fans like each of the  
movies,


• and  means how much user  is fan of horror movies               

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i r ≪ d

u1 ∈ ℝd d

ai[1] i



Matrix completion
• let  be the ratings matrix, and 

assume it is fully observed, i.e. we know all the entries


• then we want to find  and 
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j

d n

U A≈

• if we observe all entries of , then we can solve  

      


 
which can be solved using PCA (i.e. SVD)

X
minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2



Matrix completion
• in practice, we only observe  partially


• let  denote  observed ratings for user  on movie 
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let  denote the -th row of  and  denote -th column of 


• then user ’s rating on movie , i.e.  is approximated by , which is the inner 
product of  (a column vector) and a column vector  


• we can also write it as 

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai



Matrix completion
• a natural approach to fit ’s and  to given training data is to solve  

                


• this can be solved, for example via gradient descent or alternating 
minimization


• this can be quite accurate, with small number of samples

vj a′￼is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2



Gradient descent

X

UA (Xji − (UA)ji)2

For illustration, 
we zoom in to a  
50x50 submatrix



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Gradient descent

X

UA (Xji − (UA)ji)2



Questions?


