- Homework 3, due Saturday, February 26 midnight

Lecture 21:

Nearest Neighbor Methods

- Yet another non-linear model
- Kernel method
- Neural Network
- Nearest Neighbor method
- A model is called “parametric” if the number of parameters
do not depend on the number of samples
- A model is called “non-parametric” if the number of parameters
increase with the number of samples



Recall Bayes optimal classifier

. Consider an example of binary classification on 1-dimensional x € R
- The problem is fully specified by the ground truths Py y(x, y)
- Suppose for simplicity that Py(y =+ 1) = Py(y = — 1) = 1/2

- Bayes optimal classifier minimizes the conditional error P(y # y|x) for every x,
which can be written explicitly as

y=4+1iP(H+1|x)> P(—1]|x)
—1iftP(+1|x) < P(—1]x)

P(y =+1]|x)
A

05 ...................................................................................................
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In practice we do not have P(x, y)

P(y =+1]x)
A

05 ...................................................................................................

> X
y=-1 y=+1 y=-1 y=+1 y=-1 +1
- Bayes optimal classifier 3§ =+ 1ifP(+1]|x) > P(—1]|x)
—1ifP(+1]x) < P(—1|x)
- How do we compare P(y = + 1| x) and P(y = — 1| x) from samples?
samples withy = + 1
00000000 o—0-80 e 00—

samples withy = — 1
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One way to approximate Bayes Classifier

= local statistics - Bayes optimal classifier
y=+4+1iP(H1|x)> P(—1]|x)

—1itP(+1|x) < P(—1]|x)

P(y =+11x)

o P,y =+1)
decision is based on b "
X X = —
y=-1 y=+1 y=-1 y=+1 y=—1 +1 > ( ’y )
_ == —_— - = : P
—° - k-nearest neighbors classifier
considers the k-nearest neighbors and
-0 ® —0—0-0—0—8—0-0-0-0-0—» x {gkes a majority vote

y=+1, if (#of +1 samples) > (# of -1 samples)
—1, if (# of +1 samples) < (# of -1 samples)

# of +1 samples

. Decision is based on
# of -1 samples
o Denote the n' as the number of samples within distance r from x with label + 1, then
+
nl"
— — 2r X Px,y=+1)
n

as we increase n and decrease 7.
e |f we take r to be the distance to the k-th neighbor from x, then
# of +1 samples Px,y=+1)

# of -1 samples , Px,y=-1)



Some data, Bayes Classifier

Figures from Hastie et al.

Training data:
O True label: +1

O True label: -1

Optimal “Bayes” classifier:
1
PY = 1|X = 1) = 5

Predicted label: +1

Predicted label: -1




Linear Decision Boundary
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Figures from Hastie et al

Training data:

O True label: +1

O True label: -1

Learned:

Linear Decision boundary
tTw+b=0
Predicted label: +1

Predicted label: -1




k=15 Nearest Neighbor Boundary

Training data:

O True label: +1

O True label: -1

Learned:

15 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e Nearest neighbor gives non-linear decision boundaries
e What happens if we use a small k or a large k?

Figures from Hastie et al



k=1 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Learned:

\1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

e With a small k, we tend to overfit.

Figures from Hastie et al



k-Nearest Neighbor Error

Model complexity low

k — Number of Nearest Neighbors

Model complexity high
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i ' * Bias-Variance tradeoff
§ - .\ /. Linear
‘ \ As k->infinity?
s
g e Bias:
5 \ Best possible : .
iog - Variance:
i \ .
vl.(_). | \./ \o\ AS k->1?
o o\. )
Bias:
§ -| = Train
Test : _
— BZ;es Variance:

Figures from Hastie et al

e The error achieved by Bayes optimal classifier provides a

lower bound on what any estimator can achieve



Notable distance metrics (and their level sets)

Consider 2 dimensional example with 2 data points with labels green, red,
and we show k = lnearest neighbor decision boundaries for various choices of distances

L, norm : d(x,y) = ||x = ||,
2 %)

s

@

Mahalanobis norm: d(x,y) = (x — y)T M(x—y)

1

L, norm (taxi-cab)

<

L-infinity (max) norm

2 %)




k = 1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

%%)

X X
Dist(xi,x/) = (X, — XI;)2 + (X, — Xi,)2  Dist(x/,x/) =(xi, — x,)2+(3xi, — 3%,)?

The relative scalings in the distance metric affect region shapes



1 nearest neighbor guarantee - classification

{(mi,yi) )iy z; € Ry, €{0,1} (24, Y:) “ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = x) is smooth everywhere, then as n — co the 1-NN classification rule has
error at most twice the Bayes error rate.




1 nearest neighbor guarantee - classification

11d

{(mi,yi) )iy z; € Ry, €{0,1} (i, yi) ~ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = x) is smooth everywhere, then as n — co the 1-NN classification rule has
error at most twice the Bayes error rate.

e Let xy, denote the nearest neighbor at a point x
o First note thatasn — co, P(y =+ 1 |xyn) = P(y =+ 1|x)
o Let p* = min{P(y =+ 1|x), P(y = — 1| x)}denote the Bayes error rate
e At a point x,
e Case 1: nearest neighbor is +1, which happens with P(y = + 1| x)
and the error rateis P(y = — 1| x)
e Case 2: nearest neighbor is + 1, which happens with P(y = — 1| x)
and the errorrate is P(y = + 1| x)

e The average error of a 1-NN is
Ply=+1|0)Py=—-1|x)+P(y=—1|x) P(y =+ 1[x) =2p*(1 — p¥)




Curse of dimensionality Ex. 1

it Cub (=R
Unit Cube - 510
\ Q i p=3
| P o=
1 =
<> e )
— E
& < |
= 0.3
| r =0.
S > S -
0 ,
O o |
\ 1 o | | | |
Neighborhood 0.0 0.2 0.4 0.6
side Iength r Fraction of Volume

X is uniformly distributed over [0, 1]?. What is P(X € [0,7]P)?

How many samples do we need so that a nearest neighbor is within a cube of side length r?



Curse of dimensionality Ex. 2

{X;}?_, are uniformly distributed over [—.5, .5]P.

0.4

0.2

|
Median Radius
0.3

0.1

0.0

3 4 5 Dimension

What is the median distance from a point at origin to its INN?

How many samples do we need so that a median Euclidean distance is within r?



Nearest neighbor regression

y T oy ) - What is the optimal classifier that
@i, 93) )iz minimizes MSE E[( — ¥)*]?
y=Ely[x]

1.0

. k-nearest neighbor regressor is

f@) =% > Y,

jenearest neighbor

0.5
1

0.0

-0.5

Zf;l y; X Ind(x; is a k nearest neighbor)

| >, Ind(x; is a k nearest neighbor)

-1.0
o




Nearest neighbor regression

y {(@i,vi) )iz

"0 In nearest neighbor methods, the
“weight” changes abruptly

1.0

0.5

smoothing: K (z,y)

0.0

Epanechnikov
Tri-cube
Gaussian

0.8

-0.5

K (zo,x)
04

-1.0
o

o]
0.0

. k-nearest neighbor regressor is

) = Z?zlyi X Ind(x; is a k nearest neighbor) f(:l:o) B 2?’:1 K(xo,x;)y;
o) =

— mn
Z?zl Ind(x; is a k nearest neighbor) Zizl K(xoa xz)




Nearest neighbor regression

y {(@i,vi) )iz

1.0

0.5

0.0

-0.5

-1.0

. k-nearest neighbor regressor is "
. " v x Ind(x; is a k nearest neighbor) N zizl K(CEO, l‘z)yz
) = ==L f(zo) =

mn
2?21 Ind(x; is a k nearest neighbor) Zizl K(%, 377,)




Nearest neighbor regression

| T T T T T T X T T T T T T T
0.0 0.2 04 (O 06 08 1.0 0.0 02 04 IO 06 0.8 1.0

Why just average them?
. k-nearest neighbor regressor is

f(x - Z?zlyl- X Ind(x; is a k nearest neighbor) ~ _ Z?:l K(xo, |
0 Z?zl Ind(x; is a k nearest neighbor) Z?:l K(x(),




Nearest neighbor regression
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k-nearest neighbor regressor is n
n . K(xo, )y ~
. " y.x Ind(x; is a k nearest neighbor = 2121 NS _ T
g = 22X D J0) = S Ko, ) f(@o) = blwo) + w(wo)” zo
Zi:l Ind(x; is a k nearest neighbor) =
n
: T 2
w(zo), b(wg) = arg mlgl K(zo,z:)(y;: — (b+w” x;))
w? .
1=1

Local Linear Regression



Nearest Neighbor Overview

« Verysimple to explain and implement

« No training! But finding nearest neighbors in large dataset at
test can be computationally demanding (KD-trees help)

o You can use other forms of distance (not just Euclidean)

« Smoothing and local linear regression can improve
performance (at the cost of higher variance)

o With alot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer (curse of dimensionality).



Questions?



- Homework 3, due Sunday, February 27 midnight
- We will add more office hours on Saturday and Sunday
- Schedule on Canvas (and more coming)
- Thai Hoang Saturday 9-10 AM
- Hugh Sun Saturday 1:30-2:30 PM
- Sewoong Oh Sunday 10-11 AM 0
- Homework 4, due Sunday, March 13th Midnight
- You are allowed only 3 late days for HW4 even if you have more remaining.

-1

Lecture 22:
Principal Component AnaIyS|s

- Supervised Learning with labelled data { (x;, y;) }7_,

- Goal: fit a function to predict y
- Regression/Classification
- Linear models / Kernels / Nearest Neighbor / Neural Networks

- Unsupervised Learning with unlabelled data {x;}'"_,

- Goal: find pattern in clouds of data {x;}}_,

- Principal Component Analysis
- Clustering




Motivation: dimensionality reduction

it takes n X d memory to store data {x;}_, withx; € R4
but many real data have patterns that repeat over samples
Can we exploit this redundancy? Can we find some patterns and use them?

Can we represent each image compacitly,
but still preserve most of information, by exploiting similarities?

2333
&
§

4

d=32x32pixels per image
n images
d X n real values to store the data




Principal component analysis finds a

compact linear representation

Principal components:
e patterns that capture the distinct _#; € R® " u I
features of the samples is called N

principal component
(to be formally defined later)

e weuser = 25 principal
components




Principal component analysis finds a
compact linear representation

Prmupal components

patterns that capture the distinct 4 € R _
features of the samples is called '
principal component

(to be formally defined later)

we use r = 25 principal
components

we can represent each sample as ;
a weighted linear combination 7 =
of the principal components, and [}
just store the weights :
(as opposed to all pixel values)

@ ~ all]u, + al2]uy + -+ + a[25]uys

e Each image is now represented by r = 25 numbers a = (a[l], ..., a[25])

e To store n images, it requires memory ofonlyd X r+rXn <€ dXn
1,000 xX25+25X%Xn 1,000 X n



10 principal components give a pretty good
reconstruction of a face

average face x+a[llu; x+alllu, + al2]u,

r=3

Ground truths real face



Assumption

1
Notice how we started with the average face x = — Z X;

« PCAis applied to {x; — X},

) For S|mpI|C|ty, we will assume that x;’s are centered such that
PPREL

. otherW|se without loss of generality,
everything we do can be apphed to the re-centered version of the data,

Le. {x; — X} ,, withx = —Zx



How do we define the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions uy, ..., u, € R¢, with
llu;]|, = Tfor all j to uniquely define principal components when we can,
such that each data can be represented as linear combination of those direction
vectors, i.e.
o~ p= alllu + - +alrly,

l

—xl.[l]_
ai[l]
xX; = ﬁ a, = .
: Dimensionality ai[r]
d=32x32 . Reduction - -

e Which choice of the principal components, {u,, ..., u,}, are better?
e But first, how do we find g, given x; and {uy, ..., u,}?



How do we find the principal components?

e Dimensionality reduction (for some r < d):
we would like to have a set of orthogonal directions u;, ..., u, € R, with luill, =1

for all |, such that each data can be represented as linear combination of those
direction vectors, i.e.

x, = p; = allu; + -+ afr]u, x;[1]

L L . a;[1]

* those directions that minimize the : )
average reconstruction error for a dataset X = . —> a; = :
is called the principal components ai[”]

e given achoice of uy, ..., u, x[d]
the best representation p; of x;
is the projection of the point onto
the subspace spanned by uj’s, .e.

T ! ulTx

Xi
a[]]—ux \
=Sy o

a;l 1
e we will use these without proving it




Principal components is the subspace that
minimizes the reconstruction error

minimize —Z lx; — pill5

Up,...,U, i=1

subject to ||u]|, = 1 foralljand u/u, = 0forallj # ¢

r r r

pi= 2w = D uulx; = (Z%“f) = UUy,
where U = [U) Uy -+ U] € R

mlnlmlze —Z lx; — UU” x||3
i=1
subjectto U'U=1_,

- Small rank r gives efficiency and large r gives less reconstruction error
- Q. How do we solve this optimization?



Minimizing reconstruction error
to find principal components

L 1 ¢ T w2
minimize —Z |lx; — UU" x,||5
v e

subjectto U'U=1_,



Minimizing reconstruction error
to find principal components

Minimize Reconstruction Error

] 1
_lexi_UUTxi”% minimize —2 lx; — UU” x|
e v s

ll’l
_ 1 12 = 2xTUU T x, + xTU UTU UTx. '
=~ 2 Il = 26/ VU 5 +2[U U0 Ui} | gupiect to UTU =1,

i=1 1
1 & .
— Y3 - =) xuUTy,
n i=1 n i=1

does not depend on U v

r n
1
—_ T 2 . . . . .
=C- Z ; 2 (”j X;) Maximizing Variance captured in
J=1 i=1 principal directions

Variance in direction u;

r 1 n
maximize E — E (ulx)?
] l
U eed ) 4
j=1 i=1

subjectto U'U=1_,

Recall we assumed x;s are centered, i.e., zero-mean



Variance maximization vs. reconstruction error minimization

e both give the same principal components as optimal solution,
because Error? + Variance = ||xl-||%

2

X;
X
Pi

Reconstruction error minimization
- . . D . .
finds directions that minimize

the distances to p,’s x
-1

ariance maximization finds directions
that maximizes the spread of p;’s



Maximizing variance to find principal components

maX|m|ze Z Z(u Tx.)?

subjectto U'U=1_,

We will solve it for r = 1 case,
and the general case follows similarly

maximize — Z (u! x)?

w|jull,=1

maximize u’Cu
u:[|ull,=1

How do you find u?



Maximizing variance to find principal components

maximize, u’ Cu (a)

subject to ||u||% =1

e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize, u’ Cu (b)
subject to ||u||% <1
e Why?



Maximizing variance to find principal components

maximize, u’ Cu (a)
subject to ||u||% =1

e we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

maximize, u’ Cu (b)
subject to ||u||% <1

e the reason is that, because u’Cu > 0 for all u € R4, the optimal
solution of (b) has to have ||u||§ =1

e ifit did not have ||u||3 = 1, say ||u||2 = 0.9, then we can just multiply
2

this u by a constant factor of 41/ 10/9 and increase the objective by a
factor of 10/9 while still satisfying the constraints



maximize, u’ Cu (b)

subject to ||u||% <1

we are maximizing the variance, while keeping 1 small

this can be reformulated as an unconstrained problem, with
Lagrangian encoding, to move the constraint into the objective

maximize ps u' Cu — Allull% (¢)

Fy(u)

this encourages small i« as we want, and we can make this
connection precise: there exists a (unknown) choice of A such
that the optimal solution of (¢) is the same as the optimal solution

of (D)

further, for this choice of 4, exists an optimal u* with ||u*||, = 1



Solving the unconstrained optimization

maximize s u' Cu — Al|ul|3

~

F ;Iu)

e to find such A and the corresponding u, we solve the unconstrained
optimization, by setting the gradient to zero

VFu = 2Cu—-2u =0

e the candidate solution satisfies: Cu = Au,
i.e. an eigenvector of C

e let (A, uD) denote the largest eigenvalue and corresponding
eigenvector of C,

« We will normalize the eigenvector such that ||u(1)||% =1

o Selecting 1 = A1, the maximum value of zero is achieved when
u=ub, why?

e No other choice of 4 gives a solution with ||u|[, =1



The principal component analysis

e so far we considered finding ONE principal component u & R4

* itis the eigenvector corresponding to the maximum eigenvalue
of the covariance matrix

1
C=—X'X e R
n

* We can also use the Singular Value Decomposition (SVD) to find
such eigen vector

* note that is the data is not centered at the origin, we should re-
center the data before applying SVD

* in general we define and use multiple principal components

e if we need r principal components, we take r eigenvectors
corresponding to the largest r eigenvalues of C



Algorithm: Principal Component Analysis

e input: data points {x;}’_,, target dimension r < d

e output: r-dimensional subspace U
 algorithm:
1

compute mean x = — X;

i=1
. compute covarlance matrix

Z (5 = 90 = B

e let(uy,...,u,) be the set of (normalized) eigenvectors with
corresponding to the largest r eigenvalues of C
e retunU=[U; Uy - U]

e further the data points can be represented compactly via
= Ul(x,— ) €R’



Matrix completion for recommendation systems

2

4

4

1=

=

-
n =5-10° users \
10° queries

A

ssinow 0T - ¢

¥

e users provide ratings on a few movies, and we want to predict the

missing entries in this ratings matrix, so that we can make

recommendations

e without any assumptions, the missing entries can be anything, and

no prediction is possible



Matrix completion

however, the ratings are not arbitrary, but people with similar tastes
rate similarly

such structure can be modeled using low dimensional representation
of the data as follows

we will find a set of principal component vectors

U=[u uy - u] Rer
such that that ratings x; € R4 of user I, can be represented as
x; = alllu; + ---ajlr]u,
= Ug,

for some lower-dimensional a; € R’ for i-th user and some r < d

for example, u,; € R<Z means how horror movie fans like each of the d
movies,

and ;[ 1] means how much user i is fan of horror movies



Matrix completion

e letX =[x X - X,]€ R pethe ratings matrix, and
assume it is fully observed, i.e. we know all the entries

e then we want to find U € R%" and

A=[a ay - a,] € R™ thatapproximates X
X ~ U A
Movie ] —
d
T n e if we observe all ez\tries of X, then we can solve
User i minimizey 4 ), [l — Ug)13

i=1

which can be solved using PCA (i.e. SVD)



Matrix completion

e in practice, we only observe X partially
e let Syain = {(ipsjp)}2_, denote N observed ratings for user i, on movie j,

x" =~ uA |l

| | T
.. | a; for user |
_ . vI for movie j
B B - — .V J]
d |
n

. let va denote the j-th row of U and a; denote i-th column of A

o then user i’s rating on movie J, i.e. in is approximated by vaal-, which is the inner

product of v (a column vector) and a column vector a;

Y I
e we can also write it as (v;, a;) = v; g,



Matrix completion

e a natural approach to fit vj’s and a;s to given training data is to solve

minimizey, Y, (X;—v/a)?
(i’j)ES‘[rain

* this can be solved, for example via gradient descent or alternating
minimization
* this can be quite accurate, with small number of samples



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

For illustration,
we zoom into a
50x50 submatrix

Gradient descent output UA

B |

EEN B EE = " =N
[N 8 | -m BE M EEE ER
n'E N ] n

|
[ = BN |

L |
aEmE W

0.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA

SR " [ R RN BESRR

- m [ ] - jm
- . . | | [
- EE. E B EE®E ' E B e .
B LT - n R
N = ol ey |
II | | - m -
Id.l- - - - - =
» . -
| | m
- . | | |
'm @ = - - - - -
] N
[ ]
F
- 1 =1 Ei

0.50% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X

Gradient descent output UA
O . o T Y

l II_II-
.J-l-:-.- .! g o

S AR ;'_‘E‘
'-iﬁ-l' = g i

[ . -Il rﬂ |

o 0 =

"y -—- - 'l—g'rl-
IFI“.I-'1 EEIZ

sampled matrix

Sq uared error X;

0.75% sampled

i— (UA);)?




Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

cm me "H ™ o el e - “A "8
=) - | -

[!u'.;'.:t_ :-.I.- E-.|'.I':-
Lo e T R T
Fuse
G 3 Pl e BE
F iz b
=gl TR - = =3
E{I- --'_"I.;. -!-llE-l:

1.00% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA
i

1.25% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

Gradient descent output UA squared error (X (UA),)?

ol B .l-l!l. 1.'=|E“H

1.50% sampled



Example: 2000 x 2000 rank-8 random matrix

low-rank matrix X sampled matrix

-

squared error X — (UA);’

1.75% sampled



Questions?



