
Lecture 21: 
Nearest Neighbor Methods

- Homework 3, due Saturday, February 26 midnight

x1

x2

- Yet another non-linear model

- Kernel method

- Neural Network

- Nearest Neighbor method

- A model is called “parametric” if the number of parameters  
do not depend on the number of samples

- A model is called “non-parametric” if the number of parameters  
increase with the number of samples

Recall Bayes optimal classifier

• Consider an example of binary classification on 1-dimensional

• The problem is fully specified by the ground truths

• Suppose for simplicity that
• Bayes optimal classifier minimizes the conditional error for every , 

which can be written explicitly as  
  

x ∈ ℝ
PX,Y(x, y)

PY(y = + 1) = PY(y = − 1) = 1/2
P(̂y ≠ y |x) x

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

In practice we do not have P(x, y)

samples with y = + 1

samples with y = − 1

• How do we compare and from samples?P(y = + 1 |x) P(y = − 1 |x)

x

P(y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

• Bayes optimal classifier  

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

x

x

One way to approximate Bayes Classifier
= local statistics

• Denote the as the number of samples within distance from with label , then 

  

as we increase and decrease .

• If we take to be the distance to the -th neighbor from , then  

n+
r r x +1

n+
r

n
⟶ 2r × P(x, y = + 1)

n r
r k x

of +1 samples
of -1 samples

⟶
P(x, y = + 1)
P(x, y = − 1)

• Bayes optimal classifier 
  
  
 

decision is based on

• -nearest neighbors classifier  
considers the -nearest neighbors and  
takes a majority vote

̂y = + 1 if P(+1 |x) > P(−1 |x)
−1 if P(+1 |x) < P(−1 |x)

P(x, y = + 1)
P(x, y = − 1)

k
k

̂y = + 1, if (# of +1 samples) > (# of -1 samples)
−1, if (# of +1 samples) < (# of -1 samples)

x

P (y = + 1 |x)

0.5

̂y = + 1 ̂y = + 1 +1̂y = − 1̂y = − 1̂y = − 1

x

x

• Decision is based on
of +1 samples

of -1 samples

Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures from Hastie et al.

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1

Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

=15 Nearest Neighbor Boundaryk

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• Nearest neighbor gives non-linear decision boundaries

• What happens if we use a small or a large ?k k

k=1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures from Hastie et al

• With a small , we tend to overfit.k

k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance:

Bias:

Variance:

Figures from Hastie et al

k

Model complexity highModel complexity low

• The error achieved by Bayes optimal classifier provides a
lower bound on what any estimator can achieve

Notable distance metrics (and their level sets)

L1 norm (taxi-cab)

L-infinity (max) normMahalanobis norm: d(x, y) = (x − y)T M (x − y)

L2 norm : d(x, y) = ∥x − y∥2

Consider 2 dimensional example with 2 data points with labels green, red,  
and we show nearest neighbor decision boundaries for various choices of distancesk = 1

x1

x2

x1

x2

x1

x2

x1

x2

1 nearest neighbork =

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.

x1 x1

x2 x2

1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY

• Let denote the nearest neighbor at a point

• First note that as

• Let denote the Bayes error rate

• At a point ,

• Case 1: nearest neighbor is , which happens with  
and the error rate is

• Case 2: nearest neighbor is , which happens with  
and the error rate is

• The average error of a 1-NN is 
 +

xNN x
n → ∞, P(y = + 1 |xNN) → P(y = + 1 |x)

p* = min{P(y = + 1 |x), P(y = − 1 |x)}
x

+1 P(y = + 1 |x)
P(y = − 1 |x)

+1 P(y = − 1 |x)
P(y = + 1 |x)

P(y = + 1 |x) P(y = − 1 |x) P(y = − 1 |x) P(y = + 1 |x) = 2p*(1 − p*)

Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
ge

 le
ng

th
 r

r = 0.3

How many samples do we need so that a nearest neighbor is within a cube of side length ?r

Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?

How many samples do we need so that a median Euclidean distance is within ?r

3 4 5

Nearest neighbor regression

{(xi, yi)})ni=1
• What is the optimal classifier that

minimizes MSE ?  
  

• -nearest neighbor regressor is 

 

𝔼[(̂y − y)2]
̂y = 𝔼[y |x]

k
̂f(x) =

1
k ∑

j∈nearest neighbor
yj

=
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y

Nearest neighbor regression

{(xi, yi)})ni=1

In nearest neighbor methods, the
“weight” changes abruptly

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

• -nearest neighbor regressor is k
̂f(x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?
• -nearest neighbor regressor is k

̂f(x0) =
∑n

i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

x

y

Nearest neighbor regression

{(xi, yi)})ni=1

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression

• -nearest neighbor regressor is k
̂f (x0) =

∑n
i=1 yi × Ind(xi is a k nearest neighbor)

∑n
i=1 Ind(xi is a k nearest neighbor)

Nearest Neighbor Overview

• Very simple to explain and implement

• No training! But finding nearest neighbors in large dataset at

test can be computationally demanding (KD-trees help)

• You can use other forms of distance (not just Euclidean)

• Smoothing and local linear regression can improve

performance (at the cost of higher variance)

• With a lot of data, “local methods” have strong, simple

theoretical guarantees.

• Without a lot of data, neighborhoods aren’t “local” and

methods suffer (curse of dimensionality).

Questions?

Lecture 22:
Principal Component Analysis

- Homework 3, due Sunday, February 27 midnight

- We will add more office hours on Saturday and Sunday

- Schedule on Canvas (and more coming)

- Thai Hoang Saturday 9-10 AM

- Hugh Sun Saturday 1:30-2:30 PM

- Sewoong Oh Sunday 10-11 AM

- Homework 4, due Sunday, March 13th Midnight

- You are allowed only 3 late days for HW4 even if you have more remaining.

- Supervised Learning with labelled data

- Goal: fit a function to predict

- Regression/Classification

- Linear models / Kernels / Nearest Neighbor / Neural Networks

- Unsupervised Learning with unlabelled data

- Goal: find pattern in clouds of data

- Principal Component Analysis

- Clustering

{(xi, yi)}n
i=1

y

{xi}n
i=1

{xi}n
i=1

Motivation: dimensionality reduction
• it takes memory to store data with

• but many real data have patterns that repeat over samples

• Can we exploit this redundancy? Can we find some patterns and use them?

• Can we represent each image compactly,  
but still preserve most of information, by exploiting similarities?

n × d {xi}n
i=1 xi ∈ ℝd

Input images: Principal components:
=32x32pixels per image

 images

 real values to store the data

d
n
d × n

Principal component analysis finds a
compact linear representation

• patterns that capture the distinct
features of the samples is called
principal component  
(to be formally defined later)

• we use principal
components

r = 25

Input images: Principal components:
u1 ∈ ℝd u2

Principal component analysis finds a
compact linear representation

• patterns that capture the distinct
features of the samples is called
principal component  
(to be formally defined later)

• we use principal
components

• we can represent each sample as
a weighted linear combination
of the principal components, and
just store the weights  
(as opposed to all pixel values)

r = 25

Input images: Principal components:

Input images: Principal components:
≈ a[1]u1 + a[2]u2 + ⋯ + a[25]u25

u1 ∈ ℝd u2

• Each image is now represented by numbers

• To store images, it requires memory of only

r = 25 a = (a[1], …, a[25])
n d × r + r × n ≪ d × n

1,000 × 25 + 25 × n 1,000 × n

Ground truths real face

average face
r = 1 r = 2 r = 3

10 principal components give a pretty good
reconstruction of a face

x̄
x̄ + a[1]u1 x̄ + a[1]u1 + a[2]u2

r = 4

r = 10

r = 7 r = 8 r = 9

Assumption

• Notice how we started with the average face

• PCA is applied to

• For simplicity, we will assume that ’s are centered such that

• otherwise, without loss of generality,  
everything we do can be applied to the re-centered version of the data,

i.e. , with

x̄ =
1
n

n

∑
i=1

xi

{xi − x̄}n
i=1

xi
1
n

n

∑
i=1

xi = 0

{xi − x̄}n
i=1 x̄ =

1
n

n

∑
i=1

xi

How do we define the principal components?

• Dimensionality reduction (for some):  
we would like to have a set of orthogonal directions , with

for all j to uniquely define principal components when we can,  
such that each data can be represented as linear combination of those direction
vectors, i.e.  
  

r ≪ d
u1, …, ur ∈ ℝd

∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

d=32x32
Dimensionality

Reduction

• Which choice of the principal components, { }, are better?

• But first, how do we find given and ?

u1, …, ur
ai xi {u1, …, ur}

How do we find the principal components?

• Dimensionality reduction (for some):  
we would like to have a set of orthogonal directions , with
for all j, such that each data can be represented as linear combination of those
direction vectors, i.e.  
  

• those directions that minimize the  
average reconstruction error for a dataset  
is called the principal components

• given a choice of ,  
the best representation of  
is the projection of the point onto  
the subspace spanned by ’s, i.e. 
 

  

• we will use these without proving it

r ≪ d
u1, …, ur ∈ ℝd ∥uj∥2 = 1

xi ≈ pi = ai[1]u1 + ⋯ + ai[r]ur

u1, …, ur
pi xi

uj

ai[j] = uT
j xi

pi =
r

∑
j=1

(uT
j xi)

ai[j]

uj

xi =

xi[1]
⋮
⋮
⋮
⋮

xi[d]

ai =
ai[1]

⋮
ai[r]

xi

piu1

{uT
1 xi

Principal components is the subspace that  
minimizes the reconstruction error

  

 
where

pi =
r

∑
j=1

(uT
j xi)uj =

r

∑
j=1

ujuT
j xi = (

r

∑
j=1

ujuT
j)xi = UUT xi

U = [u1 u2 ⋯ ur] ∈ ℝd×r

minimize
u1,…,ur

1
n

n

∑
i=1

∥xi − pi∥2
2

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

subject to UTU = Ir×r

- Small rank gives efficiency and large gives less reconstruction error

- Q. How do we solve this optimization?

r r

subject to ∥uj∥2 = 1 for all j and uT
j uℓ = 0 for all j ≠ ℓ

Minimizing reconstruction error  
to find principal components

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

Minimizing reconstruction error  
to find principal components

minimize
U

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

subject to UTU = Ir×r

1
n

n

∑
i=1

∥xi − UUT xi∥2
2

=
1
n

n

∑
i=1

{∥xi∥2
2 − 2xT

i UUT xi + xT
i U UTU

⏟
=I

UT xi}
=

1
n

n

∑
i=1

∥xi∥2
2

does not depend on U

−
1
n

n

∑
i=1

xT
i UUT xi

= C −
r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

Variance in direction uj

maximize
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to UTU = Ir×r

Minimize Reconstruction Error

Maximizing Variance captured in  
principal directions

Recall we assumed ’s are centered, i.e., zero-meanxi

Variance maximization vs. reconstruction error minimization

• both give the same principal components as optimal solution, 
because Error2 + Variance = ∥xi∥2

2

Maximizing variance to find principal components

maximize
U

r

∑
j=1

1
n

n

∑
i=1

(uT
j xi)2

subject to UTU = Ir×r

We will solve it for case,  
and the general case follows similarly

r = 1

maximize
u:∥u∥2=1

1
n

n

∑
i=1

(uT xi)2

maximize
u:∥u∥2=1

uTCu

How do you find ?u

Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

• Why?

maximizeu uTCu

 subject to ∥u∥2
2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)

Maximizing variance to find principal components

• we first claim that this optimization problem has the same optimal
solution as the following inequality constrained problem

• the reason is that, because for all , the optimal
solution of has to have

• if it did not have , say , then we can just multiply
this by a constant factor of and increase the objective by a
factor of while still satisfying the constraints

uTCu ≥ 0 u ∈ ℝd

(b) ∥u∥2
2 = 1

∥u∥2
2 = 1 ∥u∥2

2 = 0.9
u 10/9

10/9

maximizeu uTCu

 subject to ∥u∥2
2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

(a)

(b)

• we are maximizing the variance, while keeping small

• this can be reformulated as an unconstrained problem, with

Lagrangian encoding, to move the constraint into the objective  
 
 
 

• this encourages small as we want, and we can make this
connection precise: there exists a (unknown) choice of such
that the optimal solution of is the same as the optimal solution
of

• further, for this choice of , exists an optimal with

u

u
λ

(c)
(b)

λ u* ∥u*∥2 = 1

maximizeu uTCu
 subject to ∥u∥2

2 ≤ 1

maximizeu∈ℝd uTCu − λ∥u∥2
2

Fλ(u)

(b)

(c)

Solving the unconstrained optimization

• to find such and the corresponding , we solve the unconstrained
optimization, by setting the gradient to zero 

• the candidate solution satisfies: ,  
i.e. an eigenvector of

• let denote the largest eigenvalue and corresponding
eigenvector of ,

• We will normalize the eigenvector such that

• Selecting , the maximum value of zero is achieved when
, why?

• No other choice of gives a solution with

λ u

∇Fλ(u) = 2Cu − 2λu = 0
Cu = λu

C
(λ(1), u(1))

C
∥u(1)∥2

2 = 1
λ = λ(1)

u = u(1)

λ ∥u∥2 = 1

maximizeu∈ℝd uTCu − λ∥u∥2
2

Fλ(u)

The principal component analysis

• so far we considered finding ONE principal component

• it is the eigenvector corresponding to the maximum eigenvalue

of the covariance matrix  

• We can also use the Singular Value Decomposition (SVD) to find
such eigen vector

• note that is the data is not centered at the origin, we should re-
center the data before applying SVD

• in general we define and use multiple principal components

• if we need principal components, we take eigenvectors
corresponding to the largest eigenvalues of

u ∈ ℝd

C =
1
n

XTX ∈ ℝd×d

r r
r C

Algorithm: Principal Component Analysis
• input: data points , target dimension

• output: -dimensional subspace

• algorithm:

• compute mean

• compute covariance matrix 

• let be the set of (normalized) eigenvectors with
corresponding to the largest eigenvalues of

• return

• further the data points can be represented compactly via 

{xi}n
i=1 r ≪ d

r U

x̄ =
1
n

n

∑
i=1

xi

C =
1
n

n

∑
i=1

(xi − x̄)(xi − x̄)T

(u1, …, ur)
r C

U = [u1 u2 ⋯ ur]

ai = UT(xi − x̄) ∈ ℝr

Matrix completion for recommendation systems

• users provide ratings on a few movies, and we want to predict the
missing entries in this ratings matrix, so that we can make
recommendations

• without any assumptions, the missing entries can be anything, and
no prediction is possible

n =

= d

Matrix completion
• however, the ratings are not arbitrary, but people with similar tastes

rate similarly

• such structure can be modeled using low dimensional representation

of the data as follows

• we will find a set of principal component vectors

• such that that ratings of user , can be represented as  
  
  
for some lower-dimensional for -th user and some

• for example, means how horror movie fans like each of the
movies,

• and means how much user is fan of horror movies

U = [u1 u2 ⋯ ur] ∈ ℝd×r

xi ∈ ℝd i
xi = ai[1]u1 + ⋯ai[r]ur

= Uai
ai ∈ ℝr i r ≪ d

u1 ∈ ℝd d

ai[1] i

Matrix completion
• let be the ratings matrix, and

assume it is fully observed, i.e. we know all the entries

• then we want to find and
 that approximates  

X = [x1 x2 ⋯ xn] ∈ ℝd×n

U ∈ ℝd×r

A = [a1 a2 ⋯ an] ∈ ℝr×n X

X

User i

Movie j

d n

U A≈

• if we observe all entries of , then we can solve  

 
which can be solved using PCA (i.e. SVD)

X
minimizeU,A

n

∑
i=1

∥xi − Uai∥2
2

Matrix completion
• in practice, we only observe partially

• let denote observed ratings for user on movie
X

Strain = {(iℓ, jℓ)}N
ℓ=1 N iℓ jℓ

X
 for user ai i

 for movie vT
j j

d n

U A≈

• let denote the -th row of and denote -th column of

• then user ’s rating on movie , i.e. is approximated by , which is the inner
product of (a column vector) and a column vector

• we can also write it as

vT
j j U ai i A

i j Xji vT
j ai

vj ai

⟨vj, ai⟩ = vT
j ai

Matrix completion
• a natural approach to fit ’s and to given training data is to solve  

• this can be solved, for example via gradient descent or alternating
minimization

• this can be quite accurate, with small number of samples

vj a′￼is
minimizeU,A ∑

(i, j)∈Strain

(Xji − vT
j ai)2

Gradient descent

X

UA (Xji − (UA)ji)2

For illustration, 
we zoom in to a  
50x50 submatrix

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Gradient descent

X

UA (Xji − (UA)ji)2

Questions?

