- Homework 3, due Friday, February 25,

Lecture 18:
Kernels (continued)
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Recap: Kernel trick finds the optimal solution
for linear models under a feature map ¢( - )

. Once we have chosen a feature map ¢( - ) € R?,
what we want to snolve is

W = arg min Z f( Vis qub(xl-) ) for some convex loss £(,)
weR?P 4

« Kernel trick flnds the optlmal solution efficiently, by searching over the model that can

be represented as W = Z a,p(x;), which is equivalentto y .., = Z a;K(x;, Xpe)
i=1 Q‘Rp i=1

- Gradient descent update (from initialization w©® = 0) that find the optimal solution is
n

wD @ Z 'y w p(x) P(x;)

i=1

scalar

. One crucial observation is that all w®’s (including the optimal solution w(°°)) lie on the
subspace spanned by {¢(x,), ..., ¢(x,)}, which is an n-dimensional subspace in R”

* Hence, it is sufficient to look for a solution that is represented as
n

= Z a;¢(x;) to find the optimal solution
i=1



Fixed Feature V.S. Learned Feature

e Kernel method works well if we choose a good kernel such that the data is
linearly separable in the corresponding (possibly infinite dimensional)
feature space

e In practice, it is hard to choose a good kernel for a given problem

e Can we learn the feature mapping ¢ : R?¢ — RP? from data also?



Bootstrap

- How to measure uncertainty in our predictions



Confidence interval

suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

we train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmizea ||Ka _ y”% + 1 aTKa Example of 5% and 9_5% percentile
curves for predictor f(x)

the resulting pgfledictor iS o - High confidence
f@) = ) K(x,x)a, “
l=1 | ) ® //.o\i \‘
where © o\
a = (K+iADly eR” R A
/ \ éf/ 1)
s /{ ...¥\\.,’\\ /7;// |\
we wish to build a confidence interval AN N A
for our predictor f(x), using ° 7 A 7 ‘,
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Confidence interval

e let's focus on a single x € R4

 note that our predictor f(x) is a random
variable, whose randomness comes

from the training data S;,;, = { (%, y) )iy
if we know the statistics
(in particular the CDF of the '

random variable f(x)) of the predictor,
then the confidence interval with ° ,’
confidence level 90% is defined as

0.90

4

A

CDE(f(x))

0.95 - if we know the distribution of our predictor f(x),
the green line is the expectation E[ f(x)]

and the black dashed lines are the
5% and 95% percentiles in the figure above
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e as we do not have the cumulative distribution function (CDF),
we need to approximate them



Confidence interval

hypothetically, if we can sample as many times as we want,
then we can train B € Z i.i.d. predictors, each trained on n fresh samples to get

empirical estimate of the CDF of y = f(x)

for b=1,...,.B

draw n fresh samples {(xl.(b), yl.(b))}?=1
train a regularized kernel
regression a @

n
Predict $?) = Z K(xl.(b), x)al.*(b)
i=1

let the empiricﬂC\DF of those B predictors
{3®}2_ be CDF (§), defined as

compute the confidence interval using CDF ()

What is wrong?
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Bootstrap

e as we cannot sample repeatedly (in typical cases), we use bootstrap samples
instead

e bootstrap is a general tool for assessing statistical accuracy
e we learn it in the context of confidence interval for trained models

* a bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at random with

replacement from the training dat

e forb=1,....B

. create a bootstrap dataset S ()
bootstrap

e train a regularized kernel regression a )

n
predict $?) = ZK(xi(b),x)ai*(b)
i=1

e compute the empirical CDF from the bootstrap datasets, and compute the
confidence interval



bootstrap

training a single predictor multiple bootstrapped 90% confidence interval
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Figures from Hastie et al



Questions?



Neural Networks



Neural Networks

e Origins: Algorithms that try to mimic the brain.
e Widely used in 80s and early 90s; popularity diminished in late 90s.
e Recent resurgence from 2010s: state-of-the-art techniques for many
applications:
e Computer Vision (AlexNet 2012)
e Natural language processing
e Speech recognition
e Decision-making / control problems (AlphaGo, Games, robots)
e Limited theory:
e Why do we find good minima with SGD for Non-convex loss?

e Why do we not overfit when # of parameters p is much larger
than # of samples n?



Neural Networks

Agenda:

1.Definitions of neural networks

2.Training neural networks:
1.Algorithm: back propagation

2.Putting it to work

3.Neural network architecture design:
1.Convolutional neural network



Neural Networks

e Neural Network is a parametric family of functions from x € R%to y = hy(x) € R* with

parameter 0 € RP
e Computation graph illustrates the sequence of operations to be performed by a neural network
Input Intermediate Layers Output

Neuron/node/unit Layer Layer
Layer 2 Layer 3 =
> 7/

5 k
Input x € R? Output y € R

d nodes Link: maps output of Neuron:
each representing a neuron to input of 1. Input: weighted sum of previous layer
a scalar value of a neuron of the next layer, 2. Apply scalar activation function

each coordinate of x each link has a scalar weight 3. Output: links to the next layer



Sequence of operations performed at a single node

e For a single node with input x € R4 the node is defined by

o Parameter 8 € R%*! (including the intercept/bias)
e Activation functiong : R - R

1
l+e=
e Another popular choice is Rectified Linear Unit (ReLU): g(z) = max{0,z}

« A common choice is sigmoid function: g(z) =

d
, The node performs hy(x) = g( Z Ql-xl-> = g(eTx) =
i=0 B }

1 +e0'x
“bias unit” Lo go
¢ N L1 1
[ ToN zo=1 X = 0 = 0
‘e N ) 2

“~ 0o T3 03




Toy example: What can be represented by a single node with g(z) = sign(z)?

* xX[1]x[2] y * x[1]x[2] y
«e0 0 O . «e0 0 O
0

0 1 p 0 0)
e 1 0 1 e 1 0 O
e 1 1 1 0 1 1 1

What should be the weights?
X[2]  fy(x) = sign(6, + 6,x[1] + 6,x[2]) Jo(x) = sign(6, + 0,x[1] + 0,x[2])

b=
d + (9(:@2;":’1
Xc1]

Note that there is a one-to-one correspondence between
a linear classifier and a neural network with a single node of the above form

XT17 XoR Xc2f ~ T

What cannot be learned? A+~ -



Neural Network composes simple functions
to make complex functions

e Each layer performs simple operations

e Neural Network (with parameter 8 = ((9(1), 9(2))) composes multiple layers of operations

Layer 1 has a1(2) — g( Z Ql(g)xi )
parameter () € R34 i=0
: : " 2) Layer 2 has
bias units | T oV a'
\ 0,’\0 Jo 0 \\\ parameter 0©® € R*
\
MG
ag2) 9(2\)\ 60
1N\
—_— h@ (X)
a? o 3
0 o) =g Y 6%a®)
i=0
2
o2
Layer 1 Layer 2 Layer 3 thisis called

(Input Layer) (Hidden Layer) (Output Layer) a 2-layer Neural Network



(2)
al) = “activation” of unit j in layer j

o’ —>h .
—>he(x) OU) = weight matrix stores parameters
from layerj to layerj + 1
o\?) = g(8\)xo + Va1 + 0wy + 601 as)
al? = g(O%)xo + 0N a1 + 0% s + 08 x3)

al?) = g(0\) zo + O\ z1 + O x5 + O 25)
ho () = a® = g(02a® + 0@ 4 03,2 4 03,

If network has s; units in Iayerj and S;,4 units in layer j+1,
then @0 has dlmen5|on Si1 X (S+1)

@(1) c R3><4 @(2) c R1X4



Example of 2-layer neural network in action

Linear decision boundary
]

1-layer neural networks
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2
formants (features)

a highly non-linear decision boundary can be learned from 2-layer neural networks
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Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a
finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F, |F(x) — F(x)| <.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.



Multi-layer Neural Network - Binary Classification in {0,]1 }

L-th layer plays the role of features, but trained instead of pre-determined

(Learned) feature representation  Logistic
This is a 5-dimensional vector regression

al) = x ~_ 0%~ ge-D

@ = g(OMaM)

Scalar function g
is applied
coordinate-wise

d
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ey = S

L(y,y) =ylog(y) + (1 — y)log(l — y)

1 Binary Logistic Regression

y=g(0"all)

with learned feature ¥

@)= l+e=




Multi-layer Neural Network - Binary Classification

e Why is ReLU better than sigmoid?

(Learned) feature representation Logistic
regression

>

3 ‘é‘%\"\‘;&: "‘5
e
\‘.4///0\\\//,

L(y,y) =ylog(y) + (1 — y)log(l — y)

1 Binary
0(z) = max{0,z} g(z) = ) —, Logistic
te Regression




Nonlinear activation function

* popular choices of activation function includes

| Leaky ReLU )
max(0.1x, x)
—X l
tanh _ e-e Maxout
tanh(x) T ek e max(wi x + by, wl z + by)
RelLU / ELU ._/
T x>0
= . {a(e“’ —-1) z<0 - - o

max (0, x)
* Why is RelLU better than Sigmoid?
* Why is ELU better than RelLU?

Sigmoid
1

0($):m




K-class Classification: multiple output units

{

<)

N

. QVi.
l

AN/
TN IR N4 i
A IREA IR ho(x) € RE Multi-class
@{VW;\!&'{& ;,*z;«’fgx © Logistic
VAN Y% )
N 4‘,’;““% (¥ ;;’X‘\ Regression
(Learned) feature representatio ogistic regression
We want:
1 0 0 0
0 1 0 0
h@(X) ~ 0 he (X) ~ 0 he (X) ~ 1 he (X) ~ 0
0 0 0 1

when pedestrian when car when motorcycle when truck



Multi-layer Neural Network - Regression

(Learned) feature representation Logistic

regression
\VI{‘%\\‘\:"’{{ ’%‘Z’/
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all) = x
o@ = (O M)
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o(z) = max{0, z} Regression

7= 0y (D)




Questions?



