
Lecture 18: 
Kernels (continued)

- Homework 3, due Friday, February 25, 
 



• Once we have chosen a feature map ,  
what we want to solve is  

 for some convex loss (,)

• Kernel trick finds the optimal solution efficiently, by searching over the model that can 

be represented as , which is equivalent to 

• Gradient descent update (from initialization ) that find the optimal solution is  

 

• One crucial observation is that all ’s (including the optimal solution ) lie on the 
subspace spanned by , which is an -dimensional subspace in 

• Hence, it is sufficient to look for a solution that is represented as  

 to find the optimal solution 

ϕ( ⋅ ) ∈ ℝp

̂w = arg min
w∈ℝp

n

∑
i=1

ℓ( yi, wTϕ(xi) ) ℓ

̂w =
n

∑
i=1

αiϕ(xi) ̂y new =
n

∑
i=1

αiK(xi, xnew)

w(0) = 0
w(t+1) ← w(t) − η

n

∑
i=1

ℓ′ (yi, wTϕ(xi))
scalar

ϕ(xi)

w(t) w(∞)

{ϕ(x1), …, ϕ(xn)} n ℝp

̂w =
n

∑
i=1

αiϕ(xi)

Recap: Kernel trick finds the optimal solution 
for linear models under a feature map ϕ( ⋅ )



Fixed Feature V.S. Learned Feature

• Kernel method works well if we choose a good kernel such that the data is  
linearly separable in the corresponding (possibly infinite dimensional)  
feature space 

• In practice, it is hard to choose a good kernel for a given problem 
  

• Can we learn the feature mapping  from data also? ϕ : ℝd → ℝp



 
Bootstrap

- How to measure uncertainty in our predictions



Confidence interval
• suppose you have training data  drawn i.i.d. from some true 

distribution 

• we train a kernel ridge regressor, with some choice of a kernel

 
       


• the resulting predictor is  
       ,  

where  
         


• we wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles 

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ
minmizeα ∥Kα − y∥2

2 + λαTKα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (K + λI)−1y ∈ ℝn

f(x)

Example of 5% and 95% percentile 
curves for predictor f(x)

High confidence

Low confidence 
Why?



Confidence interval
• let's focus on a single 

• note that our predictor  is a random  

variable, whose randomness comes  
from the training data 


• if we know the statistics  
(in particular the CDF of the  
random variable ) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as 


• as we do not have the cumulative distribution function (CDF),  
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

f (x)

CDF( f (x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f (x)
,[ f (x)]

0.90

y



Confidence interval
• hypothetically, if we can sample as many times as we want,  

then we can train  i.i.d. predictors, each trained on  fresh samples to get 
empirical estimate of the CDF of 


• for b=1,…,B


• draw  fresh samples 

• train a regularized kernel  

regression 


• Predict 


• let the empirical CDF of those B predictors 
 be , defined as  

 

      


• compute the confidence interval using 

• What is wrong?

B ∈ ℤ+ n
̂y = f (x)

n {(x(b)
i , y(b)

i )}n
i=1

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i

{ ̂y(b)}B
b=1 ̂CDF ( ̂y)

̂CDF ( ̂y) = 1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y } = 1
B

B

∑
b=1

I{ (α*(b))Th(x) ≤ ̂y }

̂CDF ( ̂y)

̂y

CDF( ̂y)

̂CDF ( ̂y)



Bootstrap 
• as we cannot sample repeatedly (in typical cases), we use bootstrap samples 

instead 

• bootstrap is a general tool for assessing statistical accuracy

• we learn it in the context of confidence interval for trained models


• a bootstrap dataset is created from the training dataset by  
taking  (the same size as the training data) examples uniformly at random with 
replacement from the training data  

• for b=1,…,B


• create a bootstrap dataset 


• train a regularized kernel regression 


• predict    


• compute the empirical CDF from the bootstrap datasets, and compute the 
confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i



bootstrap 

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval



Questions?



 
Neural Networks 



Neural Networks

• Origins: Algorithms that try to mimic the brain. 
• Widely used in 80s and early 90s; popularity diminished in late 90s. 
• Recent resurgence from 2010s: state-of-the-art techniques for many 

applications:  
• Computer Vision (AlexNet 2012) 
• Natural language processing 
• Speech recognition  
• Decision-making / control problems (AlphaGo, Games, robots)  

• Limited theory:  
• Why do we find good minima with SGD for Non-convex loss? 
• Why do we not overfit when # of parameters  is much larger  

than # of samples ? 
p

n



Neural Networks

Agenda: 

1.Definitions of neural networks 

2.Training neural networks: 
1.Algorithm: back propagation 
2.Putting it to work 

3.Neural network architecture design: 
1.Convolutional neural network 



Neural Networks

• Neural Network is a parametric family of functions from  to  with 
parameter  

• Computation graph illustrates the sequence of operations to be performed by a neural network

x ∈ ℝd ̂y = hθ(x) ∈ ℝk

θ ∈ ℝp

 nodes 
each representing  
a scalar value of  
each coordinate of  

d

x

Input 
Layer

Input x ∈ ℝd

x1

x2

xd

x3

Neuron/node/unit
Intermediate Layers Output 

Layer
Layer 2 Layer 3

Output ̂y ∈ ℝk

Link: maps output of  
a neuron to input of  
a neuron of the next layer,  
each link has a scalar weight

Neuron:  
1. Input: weighted sum of previous layer 
2. Apply scalar activation function 
3. Output: links to the next layer



Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X

• For a single node with input , the node is defined by 
• Parameter  (including the intercept/bias) 
• Activation function  

• A common choice is sigmoid function:  

• Another popular choice is Rectified Linear Unit (ReLU):  

• The node performs 

x ∈ ℝd

θ ∈ ℝd+1

g : ℝ → ℝ

g(z) = 1
1 + e−z

g(z) = max{0,z}

hθ(x) = g(
d

∑
i=0

θixi) = g(θT x) = 1
1 + e−θT x

Sequence of operations performed at a single node

g( ⋅ )



Toy example: What can be represented by a single node with ?g(z) = sign(z)

• x[1] x[2]  y 

• 0     0     0

• 0     1     1

• 1     0     1

• 1     1     1  

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

• x[1] x[2]  y 

• 0     0     0

• 0     1     0

• 1     0     0

• 1     1     1  

θ0

θ1

θ2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network with a single node of the above form

fθ(x) = sign(θ0 + θ1x[1] + θ2x[2]) fθ(x) = sign(θ0 + θ1x[1] + θ2x[2])



h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

Neural Network composes simple functions  
to make complex functions

Layer 1 has  
parameter θ(1) ∈ ℝ3×4

θ(1)
10

θ(1)
11

θ(1)
12

θ(1)
13

a(2)
1 = g(

3

∑
i=0

θ(1)
1i xi )

• Each layer performs simple operations 
• Neural Network (with parameter ) composes multiple layers of operationsθ = (θ(1), θ(2))

Layer 2 has  
parameter θ(2) ∈ ℝ4

θ(2)
0θ(2)

1

θ(2)
2

θ(2)
3 hθ(x) = g(

3

∑
i=0

θ(2)
i a(2)

i )

This is called  
a 2-layer Neural Network



14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)
x0 a (2)

0
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Example of 2-layer neural network in action
1-layer neural networks  
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2 
formants (features) 

a highly non-linear decision boundary can be learned from 2-layer neural networks 

Linear decision boundary



Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.



Multi-layer Neural Network - Binary Classification in {0,1}

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary Logistic Regression  
with learned feature a(4)

This is a 5-dimensional vector

Scalar function   
is applied  
coordinate-wise 

g

(Learned) feature representation Logistic  
regression

-th layer plays the role of features, but trained instead of pre-determinedL

Θ(1) Θ(2) Θ(L−1)

Θ(L)



Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) = 1
1 + e−z

Binary 
Logistic 
Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

(Learned) feature representation Logistic 
 regression

• Why is ReLU better than sigmoid?

ReLUSigmoid

ReLU

Sigmoid



Nonlinear activation function
• popular choices of activation function includes

• Why is ReLU better than Sigmoid?

• Why is ELU better than ReLU?



Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class 
Logistic 
Regression

-class Classification: multiple output unitsK

(Learned) feature representation Multi-class Logistic regression



Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

(Learned) feature representation Logistic 
 regression



Questions?


