
Lecture 18: 
Kernels (continued)

- Homework 3, due Friday, February 25, 



• Once we have chosen a feature map ,  
what we want to solve is  

 for some convex loss (,)

• Kernel trick finds the optimal solution efficiently, by searching over the model that can 

be represented as , which is equivalent to 

• Gradient descent update (from initialization ) that find the optimal solution is  

 

• One crucial observation is that all ’s (including the optimal solution ) lie on the 
subspace spanned by , which is an -dimensional subspace in 

• Hence, it is sufficient to look for a solution that is represented as  

 to find the optimal solution 

ϕ( ⋅ ) ∈ ℝp

̂w = arg min
w∈ℝp

n

∑
i=1

ℓ( yi, wTϕ(xi) ) ℓ

̂w =
n

∑
i=1

αiϕ(xi) ̂y new =
n

∑
i=1

αiK(xi, xnew)

w(0) = 0

w(t+1) ← w(t) − η
n

∑
i=1

ℓ′￼(yi, wTϕ(xi))

scalar

ϕ(xi)

w(t) w(∞)

{ϕ(x1), …, ϕ(xn)} n ℝp

̂w =
n

∑
i=1

αiϕ(xi)

Recap: Kernel trick finds the optimal solution 
for linear models under a feature map ϕ( ⋅ )



Fixed Feature V.S. Learned Feature

• Kernel method works well if we choose a good kernel such that the data is  
linearly separable in the corresponding (possibly infinite dimensional)  
feature space 

• In practice, it is hard to choose a good kernel for a given problem 
 


• Can we learn the feature mapping  from data also? ϕ : ℝd → ℝp



 
Bootstrap

- How to measure uncertainty in our predictions



Confidence interval

• suppose you have training data  drawn i.i.d. from some true 
distribution 


• we train a kernel ridge regressor, with some choice of a kernel
 

       

• the resulting predictor is  

       ,  

where  
         


• we wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles 

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ
minmizeα ∥Kα − y∥2

2 + λαTKα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (K + λI)−1y ∈ ℝn

f(x)

Example of 5% and 95% percentile 
curves for predictor f(x)

High confidence

Low confidence 
Why?



Confidence interval
• let's focus on a single 


• note that our predictor  is a random  
variable, whose randomness comes  
from the training data 


• if we know the statistics  
(in particular the CDF of the  
random variable ) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as 


• as we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

f (x)

CDF( f (x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f (x)
𝔼[ f (x)]

0.90

y



Confidence interval
• hypothetically, if we can sample as many times as we want,  

then we can train  i.i.d. predictors, each trained on  fresh samples to get 
empirical estimate of the CDF of 


• for b=1,…,B


• draw  fresh samples 


• train a regularized kernel  
regression 


• Predict 


• let the empirical CDF of those B predictors 
 be , defined as  

 

      


• compute the confidence interval using 

• What is wrong?

B ∈ ℤ+ n
̂y = f (x)

n {(x(b)
i , y(b)

i )}n
i=1

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i

{ ̂y(b)}B
b=1

̂CDF ( ̂y)

̂CDF ( ̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y } =
1
B

B

∑
b=1

I{ (α*(b))Th(x) ≤ ̂y }

̂CDF ( ̂y)

̂y

CDF( ̂y)

̂CDF ( ̂y)



Bootstrap 
• as we cannot sample repeatedly (in typical cases), we use bootstrap samples 

instead 

• bootstrap is a general tool for assessing statistical accuracy

• we learn it in the context of confidence interval for trained models


• a bootstrap dataset is created from the training dataset by  
taking  (the same size as the training data) examples uniformly at random with 
replacement from the training data  

• for b=1,…,B


• create a bootstrap dataset 


• train a regularized kernel regression 


• predict    


• compute the empirical CDF from the bootstrap datasets, and compute the 
confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

̂y(b) =
n

∑
i=1

K(x(b)
i , x)α*(b)

i



bootstrap 

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval



Questions?



 
Neural Networks 



Neural Networks

• Origins: Algorithms that try to mimic the brain.

• Widely used in 80s and early 90s; popularity diminished in late 90s.

• Recent resurgence from 2010s: state-of-the-art techniques for many 

applications: 

• Computer Vision (AlexNet 2012)

• Natural language processing

• Speech recognition 

• Decision-making / control problems (AlphaGo, Games, robots) 


• Limited theory: 

• Why do we find good minima with SGD for Non-convex loss?

• Why do we not overfit when # of parameters  is much larger  

than # of samples ?

p

n



Neural Networks

Agenda: 

1.Definitions of neural networks


2.Training neural networks:

1.Algorithm: back propagation

2.Putting it to work


3.Neural network architecture design:

1.Convolutional neural network




Neural Networks
• Neural Network is a parametric family of functions from  to  with 

parameter 

• Computation graph illustrates the sequence of operations to be performed by a neural network

x ∈ ℝd ̂y = hθ(x) ∈ ℝk

θ ∈ ℝp

 nodes 
each representing  
a scalar value of  
each coordinate of  

d

x

Input 
Layer

Input x ∈ ℝd

x1

x2

xd

x3

Neuron/node/unit
Intermediate Layers Output 

Layer
Layer 2 Layer 3

Output ̂y ∈ ℝk

Link: maps output of  
a neuron to input of  
a neuron of the next layer,  
each link has a scalar weight

Neuron: 

1. Input: weighted sum of previous layer 
2. Apply scalar activation function 
3. Output: links to the next layer



Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X

• For a single node with input , the node is defined by

• Parameter  (including the intercept/bias)

• Activation function 


• A common choice is sigmoid function: 


• Another popular choice is Rectified Linear Unit (ReLU): 


• The node performs 

x ∈ ℝd

θ ∈ ℝd+1

g : ℝ → ℝ

g(z) =
1

1 + e−z

g(z) = max{0,z}

hθ(x) = g(
d

∑
i=0

θixi) = g(θT x) =
1

1 + e−θT x

Sequence of operations performed at a single node

g( ⋅ )



Toy example: What can be represented by a single node with ?g(z) = sign(z)

• x[1] x[2]  y 

• 0     0     0

• 0     1     1

• 1     0     1

• 1     1     1  

x1 OR x2 x1 AND x2

x1

x2

1

y x1

x2

1

y

• x[1] x[2]  y 

• 0     0     0

• 0     1     0

• 1     0     0

• 1     1     1  

θ0

θ1

θ2

What cannot be learned?

What should be the weights?

Note that there is a one-to-one correspondence between  
a linear classifier and a neural network with a single node of the above form

fθ(x) = sign(θ0 + θ1x[1] + θ2x[2]) fθ(x) = sign(θ0 + θ1x[1] + θ2x[2])



h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

Neural Network composes simple functions  
to make complex functions

Layer 1 has  
parameter θ(1) ∈ ℝ3×4

θ(1)
10

θ(1)
11

θ(1)
12

θ(1)
13

a(2)
1 = g(

3

∑
i=0

θ(1)
1i xi )

• Each layer performs simple operations

• Neural Network (with parameter ) composes multiple layers of operationsθ = (θ(1), θ(2))

Layer 2 has  
parameter θ(2) ∈ ℝ4

θ(2)
0θ(2)

1

θ(2)
2

θ(2)
3 hθ(x) = g(

3

∑
i=0

θ(2)
i a(2)

i )

This is called  
a 2-layer Neural Network



14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)
x0 a (2)

0



19

Example of 2-layer neural network in action
1-layer neural networks  
only represents linear classifiers

Example: 2-layer neural network trained to distinguish vowel sounds using 2 
formants (features) 

a highly non-linear decision boundary can be learned from 2-layer neural networks 

Linear decision boundary



Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

But Deep Neural Networks have many powerful properties not yet understood theoretically.



Multi-layer Neural Network - Binary Classification in {0,1}

a(1) = x
…

…

5

a(2) = g(⇥(1)a(1))

a(l+1) = g(⇥(l)a(l))

by = g(⇥(L)a(L))
L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) =
1

1 + e−z

Binary Logistic Regression  
with learned feature a(4)

This is a 5-dimensional vector

Scalar function   
is applied  
coordinate-wise 

g

(Learned) feature representation Logistic  
regression

-th layer plays the role of features, but trained instead of pre-determinedL

Θ(1) Θ(2) Θ(L−1)

Θ(L)



Multi-layer Neural Network - Binary Classification

a(1) = x
…

…

5

by = g(⇥(L)a(L))

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

g(z) =
1

1 + e−z

Binary

Logistic

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}

(Learned) feature representation Logistic 
 regression

• Why is ReLU better than sigmoid?

ReLUSigmoid

ReLU

Sigmoid



Nonlinear activation function
• popular choices of activation function includes

• Why is ReLU better than Sigmoid?

• Why is ELU better than ReLU?



Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class

Logistic

Regression

-class Classification: multiple output unitsK

(Learned) feature representation Multi-class Logistic regression



Multi-layer Neural Network - Regression

a(1) = x
…

…

5

Regression

a(2) = �(⇥(1)a(1))

a(l+1) = �(⇥(l)a(l))

�(z) = max{0, z}by = ⇥(L)a(L)
L(y, by) = (y � by)2

(Learned) feature representation Logistic 
 regression



Training Neural 
Networks 



https://playground.tensorflow.org/

Intuition

https://playground.tensorflow.org/


a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8lGradient Descent:

by = g(⇥(L)a(L))



⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

3. GPU support 

Gradient Descent:



Gradient Descent:
⇥(l)  ⇥(l) � ⌘r⇥(l)L(y, by) 8l

Seems simple enough, why are packages like PyTorch, Tensorflow, 
Theano, Cafe, MxNet synonymous with deep learning?

1. Automatic differentiation 

2. Convenient libraries 

Gradient Descent:



Common training issues

Neural networks are non-convex
- For large networks, gradients can blow up or go to zero. 
This can be helped by batchnorm or ResNet architecture 


- Stepsize, batchsize, momentum all have large impact on 
optimizing the training error and generalization performance 

- Fancier alternatives to SGD (Adagrad, Adam, LAMB, etc.) can 
significantly improve training


-Overfitting is common and not undesirable: typical to achieve 100% 
training accuracy even if test accuracy is just 80%


- Making the network bigger may make training faster!



Training is too slow:

- Use larger step sizes, develop step size reduction schedule

- Use GPU resources 

- Change batch size

- Use momentum and more exotic optimizers (e.g., Adam)

- Apply batch normalization

- Make network larger or smaller (# layers, # filters per layer, etc.)


Test accuracy is low

- Try modifying all of the above, plus changing other 

hyperparameters


Common training issues



Back Propagation



Forward Propagation

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))



Backprop

g(z) =
1

1 + e−z δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y )
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))
Θ(l)

i, j ← Θ(l)
i, j − η

∂L(y, ̂y )
∂Θ(l)

i, j

Train by Stochastic Gradient Descent:



Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y )
∂z(l)

i
= ∑

k

∂L(y, ̂y )
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(l) = g(z(l))



Backprop

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i =

∂L(y, ̂y )
∂z(l)

i
= ∑

k

∂L(y, ̂y )
∂z(l+1)

k
⋅

∂z(l+1)
k

∂z(l)
i

= ∑
k

δ(l+1)
k ⋅ Θ(l)

k,i g′￼(z(l)
i )

= a(l)
i (1 − a(l)

i )∑
k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(l) = g(z(l))



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(L+1)
i =

∂L(y, ̂y )
∂z (L+1)

i
=

∂
∂z (L+1)

i
[y log(g(z(L+1))) + (1 − y)log(1 − g(z(L+1)))]

= y − g(z(L+1)) = y − a(L+1)

=
y

g(z(L+1))
g′￼(z(L+1)) −

1 − y
1 − g(z(L+1))

g′￼(z(L+1))

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i



Backprop

g(z) =
1

1 + e−z

∂L(y, ̂y )
∂Θ(l)

i, j
=

∂L(y, ̂y )
∂z(l+1)

i
⋅

∂z(l+1)
i

∂Θ(l)
i, j

=: δ(l+1)
i ⋅ a(l)

j

δ(l+1)
i =

∂L(y, ̂y )
∂z(l+1)

i

δ(L+1) = y − a(L+1)

Recursive Algorithm!

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

a(l) = g(z(l))

δ(l)
i = a(l)

i (1 − a(l)
i )∑

k

δ(l+1)
k ⋅ Θ(l)

k,i



Backpropaga1on'

44'

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
ij = 0 8l, i, j

For each training instance (xi, yi):
Set a(1) = xi

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yi

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)
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Autodiff

Backprop for this simple network architecture is a special 
case of reverse-mode auto-differentiation:

This is the special sauce in Tensorflow, PyTorch, Theano, …



Convolutional Neural 
Network



Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+1) = Θ(l)a(l)

a(l+1) = g (z(l+1))
̂y = a(L+1)

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )

5

g(z) =
1

1 + e−z

Binary

Logistic

Regression



Neural Network Architecture
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The neural network architecture is defined by the number of layers, and the 
number of nodes in each layer, but also by allowable edges. 



Neural Network Architecture

5

The neural network architecture is defined by the number of layers, and the 
number of nodes in each layer, but also by allowable edges. 

We say a layer is Fully Connected (FC) if all linear mappings from the current 
layer to the next layer are permissible. 

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A lot of parameters!! n1n2 + n2n3 + · · ·+ nLnL+1



Neural Network Architecture
Objects are often localized 
in space so to find the faces 
in an image, not every pixel 
is important for 
classification—makes sense 
to drag a window across an 
image.



Neural Network Architecture
Objects are often localized 
in space so to find the faces 
in an image, not every pixel 
is important for 
classification—makes sense 
to drag a window across an 
image.

Similarly, to identify 
edges or other local 
structure, it makes 
sense to only look at 
local information 

vs.



Neural Network Architecture

vs.

Parameters: n2 3n� 2
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a(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A

2

66664

⇥0,0 ⇥0,1 0 0 0
⇥1,0 ⇥1,1 ⇥1,2 0 0
0 ⇥2,1 ⇥2,2 ⇥2,3 0
0 0 ⇥3,2 ⇥3,3 ⇥3,4

0 0 0 ⇥4,3 ⇥4,4

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4
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Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share local 
weights everywhere 
(e.g., structure equally 
likely to be anywhere in 
image) 

3
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Neural Network Architecture

Convolution*

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

m=3

is referred to as a “filter”

= g([✓ ⇤ a(k)]i)

✓ = (✓0, . . . , ✓m�1) 2 Rm

a(k+1)
i = g

0

@
m�1X
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✓ja
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i+j
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Aa(k+1)
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j
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Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



2d Convolution Layer



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Convolution of images
K

Image I

I ⇤K



Stacking convolved images

6

6

3

27

27

1

x 2 Rn⇥n⇥r



Stacking convolved images

d filters

6

6

3 27

27

Repeat with d filters!



Pooling

Pooling reduces the dimension 
and can be interpreted as “This 
filter had a high response in 
this general region”

27x27x64

14x14x64



Pooling Convolution layer

14x14x64

64 filters

6

6

3 27

27

MaxPool with 
2x2 filters and 
stride 2

Convolve

with 64 6x6x3 filters



Flattening

14x14x64

64 filters

6

6

3 27

27

Convolve

with 64 6x6x3 filters

MaxPool with 
2x2 filters and 
stride 2

Flatten into a single

vector of size 
14*14*64=12544



Training Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural 
networks (CNN) are just regular 
fully connected (FC) neural 
networks with some connections 
removed. 

Train with SGD!

reshape

output layer

pool
CONV hidden layer FC hidden layer



Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output layer

pool
CONV hidden layer FC hidden layer

Real example network: LeNet



Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet



Remarks
• Convolution is a fundamental operation in signal processing. 

Instead of hand-engineering the filters (e.g., Fourier, Wavelets, 
etc.) Deep Learning learns the filters and CONV layers with 
back-propagation, replacing fully connected (FC) layers with 
convolutional (CONV) layers 


• Pooling is a dimensionality reduction operation that 
summarizes the output of convolving the input with a filter 

• Typically the last few layers are Fully Connected (FC), with the 
interpretation that the CONV layers are feature extractors, 
preparing input for the final FC layers. Can replace last layers 
and retrain on different dataset+task. 

• Just as hard to train as regular neural networks. 

• More exotic network architectures for specific tasks 



Real networks

Data augmentation?
Batch norm?

RELU leakiness 

slope

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4

Residual Network of 

[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial

dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial

dimension

Reduce spatial

dimension

batchsizeModern networks have 
dozens of parameters to tune.


