Lecture 16,17:
Kernels

Recap: Kernels are much more efficient to
compute than features

e As illustrating examples, consider polynomial features of degree exactly k

o D) =

P(x) =

X

X
" fork = 1 and d = 2, then K(x, x') = x,x| + x,x}

X

.Xf22 fork =2 — N — (T +1\2
ork =2andd =2, then K(x,x') = (x" x')
XX

 Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*

e For a data point x;, if we can make predictions by only computing the kernel, then

computing { K(x;, X;) }J’.“=1 takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Examples of popular Kernels

. Polynomials of degree exactlyk

K(x, x") = (xTx)*
. Polynomials of degree up to k

Kx,x") =1+ xTx’)k

« Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

||X - x/“%)

K(x,x") = exp(R

- Sigmoid

K(x,x") = tanh(yx'x’ + r)

- All these kernels are efficient to compute, but the corresponding
features are in high-dimensions

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg min ||y — Xw||2 + /1||w||2
weR?

e We will represent prediction with W using linear kernel defined as
lz((x, x) =xTx (corresponding feature is x itself and hence d = p)
e Training: W ={ X' X+ ded)_lXTy (whenn > d)

XTXXT + 21,)7y (when n < d via linear algebra)
e Prediction: x> € IRd “< =3 l)g

N

Ynew = Xnew /;‘(Q
—y XXT + L,)X

new

. 4 .
e Hence, to make prediction on any future data points, all we need to know is
Ve \ec

s 4

X1 Xnew K(xl’ xnew) K(xla xl) K(xl, xz)
Xxnew = = : € R", and XX = e R™"

° anxnew K(xn xnew) K(xn’ xl) K(xna x2) o

e For ridge regression, even if we run on feature map ¢(x) € R”, we only need to

access the features via kernel K(x;, x;) and K(x;, X,,,) and not the features ¢(x;)

Example: feature vs. kernel

- Ridge regression with feature map ¢(-) € RP

n

P . 2
Solve for W = arg min Z (y,- — WTgl)(x,-)) + Allwll3
) weR™ I

. Slow when p > d

- Ridge regression with kernel K(- , -) corresponding to the feature map ¢(-)
+ Finds the optimal solution of the above problem, but
. only accesses the data via kernel { K(x;, xj)}, which is independent of p and

only depends on n, if kernel is efficient to compute
(which is true for all kernels we looked at and all kernels people use in practice)

The Kernel Trick
. Given data {(x;, y;)}"_,, pick a kernel K : RYx RY - R

1. For a choice of a loss, use a linear predictor of the form

n ay
W = Z alx;| forsomea = | i | € R"to be learned
A LT
oe i=1 '(R a,
n
Predictionis V joy = W " Xpew = Z Q; Ei Xnew l
i=1
—

2. Design an algorithm that finds a while accessing the data only via {xiij}

3. Substitute xl-ij with K(x;, xj), and find ar|using the above algorithm from step 2.

4. Make prediction with y . = Z oK (X, X o)

-
(replacing x.' X,,,, with K(x;, X))

The Kernel Trick for regularized least squares

W = argmin Z(yl wix)? + 2wl
i=1

There exists an o € R™: w = Z ;T (Step 1. We will prove it later)
1=1
n n n
a = argmoinZ(yz — Zozj)2 +)\Z Z%CY (i, 25)
1=1 g=1 1=1 j=

(Step 2. Write an algorithm in terms of @)

n n
QR DA I RO W T
— i=1 j=1 =1 j=1

(Step 3. Switch inner product with kernel)

— argmin|ly — Ka||2 + Ao’ Ka Where K;; = K(x;, x;) = (¢(x)), p(x)))

(Solve for Ayerpel)

Thus, akemel (K+/11an) y

Why do we need regularlzatlon when using

kernels? D U K:[Ku Kn.“]

. Typicallnd K > 0. Why? k23 ?SCK?)T?Z{CKJD
® T

- D wry o X¥EKx >0
) Ed?@] ® . e
Vi :
blu e
KO PeoeR’ 1,
e 50K is invertible land a = (K+AL,)"lyis well defined. X=X %]
e What if A = 0? What goes wrong? ¢OCZ)': ;cc('l
. 2 !t
arg min ||y — Kal|3 g 5
a s
{ — 3 ;Kﬁéﬁ e

o,
Y- ¥y =0

The Kernel Trick for SVMs

W = argmin —Zmax{Ol yl(b+w x;)} + /1||W||2

w,b nl)
There exists an a € R": w = Z ;T (Step 1. We will prove it later)
i=1
4,b = arg min — max{0,1 —y(b +) ax; Tx)} + 4 40X x
FU) o+ Y)

j=1 i=1,j=1
(Step 2. Write an algorithm in terms of @)

= arg min —ZmaX{Ol y,(b+ZaK(X, X))} + A Z o K(x;, x;)

X ernel’ b kernel acR" b N
j=1 i=1,j=1

(Step 3. Switch inner product with kernel)
= arg min —Z max{0,1 — y,(b + Ka)} + la’Ka
a€R%b N 7 Where K;; = K(x;, x;) = (¢ (x,), p(x,))

Prediction for x,,,: A : o
new: (Solve for ayerpels bkemel using optimization)

y = Sign(2 akernel,iK(xi’ xnew) + bkernel)
=1

) —
X:— X fi K(x, x
RBF kernel k(x;, x) = exp{ — I I } K()
}i=1 [

K (z, xj)

00 02 04

-0.4

05 10 15

0.0

samples {(x;,y;) 20° o
il 1 i
. . : : : bgndwgdth o
: :) i
I B ,\
-2 - 9 1 : 2 / o
: i f(z) = a0+)2, o K(z, z;)
- D //
Z. |
° o
[Ill ; -1 Il . lT L1 - | TJ
{ -2 1 2 -2 -1 0 1 2

-1 0
S T
e S n
predictor f(x) = Z a;K(x;, x) is taking weighted sum of n kernel functions

centered at each isialmple points

2
||xl- —x||5 }

RBF kernel k(x;, x) = exp{ R
o

. P =

e The bandwidth o2 of the kernel regularizes the predictor, and the regularization
coeff|C|ent A also regularlzes the predlctor

IKa —yll5 + Allwll3

c=10"2Ax=10"4 0=10"" A=10"" 0—10‘1)_104
y * ‘ —— True f(x) —— True f(x) —— True f(x)
Fitted f(x) . Fitted f(x) Fitted f(x)
60 . .« Data 60 ' . + Data
‘ A A

'1/ \J

o= 10—1 A=10""
—— True f(x)
Fitted f(x)

A Data

o=10" OA—lo 4

—— True f(x)

Fitted f(x)
+ Data

02 04 06
X1

/

08 10

Xz

RBF kernel and random features

W o= argmm—Zmax{Ol yl(b+w X))} + /1||W||2
w,b I’ll |

N

a,b = arg min — Y max{0,1 —y.(b + K(x;, + A LK (x;,
a gaeanZ {0,1 - y(Jz:‘a (% X))} ,12;‘1(” (% X,)

Bandwidth o is Iarge enough Bandwidth o is small

Features vs. RBF kernel vs. random features

K(u,v) = exp <— HUQ—U;/H%>
o3> 3> ¢ ¢
If n is very large, allocating an n-by-n matrix is tough.
Instead, consider generating random feature maps of the form:

V2 cos(wixz + by) Wi ~ N(07 27y I)

¢(x) = : .
VB eos(wTz 1 by) by ~ uniform(0,)

with(p\/<< n
One can show that
1 T / "2
[Ew,b[;qs(x) P = exp(=rllx — xlI3)

So this choice of random features approximate the desired RBF kernel with y = ﬁ
c

[Rahimi, Recht NIPS 2007]
“‘NIPS Test of Time Award, 2018”

Kernel trick finds the optimal solution for linear
models under a feature map ¢(-)

. Once we have chosen to use a feature map ¢(-) € R?,
what we want to solve is

W = arg min Z f Vi W Tc,b(x)) for some convex loss £(,)
weR i
- Gradient descent update (from initialization w® = 0) that find the optimal solution
is

WD = @ — N Ly wT o))

. One crucial observation is that all w®’s (including the optimal solution w(°°)) lie on
the subspace spanned by {@(x)), ..., ¢(x,)}, which is an n-dimensional subspace
in [R?

* Hence, it is sufficient to look for a solution that is represented as

n

= Z a;¢(x;) to find the optimal solution
i=1
« Kernel trick finds the optimal so}lution efficiently, by searching over the model that
can be represented as W = Z a;p(x;)
i=1

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping ¢ : R4 — R” from data also?

/

Questions? Ao k-l poly
L A
KCx, %) = @&f)K‘ b m

_ b (
dLKJ(Q{C,d) _ ﬁ:lﬂ [_X X 7(%,(

XS

X< |

Bootstrap

confidence interval

suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

we train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmizea ||Ka _ y”% + 1 aTKa Example of 5% and 9_5% percentile
curves for predictor f(x)

the resulting pgfledictor is o
f@) =) K(x,x)a, =
l=1 |) ® //.o\- \‘
where ® v\
a = (K+iAD)ly eR” RS
/ \ ¢/ 1)
- /{ o._¥\\.,’\\ /7;// |1
we wish to build a confidence interval AN N A
for our predictor f(x), using ° 7 N Vs
5% and 95% percentiles - | N

confidence interval

« let's focus on a single x € R? o

 note that our predictor f(x) is a random « |
variable, whose randomness comes . IAN

o . n o . q/'/.x\. \\
from the training data S;,;, = {(x;, y))iy o 727\

* if we know the statistics -~ 1/ gy
(in particular the CDF of the NN SR
random variable f(x)) of the predictor, G2 e :
then the confidence interval with
confidence level 90% is defined as - -

A CDE(f(x 00 05 10 15 20 25 30
N (f(0) §
] if we know the distribution of our predictor f(x),
the green line is the expectation E[f(x)]
0.90 and the black dashed lines are the
5% and 95% percentiles in the figure above
v 0.05--

I
5% percentile 95% percentile

e as we do not have the cumulative distribution function (CDF),

, we need to approximate them

confidence interval

get empirical estimate of the CDF of y = f(x)

e for b=1,...,B
e draw n fresh samples

e train a regularized kernel
. %
regression a ®)

o Predict 3 = (a"®)Th(x)

* let the empirical CD CDF of those B predictors
{y(b)}B be CDF (), defined as

1.0

0.8

hypothetically, if we can sample as many times as we want,
then we can train B € Z7 i.i.d. predictors, each trained on n fresh samples to

B
CDF (§) = Zl{y<y} = 1ZI{ (@) h(x) < 3)
b=1

b 1

—_—

« compute the confidence interval using CDF ()
20

<>

21

Bootstrap

as we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

bootstrap is a general tool for assessing statistical accuracy
we learn it in the context of confidence interval for trained models

a bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data {(x;, y;) }_;

for b=1,...,.B

« Create a bootstrap dataset Séb)
ootstrap
e train a regularized kernel regression a ®

o predict (a P h(x)

compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

22

training a single predictor

n

<

bootstrap

0.0

0.5

2.0

25

3.0

multiple bootstrapped

90% confidence interval

predictors

Figures from Hastie et al

Questions?

