
Lecture 16,17: 
Kernels

Recap: Kernels are much more efficient to
compute than features

• As illustrating examples, consider polynomial features of degree exactly

• for and , then

•
for and , then

• Note that for a data point , explicitly computing the feature  

takes memory/time

• For a data point , if we can make predictions by only computing the kernel, then

computing takes memory/time

• The features are implicit and accessed only via kernels, making it efficient

k

ϕ(x) = [x1
x2] k = 1 d = 2 K(x, x′￼) = x1x′￼1 + x2x′￼2

ϕ(x) =

x2
1

x2
2

x1x2
x2x1

k = 2 d = 2 K(x, x′￼) = (xT x′￼)2

xi ϕ(xi)
p = dk

xi
{K(xi, xj)}n

j=1 dn

• Polynomials of degree exactly  
 

• Polynomials of degree up to  
 
  

• Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function) 
 

• Sigmoid  
 

• All these kernels are efficient to compute, but the corresponding
features are in high-dimensions

k

K(x, x′￼) = (xT x′￼)k

k

K(x, x′￼) = (1 + xT x′￼)k

K(x, x′￼) = exp(−
∥x − x′￼∥2

2

2σ2)

K(x, x′￼) = tanh(γxT x′￼+ r)

Examples of popular Kernels

Ridge Linear Regression as Kernels

• Consider Ridge regression:

• We will represent prediction with using linear kernel defined as  
 (corresponding feature is itself and hence)

• Training: (when) 

 (when via linear algebra)

• Prediction:  

  

• Hence, to make prediction on any future data points, all we need to know is  

•
, and  

• For ridge regression, even if we run on feature map , we only need to
access the features via kernel and and not the features

ŵ = arg min
w∈ℝd

∥y − Xw∥2
2 + λ∥w∥2

2

̂w
K(x, x′￼) = xT x′￼ x d = p

̂w = (XTX + λId×d)−1XTy n > d
XT(XXT + λIn×n)−1y n < d

xnew ∈ ℝd

̂y new = ̂w T xnew

= yT(XXT + λIn×n)−1Xxnew

Xxnew =
xT

1 xnew
⋮

xT
n xnew

=
K(x1, xnew)

⋮
K(xn, xnew)

∈ ℝn XXT =
K(x1, x1) K(x1, x2) ⋯

⋮ ⋮
K(xn, x1) K(xn, x2) ⋯

∈ ℝn×n

ϕ(x) ∈ ℝp

K(xi, xj) K(xi, xnew) ϕ(xi)

<latexit sha1_base64="0mewB1xktIMsuriN0NP66bpC9ew=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WOpF48V7Ac0oWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jts1Bqw8GHu/NMDMvTAXXxnW/nNLa+sbmVnm7srO7t39QPTzq6CRTDNssEYnqhVSj4BLbhhuBvVQhjUOB3XByO/e7j6g0T+SDmaYYxHQkecQZNVbq+k0+In4+qNbcursA+Uu8gtSgQGtQ/fSHCctilIYJqnXfc1MT5FQZzgTOKn6mMaVsQkfYt1TSGHWQL86dkTOrDEmUKFvSkIX6cyKnsdbTOLSdMTVjverNxf+8fmaimyDnMs0MSrZcFGWCmITMfydDrpAZMbWEMsXtrYSNqaLM2IQqNgRv9eW/pHNR967q7v1lrdEs4ijDCZzCOXhwDQ24gxa0gcEEnuAFXp3UeXbenPdla8kpZo7hF5yPb7dYjyk=</latexit>n

• Ridge regression with feature map

•
Solve for

• Slow when

• Ridge regression with kernel corresponding to the feature map
• Finds the optimal solution of the above problem, but
• only accesses the data via kernel , which is independent of and

only depends on , if kernel is efficient to compute  
(which is true for all kernels we looked at and all kernels people use in practice)

ϕ(⋅) ∈ ℝp

̂w = arg min
w∈ℝp

n

∑
i=1

(yi − wTϕ(xi))2 + λ∥w∥2
2

p ≫ d

K(⋅ , ⋅) ϕ(⋅)

{K(xi, xj)} p
n

Example: feature vs. kernel

• Given data , pick a kernel

1. For a choice of a loss, use a linear predictor of the form  

 for some to be learned  

 

Prediction is  

2. Design an algorithm that finds while accessing the data only via
3. Substitute with , and find using the above algorithm from step 2.

4. Make prediction with  

(replacing with)

{(xi, yi)}n
i=1 K : ℝd × ℝd → ℝ

̂w =
n

∑
i=1

αixi α =
α1
⋮
αn

∈ ℝn

̂y new = ̂w T xnew =
n

∑
i=1

αi xT
i xnew

α {xT
i xj}

xT
i xj K(xi, xj) α

̂y new =
n

∑
i=1

αiK(xi, xnew)

xT
i xnew K(xi, xnew)

The Kernel Trick

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �
nX

i=1

nX

j=1

↵i↵jhxi, xji

= argmin
↵

nX

i=1

(yi �
nX

j=1

↵jK(xi, xj))
2 + �

nX

i=1

nX

j=1

↵i↵jK(xi, xj)

= argmin
↵

||y �K↵||22 + �↵TK↵

The Kernel Trick for regularized least squares

(Step 1. We will prove it later)

(Step 2. Write an algorithm in terms of)̂α

(Step 3. Switch inner product with kernel)

(Solve for)̂αkernel

Where Kij = K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

̂w = arg min
w

n

∑
i=1

(yi − wT xi)2 + λ∥w∥2
2

Thus, ̂αkernel = (K + λIn×n)−1y

̂αkernel

Why do we need regularization when using
kernels?

• Typically, and . Why? 
 
 
 
 

• So is invertible and is well defined.

• What if ? What goes wrong?

p ≫ d K ≻ 0

K ̂α = (K + λIn×n)−1y
λ = 0

arg min
α

∥y − Kα∥2
2

The Kernel Trick for SVMs

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi (Step 1. We will prove it later)

(Step 2. Write an algorithm in terms of)̂α

(Step 3. Switch inner product with kernel)

(Solve for using optimization)̂αkernel, ̂b kernel

Where Kij = K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

̂w = arg min
w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjxT
j xi)} + λ

n

∑
i=1, j=1

αiαjxT
i xj

= arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

= arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b + Kα)} + λαTKα

Prediction for : xnew

̂y = sign(
n

∑
i=1

̂αkernel,iK(xi, xnew) + ̂b kernel)

̂αkernel, ̂b kernel

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

10

y
xi

bandwidth : σ

K(xi, x)

x

samples {(xi, yi)}n
i=1

• predictor is taking weighted sum of kernel functions

centered at each sample points

f (x) =
n

∑
i=1

αiK(xi, x) n

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

•

• The bandwidth of the kernel regularizes the predictor, and the regularization
coefficient also regularizes the predictor

ℒ(α) = ∥Kα − y∥2
2 + λ∥w∥2

2

σ2

λ

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4
x

y

RBF kernel and random features
̂w = arg min

w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

Bandwidth is large enoughσ Bandwidth is smallσ

Features vs. RBF kernel vs. random features
K(u,v) = exp

✓
� ||u� v||22

2�2

◆

If n is very large, allocating an n-by-n matrix is tough.

wk ⇠ N (0, 2� I)

bk ⇠ uniform(0,⇡)
�(x) =

2

64

p
2 cos(wT

1 x+ b1)
...p

2 cos(wT
p x+ bp)

3

75

[Rahimi, Recht NIPS 2007]

“NIPS Test of Time Award, 2018”

𝔼w,b[1
p

ϕ(x)Tϕ(x′￼)] = exp(−γ∥x − x′￼∥2
2)

So this choice of random features approximate the desired RBF kernel with γ =
1

2σ2

Instead, consider generating random feature maps of the form:

with p ≪ n

One can show that

• Once we have chosen to use a feature map ,  
what we want to solve is  

 for some convex loss (,)

• Gradient descent update (from initialization) that find the optimal solution
is  

• One crucial observation is that all ’s (including the optimal solution) lie on
the subspace spanned by , which is an -dimensional subspace
in

• Hence, it is sufficient to look for a solution that is represented as  

 to find the optimal solution

• Kernel trick finds the optimal solution efficiently, by searching over the model that

can be represented as

ϕ(⋅) ∈ ℝp

̂w = arg min
w∈ℝp

n

∑
i=1

ℓ(yi, wTϕ(xi)) ℓ

w(0) = 0

w(t+1) = w(t) − η
n

∑
i=1

ℓ′￼(yi, wTϕ(xi))ϕ(xi)

w(t) w(∞)

{ϕ(x1), …, ϕ(xn)} n
ℝp

̂w =
n

∑
i=1

αiϕ(xi)

̂w =
n

∑
i=1

αiϕ(xi)

Kernel trick finds the optimal solution for linear
models under a feature map ϕ(⋅)

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping from data also?ϕ : ℝd → ℝp

Questions?

 
Bootstrap

confidence interval

• suppose you have training data drawn i.i.d. from some true
distribution

• we train a kernel ridge regressor, with some choice of a kernel
 

• the resulting predictor is  

 ,  

where  

• we wish to build a confidence interval  
for our predictor , using  
5% and 95% percentiles

{(xi, yi)}n
i=1

Px,y

K : ℝd×d → ℝ
minmizeα ∥Kα − y∥2

2 + λαTKα

f(x) =
n

∑
i=1

K(xi, x)α̂i

α̂ = (K + λI)−1y ∈ ℝn

f(x)

Example of 5% and 95% percentile 
curves for predictor f(x)

confidence interval
• let's focus on a single

• note that our predictor is a random  
variable, whose randomness comes  
from the training data

• if we know the statistics  
(in particular the CDF of the  
random variable) of the predictor,  
then the confidence interval with  
confidence level 90% is defined as

• as we do not have the cumulative distribution function (CDF), 
we need to approximate them

x ∈ ℝd

f(x)

Strain = {(xi, yi)}n
i=1

f(x)

19

f (x)

CDF(f (x))
0.95

0.05
5% percentile 95% percentile

if we know the distribution of our predictor ,

the green line is the expectation  
and the black dashed lines are the  
5% and 95% percentiles in the figure above 

f (x)
𝔼[f (x)]

0.90

confidence interval
• hypothetically, if we can sample as many times as we want,  

then we can train i.i.d. predictors, each trained on fresh samples to
get empirical estimate of the CDF of

• for b=1,…,B

• draw fresh samples

• train a regularized kernel  

regression

• Predict

• let the empirical CDF of those B predictors 
 be , defined as  

 

• compute the confidence interval using

B ∈ ℤ+ n
̂y = f(x)

n

α*(b)

̂y(b) = (α*(b))Th(x)

{ ̂y(b)}B
b=1

̂CDF (̂y)

̂CDF (̂y) =
1
B

B

∑
b=1

I{ ̂y(b) ≤ ̂y } =
1
B

B

∑
b=1

I{ (α*(b))Th(x) ≤ ̂y }

̂CDF (̂y)
20

̂y

CDF(̂y)
̂CDF (̂y)

Bootstrap
• as we cannot sample repeatedly (in typical cases), we use bootstrap

samples instead

• bootstrap is a general tool for assessing statistical accuracy

• we learn it in the context of confidence interval for trained models

• a bootstrap dataset is created from the training dataset by  
taking (the same size as the training data) examples uniformly at
random with replacement from the training data  

• for b=1,…,B

• create a bootstrap dataset

• train a regularized kernel regression

• predict

• compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

n
{(xi, yi)}n

i=1

S(b)
bootstrap

α*(b)

(α*(b))Th(x)

21

bootstrap

22

Figures from Hastie et al

training a single predictor multiple bootstrapped 
predictors 90% confidence interval

Questions?

