Lecture 16,17:
Kernels

Recap: Kernels are much more efficient to
compute than features

e Asillustrating examples, consider polynomial features of degree exactly k

X
P = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

X

2
dp(x)=| *2 |fork =2andd =2, then K(x, x") = (xTx)?

e Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*
e For a data point x;, if we can make predictions by only computing the kernel, then
computing { K(x;, xj) }}”zl takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Examples of popular Kernels

. Polynomials of degree exactlyk

K(x, x") = (xTx")k
. Polynomials of degree up to k

K@, x") = (1 + xTx)

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
l|x — x/||2)
202

K(x,x") = exp(—
 Sigmoid

K(x,x") = tanh(yx'x' + r)

 All these kernels are efficient to compute, but the corresponding
features are in high-dimensions

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg miﬂild ly — lel% + /1||w||%
we

e We will represent prediction with W using linear kernel defined as

K(x,x) = xTx’ (corresponding feature is x itself and hence d = p)
e Training: w =, (XIX + /ded)_lXTy (whenn > d)
XIXXT+ A1,)y (when n < d via linear algebra)
e R4

/\T

A —
ynew_ w-X

o Prediction: x_.»

new
_ T T ~1
=y (XX + 1L .,)" XXpew
e Hence, to make prediction on any future data points, all we need to know is

xlTxnew K(x1; Xpey) K(xp, x1) K(xp, x5) -
Xx. .. = : = : eR" and XX = : : € R™n

K(x ,x K(x,,x;) K(x,,x,) -

X, X ne new)

n “"new

e For ridge regression, even if we run on feature map ¢(x) € R?, we only need to

access the features via kernel K(x;, xj) and K(x;, x,.,,) and not the features ¢(x;)

new

Example: feature vs. kernel

- Ridge regression with feature map ¢(-) € R?

n

Solve for W = arg min Z (v — WTqb(xi))z + Allwli3

cRP
WERT o1

. Slow when p > d

- Ridge regression with kernel K(- , -) corresponding to the feature map ¢(-)
+ Finds the optimal solution of the above problem, but
. only accesses the data via kernel { K(x;, xj)}, which is independent of p and

only depends on n, if kernel is efficient to compute
(which is true for all kernels we looked at and all kernels people use in practice)

The Kernel Trick

. Given data {(x;, y;) }'_,, pick a kernel K

‘RYx RY > R

1. For a choice of a loss, use a linear predictor of the form

aq

n
W = Z a.x;| forsomea = | ¢ | € R"tobe learned
i=1

a,

n
LA _ =T — T
Predictionis ¥ joy = W Xpow = Z A Xi Xnew
1

1=

2. Design an algorithm that finds a while accessing the data only via {xl.ij}

3.

4. Make prediction with y ., = Z a.K(x;, x,

Substitute xiij with K(x;, xj), and find a

—1
(repIaCing xiTxneW with K(xi’ xlllew))

using the above algorithm from step 2.

ew)

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an a € R": w = Z O T (Step 1. We will prove it later)
i=1
n n n n
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Step 2. Write an algorithm in terms of &)

n n
Xernel — argmoini :(y’& o E :OéjK(ﬁU,L-,CEJ + A E E OézOéj QS'Z,ZCJ
=1 j=1

=1 7=1
(Step 3. Switch inner product with kernel)

= argmin|ly — Ka||3 + Ao’ Ka Where K;; = K(x;, x;) = (¢(x)), p(x)))

(Solve for @yq)

ThUS akemel (K + /11an) Yy

Why do we need regularization when using
kernels?

e Typically, p > d and K > 0. Why?

e So Kis invertible and @ = (K + AL)"y is well defined.
e What if A = 0? What goes wrong?

arg min ||y — Ka||%
a

The Kernel Trick for SVMs

N~

W = argmin —Zmax{O 1—yb+wix)} + ﬂllwllz

w,b I’ll 1
There exists an a € R": w = Z O T (Step 1. We will prove it later)
i=1
a,b = arg min — » max{0,1 —y(b+) ax; x)} + 2 aQX; x
min - Z W+ Y >

Jj=1 i=1,j=1
(Step 2. Write an algorithm in terms of &)

= arg min — 2 max{0,1 — y,(b + Z a;K(x;,x,))} + 4 Z o, K (x;, X))

akernel’ b kernel acR"b N
j=1 i=1,j=1

(Step 3. Switch inner product with kernel)

= arg min —Z max{0,1 — y(b + Ka)} + ia'Ka
acR%L 15T Where K;; = K(x;, x;) = (p(x)), p(x)))

Prediction for x, (Solve for &y pels bkemel using optimization)

y = Slgn Z X kernel, zK(xz’ xnew) + b kernel)
=1

X — X Xy X
RBF kernel k(x;, x) = exp{ _ 16 . 12 } K()
samples {(x;, y,) }'_; 20 [

: : : ’.. : : bandwidth :\ o
1 6 i e /o

<
00 02 04
®

-0.4
l
Xal

r
)| T T
3 4 5 1 2 /\
: \
i : f(z) =a0+), 0;K(z,z))
le—)H § \ _//
: S
"-:» e] . ~~
8 - : 8 o
~ . ~ .
8 w._ . R - I8
< - . ‘
o | .]
o . . <
+ it 4 Ll S - 9 1 T L1 — -
-2 -1 0 1 2 -2 -1 0 1 2
T xIr

predictor f(x) = 2 a;K(x;, x) is taking weighted sum of n kernel functions

centered at each lszalmple points

2
loc; — 12 }

RBF kernel k(x, x) = exp{ R
0]

e L) = |[Ka—yll; + Awll;

« The bandwidth 67 of the kernel regularizes the predictor, and the regularization
Coeff|C|ent A also regularlzes the predlctor

c=10" =104 o =10~ 2 =10"* c=10"" A=10"*
y N [—— True f(x) v A —— True f(x)) ' - — Trueflx)
‘ Fitted f(x)) Fitted f(x) . Fitted f(x)

. + Data 60 /.\ "
’ 5.

.ﬁ + Data o X - + Data
.- . A) f ’;‘.50 .
\ " .

a 06 08 10 00 _1 06 0 10

0—100>\—104 0—10 A=10"
” —— True f(x)
— Truefix) Fitted fix)

Fitted f(x) o . Data
. Data [t
flx) = a; K(x;,x) | ‘
=1

/
.
. ‘-
02 04 06 08 10
x1

RBF kernel and random features

W = argmin —ZmaX{O l—y(b+w x)} + /I||w||2

b n
W 11

N\

a,b = arg min —) max{0,1 —y(b + a;K(x;, x))} + 4 ;0K (x;, x;
& aERnan (0,1 — y(JZI, (%))} ,12;‘1 (% x,)

Bandwidth o is Iarge enough Bandwidth o is small

Features vs. RBF kernel vs. random features
K(u,v) =exp <_|u—v||%>

202

If n is very large, allocating an n-by-n matrix is tough.
Instead, consider generating random feature maps of the form:

(V2 cos(wTz 4 b1)] wy, ~ N(0,2v1)
o(z) = :

\/QCOS(w'g%pr) b ~ uniform(0,)

withp < n
One can show that
1 T ’ n2
[Ew,b[;¢<x> $p(x)] = exp(—yllx —x'|I3)

So this choice of random features approximate the desired RBF kernel with y = ﬁ
c

[Rahimi, Recht NIPS 2007]
“NIPS Test of Time Award, 2018

Kernel trick finds the optimal solution for linear
models under a feature map ¢(-)

. Once we have chosen to use a feature map ¢(-) € R?,
what we want to solve IS

W = arg min Z f Vi W Tgb(x)) for some convex loss £(,)
weRP i
- Gradient descent update (from initialization w® = 0) that find the optimal solution
is .
WD = WO 3 2y, wT PO
i=1
. One crucial observation is that all w’s (including the optimal solution w(°°)) lie on
the subspace spanned by {@(x,), ..., ¢(x,)}, which is an n-dimensional subspace

in RP
* Hence, i;E is sufficient to look for a solution that is represented as
= Z a;¢(x;) to find the optimal solution
i=1
« Kernel trick finds the optimal so}qution efficiently, by searching over the model that
can be represented as W = Z a;p(x;)
i=1

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping ¢ : R4 — R? from data also?

Questions?

Bootstrap

confidence interval

suppose you have training data {(x;, y;) }'_, drawn i.i.d. from some true
distribution P, ,

we train a kernel ridge regressor, with some choice of a kernel
K:R™ 5 R

minmize ||K0[— }’”% + LalKa Example of 5% and 9_5% percentile
a curves for predictor f(x)

the resulting pg@edictor IS o .
f@) =) K0, . -
l=1 _) ® ,//.o\o \\
where ® o\
& = (K+iD7ly eR’ RS
/ \ 1 1)
- 1/ o..\.\\.v,\\ ?/// \‘
we wish to build a confidence interval AN N A \l
for our predictor f(x), using ° 1! N A ‘,‘
5% and 95% percentiles - N

confidence interval

e let's focus on asingle x € R4

 note that our predictor f(x) is a random
variable, whose randomness comes

from the training data S,,;, = {(x;, y,) }7_;

e if we know the statistics

(in particular the CDF of the

random variable f(x)) of the predictor,
then the confidence interval with
confidence level 90% is defined as

0.90

v 0.05--

A

1 0.95 -

A

CDE(f(x))

I
5% percentile

95% percentile

if we know the distribution of our predictor f(x),

the green line is the expectation E[f(x)]
and the black dashed lines are the
5% and 95% percentiles in the figure above

e as we do not have the cumulative distribution function (CDF),
we need to approximate them

19

confidence interval

e hypothetically, if we can sample as many times as we want,
then we can train B € Z7 i.i.d. predictors, each trained on n fresh samples to

get empirical estimate of the CDFof y = f(x)

1.0

o for b=1,...,B OSCDF(j\;)\
e draw n fresh samples
e train a regularized kernel
regression a P

e Predict 3@ = (a"@)Th(x)

o
o

CDF ($)

Probability

o
'S
T

0.2

* let the empirical CDF of those B predictors | . |
{3)}le be CDF (), defined as Observations

T A 1 5 ~ A 1 > * A
CDF (§) = EZI{y(b)Sy} = EZI{ (@)h(x) <3)
b=1 b=1

—_—

« compute the confidence interval using CDF ()
20

)

21

Bootstrap

as we cannot sample repeatedly (in typical cases), we use bootstrap
samples instead

bootstrap is a general tool for assessing statistical accuracy
we learn it in the context of confidence interval for trained models

a bootstrap dataset is created from the training dataset by
taking n (the same size as the training data) examples uniformly at
random with replacement from the training data { (x;, y;) }_;

for b=1,...,B

« Create a bootstrap dataset Séb)
ootstrap
e train a regularized kernel regression a ®

o predict (@”)T h(x)

compute the empirical CDF from the bootstrap datasets, and compute
the confidence interval

22

training a single predictor

0

<

bootstrap

multiple bootstrapped

90% confidence interval

predictors

0.0

0.5

1.0

2.0

2.5

3.0

0.0

0.5

1.0

Figures from Hastie et al

Questions?

