Lecture 16:
Kernels

Mo-X T

b/l/\),V—“ T..
<t \{r?pi[“;m} > > biefl, a3

([l

A
st Ve (WhatL) >4

Support Vector Machine

we cheated a little in the sense that the reparametrization of ||w||, = —is
4
possible only if the the margins are positive,
i.e. the data is linearly separable with a positive margin
e otherwise, there is no feasible solution
* the examples at the margin are called support vectors

{x|wlx+b =0}
minimize,,criper W3

subjectto y,(wlx;+b)>1 forallie {1,...,n}
1

w

2

r |
m‘(wgz’n\{x|wa+b=+1}
~ .. F

{x|w'x+b=-1}

Two Issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |+
+ : +
- - + - +
IR Ly
o\ + S
- + -+

What if the data is not separable?

T —
brfwix+b=0) e we introduce slack so that
some points can violate the

margin condition

\ / x|wlx+b=+1)}

x|wix+b=-1)

e this gives a new optimization problem W|th some positive constant c € R

minimize,,crd peRr seRn ||w||2 +c Z &; %‘ — MeX fo 1~% (m(zﬂ;)}
i=1 |
subjectto y(wlx,+b)>1—¢ foralli€ {1,...,n}
& >0 forallie {1,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

w-X+b=0
e for the optimization problem é

minimize,,crd peRr sern ||w||2 +c Z & 0\\\

i=1 ®
subjectto y,(wlx;+b)>1—¢ foralli € {1,...,n}

E >0 foralli€ {1,....,n} wxtb=—1

notice that at optimal solution, ¢;'s satisfy

& = 0 if margin is big enough yl-(wai +b)>1,0r

o & =1—ywlx; + b), if the example is within the margin y.(w! x/+ b
1 yl 1 yél

e SO One can write
o & =max{0,1 — y(wlx, + b)}, which giveé
T
n =4
minimize,,erd per —||w||2 + Z max{0,1 — y,(wlx; + b)}
i=1

Sub-gradient descent for SVM szf;

e SVM is the solution of i%c huyg}i Trve
S Fole
minimize,verd per ||w||2 + Z max{0,1 — y(w'x, + b))

i=1
* as it is non-differentiable, we solve it using sub-gradient descent

* which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

» this means that we can take (a generic form derived from previous page)
0, fwix,+b,y) = Hywlx +b) < 1}(—yx)
and apply

>
WD (Zl{yl((w(t))Tx +5D) < 1) (=yx) + w@)

nll

pED O Zl{yi((w(t))Txi +b") < D}(-y)
i=1

What if the data is not linearly separable?

LW ‘\i‘ b=0 some points don’t satisfy margin constraint:
. 2
min |jw||3
w,b
T .
yi(eTw +0) > 1 Vi
1
[|wl2
Two options:

1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

* Use features, for example, =2
X = (xl,xz) c Rz ¢ ¢3(X) = Xl P = //050
21 h\“ X x X
X 2| x X
X x x b naly X
x/‘) X 0 g X X 2
QO AO. » olo. _l__L.-I _ l
X0 O z 0% & 2 C()<U(<,5(L)~ - Xy
e =)= % K
X
| o Kz (%)
This data is not linearly Can you suggest some features
Separable ¢1(.xl, xZ), ¢2(x1, xZ), 4)3()61, x2) such that this data is

linearly separable in this 3-dimensional space?

e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

e What is wrong with this approach?

Creating Features

e Feature mapping ¢ : RY > R? maps original data
into a rich and high-dimensional feature space (usually d < p)
—_—

For example, for d>1,

For example, in d=1, one can use
P R4
one can generate vectors {u;}i—; C

¢1(x) [x] oot
| X and define features:
¢(X) = o ¢(x) — COS(u.Tx)
k
X
¢k(x) B ejP:ﬂl’< ¢J(x) (l/l x)z
- 1

Pjx) = 1+ exp(uij)

» Feature space can get really large really quickly!
« How many coefficients/parameters are there for degree-k ponnomiaIs

forx = (xy,...,x) € RI? Pt -t A a(k), AN
« At a first glance, it seems inevitable that we need memory (to store
the features{¢(x;) € R”}") and run-time that increases with p where

d<n<p

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢

if K(z,2") = ¢(x)=p(z') for all z,x".
— ~—
This notation is for dot product (which is the same as inner product)

Bx)o o) = o) Boxs) = <q£o(‘,,/¢f0@
e So, if we can represent our

e training algorithms and
e decision rules for prediction

e as functions of dot products of feature maps (i.e. {¢(x) - p(x')})
and if we can find a kernel for our feature map such that

Ki(x 7)6’) = p(x) - Pp(x')
then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data /Ppm

6/§QMXM

Ridge Linear Regression as Kernels

. Consider Ridge regression: w = arg mi[éld ly — XW“% + /1||W||%
we

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (XTX + Al) X"y
= XT'XXT +1,,.)"y (when n < d via linear algebra)
€ R4

/\T

A —
ynew_ w-X

e Prediction: x,,,

new
T T ~1
=y (XX + AL)" XXpew
e Hence, to make prediction on any future data points, all we need to know is

K(xy, X,0y,) K(x;,x)) K(xg,x5)
Xx,. .. = : e R" and XX’ = : :

X
new . e Rn "
K(x,, x

K(x,,x)) K(x,,x,)

e Even if we run ridge linear regression on feature map ¢(x) € R?, we only need to
) and not the features ¢(x;)

new)

access the features via kernel K(x;, x;) and K(x;, x,c,,

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x") = (p(x), p(x")) = p(x)T p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L) = x; fork = 1 and d = 2, then K(x, x) = x,x| + x,x}
| — — - T
5 = B Px)
A
2
dp(x)= | *2 [fork =2andd =2,
. XX
| X2X o

/ / / ! .7 / / T
then K(x, x') = x3(x])? + x5(x5)* + 2x,%,X1%) = (X,X] + X,x3)* = (¢ 36/)
 Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) }}Ll takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Examples of popular Kernels

.- Polynomials of degree exactlyk

K(x,x") = (xTx")*
. Polynomials of degree up to k

K(x,x") =1+ xTx’)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
[|x —X’Ilz)

K(x,x") = exp(B

- Sigmoid
K(x,x") = tanh(yx'x' + r)

The Kernel Trick
. Given data {(x;, y,)}",

- For a choice of a loss, use a linear predictor of the form
n aq
W o= Z a.x; forsomea = | : | € R"to be learned

i=1 a,

-n
C e e S ST _ T
_ Predictionis y ., = W X, = Z A X: Xpew
i=1

- Design an algorithm that finds o while accessing the data only via
{xiij}

. Pickakernel K : R X R? - R

. Substitute xiij with K(x;, xj), and find a using he above algorithm

n
Make prediction with y . = 2 o K(x;, Xpey)
i=1

The Kernel Trick for regularized least squares

W = argmin 2@1 wix)? + 2wl
i=1

There exists an v € R™: w = Z Q;T; (We will prove it later)
i=1
n n n n
a = arg moin Z(yZ - Z aj{T, x:))* + A Z Z ;o (X,)
i=1 j=1 i=1 j=1

(Write an algorithm in terms of @)

n n
Ayernel — M8 mO}n 2 :(yl o E :&jK(xi7 x] + A § E CKZOé] LUZ, 373
i=1 =1

=1 5=1
(Switch inner product with kernel)

— argmin|ly — Ka||2 + Ao’ Ka Where K;; = K(x;, x;) = (¢(x)), p(x)))

(Solve for Ayerpel)

Thus, akemel (K+/lIan) y

Why do we need regularization when using
kernels?

e Typically, p > d and K > 0. Why?

o So Kis invertible and @ = (K + AL ..)~y is well defined,

but we still want to choose positive A.
e What if A = 0? What goes wrong? 5
argmin ||y — Ke||5
a

nxn

The Kernel Trick for SVMs

W = argmin —Zmax{Ol yl(b+w x;)} + /1||W||2

w,b nl)
There exists an v € R™: w = Z Q;T; (We will prove it later)
i=1
4,b = arg min — max{0,1 —y(b +) ax; Tx)} + 4 40X x
2 i, Y o+ Y >

j=1 i=1,j=1
(Write an algorithm in terms of @)

n
6(\kernel’ bkernel = arg aren[Rl{}”lb ; Z maX{O 1 - yz(b + Z aK(xi))} + A Z aiajK(xi, XJ)
j=1 i=1,j=1

(Switch inner product with kernel)

= arg min —Z max{0,1 — y,(b + Ka)} + la’Ka
= Where K;; = K(x;, x;) = (¢(x,), $(x)))

Prediction for x,,

y = sign ZGK(Xpew) E)
=1

(Solve for @, b using optimization)

RBF kernel k(x;, x) = eXp{ —

K (:I:?xj)

2
1 — xlI }

202

; N ..
S o \
o _ ¢ ® —
S ® bandwidth : o
$ - 1 l‘ L1 1 | 1 “———— . ' : _

1} 1 1 1 1 -

-2 -1 0 1 2 Xl

z

predictor is taking weighted sum of 71 kernel functions centered at each sample points

P —
Radial Basis Functions _ . N
f(z) =a0+ 2, 0;K(z,z;))
I'f_? . ~—— //
g. -
3 1 ~ o
B s Py
- =~ g
o
q — R
e A3
rl ll ll 11 T ! Il ? -1 Il l L1 . 1]1
-2 -1 0 1 2 2 P " "

RBF kernel k(x;, x) = exp{ —

L(w) =

IKw —yll5 + Allwll3

2
1 = xll3 }

202

The bandwidth ¢ of the kernel regularizes the predictor
c=10"2 A=10""*

Sigma=0.01

c=10"t A=10"4

Sigma=0.1

c=10"3)x=10"%

—— True f(x)
Fitted f(x)

+ Data

c=10""\=10"%

Sigma=1.0

—— True f(x)
Fitted f(x)

60 .
55 ﬁ

50

45

—— True f(x)
Fitted f(x)

A\j

—— True f(x)

Fitted f(x)
+ Data

0_10—1 /_10 0

60 .. A Data
55 .
50 / . . ‘/
45 .
40 :
00 02 04 06
x1

— True f(x)
Fitted f(x)

08 10

Xz

RBF kernel and random features

W o= argmm—Zmax{Ol yl(b+w X))} + /1||W||2
w,b I’ll 1

a,b = arg min —) max{0,1 —y(b + K(x, %)) + 2 K(x,
“ gaeR"b nZ { y’(le(l (] 1))} l;_laa (xlx)

Bandwidth o is large enough Bandwidth o is small

RBF kernel and random features
K(u,v) =ex (_||u—v||%>
, V) = exp

202

If n is very large, allocating an n-by-n matrix is tough.

Zcos(a) cos(f3) = cos(a + B) + cos(a —)

e’* = cos(z) + jsin(z)

{\/5 cos(wi @ + bl)} wy, ~ N(0,271)
¢(z) = : :
JEeos(uwTr + b, by ~ uniform(0,)

1
[Ew,b[;qb(x)%b(x')] = exp(—7llx —x3)

Random features approximate RBF kernel withy = — o
2062 [Rahimi, Recht NIPS 2007]

“‘NIPS Test of Time Award, 2018”

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x1

PHRRDLCSRSIWLARKIRSDLTALTESY VKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAY QIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) p = 203 =8,000
hl,(x1) = 1and k] (x2) = 2.

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping ¢ : R4 — R” from data also?

Questions?

