
Lecture 16: 
Kernels

Support Vector Machine
• we cheated a little in the sense that the reparametrization of is

possible only if the the margins are positive,  
i.e. the data is linearly separable with a positive margin

• otherwise, there is no feasible solution

• the examples at the margin are called support vectors

•

∥w∥2 =
1
γ

2

{x | wT x + b = 0}

subject to yi(wT xi + b) ≥ 1 for all i ∈ {1,…, n}

minimizew∈ℝd,b∈ℝ ∥w∥2
2

{x | wT x + b = + 1}

{x | wT x + b = − 1}

Two issues
• it does not generalize to non-separable datasets

• max-margin formulation we proposed is sensitive to outliers

+
+

+
+

+

+

+

+--
-

-

- -
--

-

+
+

+
+

+

+

+

+--
--
- -

--

-

-

What if the data is not separable?
• we introduce slack so that

some points can violate the
margin condition 
 yi(wT xi + b) ≥ 1 − ξi

{x | wT x + b = 0}

{x | wT x + b = + 1}

{x | wT x + b = − 1}

• this gives a new optimization problem with some positive constant  

  

  

the (re-scaled) margin (for each sample) is allowed to be less than one, 
but you pay in the cost, and balances the two goals: 
maximizing the margin for most examples vs. having small number of violations

c ∈ ℝ
minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2

2 + c
n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi for all i ∈ {1,…, n}
ξi ≥ 0 for all i ∈ {1,…, n}

cξi c

Support Vector Machine
• for the optimization problem  

  

  

notice that at optimal solution, 's satisfy

• if margin is big enough , or

• , if the example is within the margin

• so one can write

• , which gives

minimizew∈ℝd,b∈ℝ,ξ∈ℝn ∥w∥2
2 + c

n

∑
i=1

ξi

subject to yi(wT xi + b) ≥ 1 − ξi for all i ∈ {1,…, n}
ξi ≥ 0 for all i ∈ {1,…, n}

ξi

ξi = 0 yi(wT xi + b) ≥ 1
ξi = 1 − yi(wT xi + b) yi(wT xi + b) < 1

ξi = max{0,1 − yi(wT xi + b)}

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

Sub-gradient descent for SVM
• SVM is the solution of 

 

• as it is non-differentiable, we solve it using sub-gradient descent

• which is exactly the same as gradient descent, except when we are at a

non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

• this means that we can take (a generic form derived from previous page) 
  
and apply  
 

 

minimizew∈ℝd,b∈ℝ
1
c

∥w∥2
2 +

n

∑
i=1

max{0,1 − yi(wT xi + b)}

∂wℓ(wT xi + b, yi) = I{yi(wT xi + b) ≤ 1}(−yixi)

w(t+1) ← w(t) − η (
n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1}(−yixi) +
2
c

w(t))
b(t+1) ← b(t) − η

n

∑
i=1

I{yi((w(t))T xi + b(t)) ≤ 1)}(−yi)

What if the data is not linearly separable?

• If data is not linearly separabsome points don’t satisfy margin constraint:

1

||w||2

1

||w||2

xTw + b = 0

min
w,b

||w||22

yi(x
T
i w + b) � 1 8i

Two options:

1. Introduce slack to this optimization problem (Support Vector Machine)

2. Lift to higher dimensional space (Kernels)

• Use features, for example,

What if the data is not linearly separable?

x = (x1, x2) ∈ ℝ2

• Generally, in high dimensional feature space,  
it is easier to linearly separate different classes

• However, it is hard to know which feature map will work for given data

• So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

• What is wrong with this approach?

This data is not linearly
separable

Can you suggest some features
 such that this data is

linearly separable in this 3-dimensional space?
ϕ1(x1, x2), ϕ2(x1, x2), ϕ3(x1, x2)

ϕ1(x)

ϕ2(x)

ϕ3(x)

Creating Features

• Feature mapping maps original data  
into a rich and high-dimensional feature space (usually)

ϕ : ℝd → ℝp

d ≪ p

For example, in d=1, one can use For example, for d>1,  
one can generate vectors

 
and define features:

{uj}pj=1 ⇢ Rd

• Feature space can get really large really quickly!

• How many coefficients/parameters are there for degree- polynomials  

for ?

• At a first glance, it seems inevitable that we need memory (to store  

the features) and run-time that increases with where

k
x = (x1, …, xd) ∈ ℝd

{ϕ(xi) ∈ ℝp}n
i=1 p

d < n ≪ p

ϕ(x) =

ϕ1(x)
ϕ2(x)

⋮
ϕk(x)

=

x
x2

⋮
xk

ϕj(x) = cos(uT
j x)

ϕj(x) = (uT
j x)2

ϕj(x) =
1

1 + exp(uT
j x)

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : Rd ⇥ Rd ! R is a kernel for a map �
if K(x, x0) = �(x) · �(x0) for all x, x0.

<latexit sha1_base64="ybat6+IidtIJiF4ZL7I5CzGQJ1c=">AAADBHicbZHPb9MwFMed8GuUAR0cuTzRoLUSqpJyYOKHNMSEkLiMqd0q1aVyHGe16thR7KBWUa78KZy4Ia78H/w3OGm6jY53+vrz3rP9vi9MBdfG9/847o2bt27f2bnburd7/8HD9t6jU63yjLIRVUJl45BoJrhkI8ONYOM0YyQJBTsLF++r/NlXlmmu5NCsUjZNyLnkMafEWDRrf8dScRkxaeAdxLmkFQbvE7wCnBAzD8PipPwSATY8YXqbqSvAA66BAGZJOi8WLJNMlBCrzLKEpODhdM49jIHH9vru8vlyvwdvoaLdZQ8wjZRpTvs9b90oBHhVodeftTt+368DrougER3UxPFsz/mAI0XzxE5GBdF6EvipmRYkM5wKVrZwrllK6IKcs4mVktjxpkVtaAnPLInqP8TKOlPTqx0FSbReJaGtrObX27kK/i83yU18MC24THPDJF0/FOcCrJPVdiDiGaNGrKwgNOP2r0DnJCPU2B22WjhiMT4qatMpEcVRWa7Z8JINN+ykuFxOg8YNiovxBq0u0GqDggsUlKV1Ptj2+bo4HfSDF/3B50Hn8KDZwQ56gp6iLgrQS3SIPqJjNELU2XUGzmvnjfvN/eH+dH+tS12n6XmM/gn391+6yvAV</latexit>

• So, if we can represent our

• training algorithms and

• decision rules for prediction

• as functions of dot products of feature maps (i.e.)  
and if we can find a kernel for our feature map such that  

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data

{ϕ(x) ⋅ ϕ(x′￼)}

K(x . x′￼) = ϕ(x) ⋅ ϕ(x′￼)
{ϕ(xi)}n

i=1

{K(xi, xj)}i, j∈{1,…,n}

This notation is for dot product (which is the same as inner product)

Ridge Linear Regression as Kernels

• Consider Ridge regression:

• As an exercise, we will represent prediction with using linear kernel
defined as

• Training:  

 (when via linear algebra)

• Prediction:  

  

• Hence, to make prediction on any future data points, all we need to know is

•
, and

• Even if we run ridge linear regression on feature map , we only need to
access the features via kernel and and not the features

ŵ = arg min
w∈ℝd

∥y − Xw∥2
2 + λ∥w∥2

2

̂w
K(x, x′￼) = xT x′￼

̂w = (XTX + λId×d)−1XTy
= XT(XXT + λIn×n)−1y n ≪ d

xnew ∈ ℝd

̂y new = ̂w T xnew

= yT(XXT + λIn×n)−1Xxnew

Xxnew =
K(x1, xnew)

⋮
K(xn, xnew)

∈ ℝn XXT =
K(x1, x1) K(x1, x2) ⋯

⋮ ⋮
K(xn, x1) K(xn, x2) ⋯

∈ ℝn×n

ϕ(x) ∈ ℝp

K(xi, xj) K(xi, xnew) ϕ(xi)

Kernel (i.e., dot-product) of polynomial features
• Recall kernel is defined as

• As illustrating examples, consider polynomial features of degree exactly

• for and , then

•
for and ,  

then

• Note that for a data point , explicitly computing the feature  

takes memory/time

• For a data point , if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing takes memory/time

• The features are implicit and accessed only via kernels, making it efficient

K(x, x′￼) = ϕ(x) ⋅ ϕ(x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩ = ϕ(x)Tϕ(x′￼)
k

ϕ(x) = [x1
x2] k = 1 d = 2 K(x, x′￼) = x1x′￼1 + x2x′￼2

ϕ(x) =

x2
1

x2
2

x1x2
x2x1

k = 2 d = 2

K(x, x′￼) = x2
1(x′￼1)2 + x2

2(x′￼2)2 + 2x1x2x′￼1x′￼2 = (x1x′￼1 + x2x′￼2)2

xi ϕ(xi)
p = dk

xi
{K(xi, xj)}n

j=1 dn

• Polynomials of degree exactly  
 

• Polynomials of degree up to  
 

• Gaussian (squared exponential) kernel  
(a.k.a RBF kernel for Radial Basis Function) 
 

• Sigmoid 
 

k

K(x, x′￼) = (xT x′￼)k

k

K(x, x′￼) = (1 + xT x′￼)k

K(x, x′￼) = exp(−
∥x − x′￼∥2

2

2σ2)

K(x, x′￼) = tanh(γxT x′￼+ r)

Examples of popular Kernels

• Given data

• For a choice of a loss, use a linear predictor of the form  

 for some to be learned

•
Prediction is

• Design an algorithm that finds while accessing the data only via

• Pick a kernel
• Substitute with , and find using he above algorithm

•
Make prediction with

{(xi, yi)}n
i=1

̂w =
n

∑
i=1

αixi α =
α1
⋮
αn

∈ ℝn

̂y new = ̂w T xnew =
n

∑
i=1

αi xT
i xnew

α
{xT

i xj}
K : ℝd × ℝd → ℝ

xT
i xj K(xi, xj) α

̂y new =
n

∑
i=1

̂α iK(xi, xnew)

The Kernel Trick

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi

b↵ = argmin
↵

nX

i=1

(yi �
nX

j=1

↵jhxj , xii)2 + �
nX

i=1

nX

j=1

↵i↵jhxi, xji

= argmin
↵

nX

i=1

(yi �
nX

j=1

↵jK(xi, xj))
2 + �

nX

i=1

nX

j=1

↵i↵jK(xi, xj)

= argmin
↵

||y �K↵||22 + �↵TK↵

The Kernel Trick for regularized least squares

(We will prove it later)

(Write an algorithm in terms of)̂α

(Switch inner product with kernel)

(Solve for)̂αkernel

Where Kij = K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

̂w = arg min
w

n

∑
i=1

(yi − wT xi)2 + λ∥w∥2
2

Thus, ̂αkernel = (K + λIn×n)−1y

̂αkernel

Why do we need regularization when using
kernels?

• Typically, and . Why? 
 
 
 
 

• So is invertible and is well defined,  
but we still want to choose positive .

• What if ? What goes wrong?

p ≫ d K ≻ 0

K ̂α = (K + λIn×n)−1y
λ

λ = 0
arg min

α
∥y − Kα∥2

2

The Kernel Trick for SVMs

There exists an ↵ 2 Rn: bw =
nX

i=1

↵ixi (We will prove it later)

(Write an algorithm in terms of)̂α

(Switch inner product with kernel)

(Solve for using optimization)̂α , ̂b

Where Kij = K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

̂w = arg min
w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjxT
j xi)} + λ

n

∑
i=1, j=1

αiαjxT
i xj

̂αkernel, ̂b kernel = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

= arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b + Kα)} + λαTKα

Prediction for : xnew

̂y = sign(
n

∑
i=1

̂α iK(xi, xnew) + ̂b)

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

• predictor is taking weighted sum of kernel functions centered at each sample pointsn

18

xi

bandwidth : σ
y

RBF kernel k(xi, x) = exp{ −
∥xi − x∥2

2

2σ2 }

� = 10�2 � = 10�1� = 10�4 � = 10�4

bf(x) =
nX

i=1

b↵iK(xi, x)

•

• The bandwidth of the kernel regularizes the predictor

ℒ(w) = ∥Kw − y∥2
2 + λ∥w∥2

2

σ2

� = 10�1 � = 10�0

� = 10�3 � = 10�4

� = 10�0 � = 10�4

RBF kernel and random features
̂w = arg min

w,b

1
n

n

∑
i=1

max{0,1 − yi(b + wT xi)} + λ∥w∥2
2

̂α , ̂b = arg min
α∈ℝn,b

1
n

n

∑
i=1

max{0,1 − yi(b +
n

∑
j=1

αjK(xj, xi))} + λ
n

∑
i=1, j=1

αiαjK(xi, xj)

Bandwidth is large enoughσ Bandwidth is smallσ

RBF kernel and random features
K(u,v) = exp

✓
� ||u� v||22

2�2

◆

If n is very large, allocating an n-by-n matrix is tough.

2 cos(↵) cos(�) = cos(↵+ �) + cos(↵� �)

wk ⇠ N (0, 2� I)

bk ⇠ uniform(0,⇡)
�(x) =

2

64

p
2 cos(wT

1 x+ b1)
...p

2 cos(wT
p x+ bp)

3

75

ejz = cos(z) + j sin(z)

[Rahimi, Recht NIPS 2007]

“NIPS Test of Time Award, 2018”

𝔼w,b[1
p

ϕ(x)Tϕ(x′￼)] = exp(−γ∥x − x′￼∥2
2)

Random features approximate RBF kernel with γ =
1

2σ2

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

x1

x2

All subsequences of length 3 (of possible 20 amino acids) p =

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping from data also?ϕ : ℝd → ℝp

Questions?

