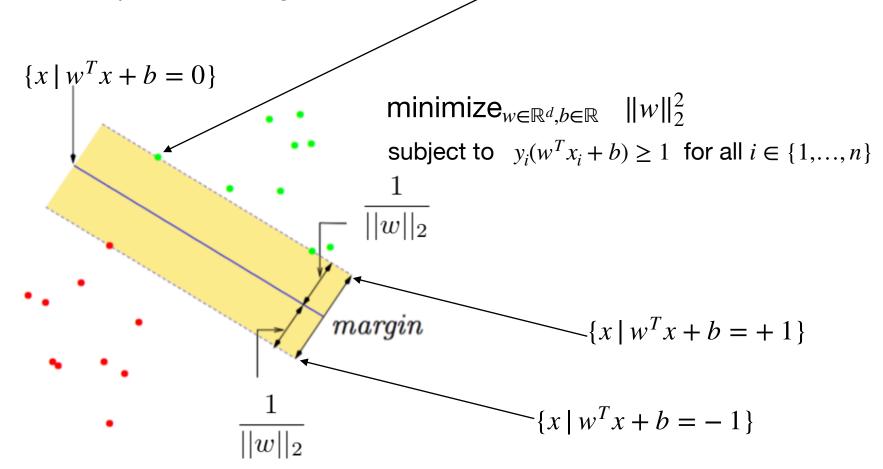
Lecture 16: Kernels

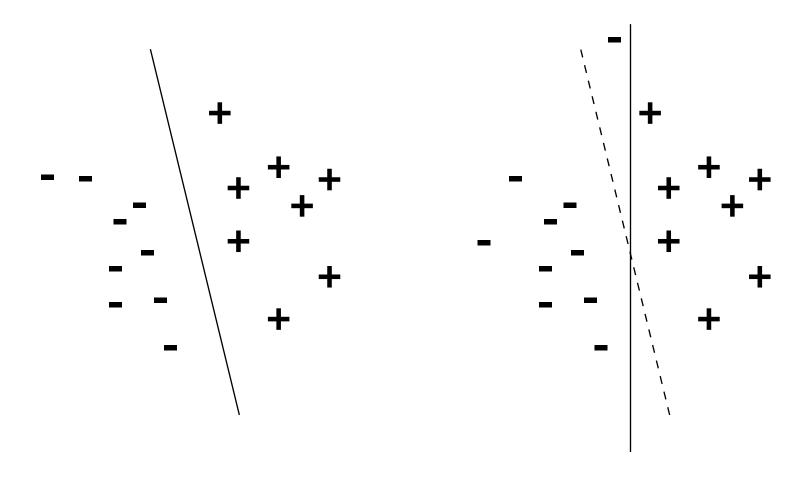
Support Vector Machine

- we cheated a little in the sense that the reparametrization of $||w||_2 = \frac{1}{\gamma}$ is possible only if the the margins are positive, i.e. the data is linearly separable with a positive margin
- otherwise, there is no feasible solution
- the examples at the margin are called support vectors

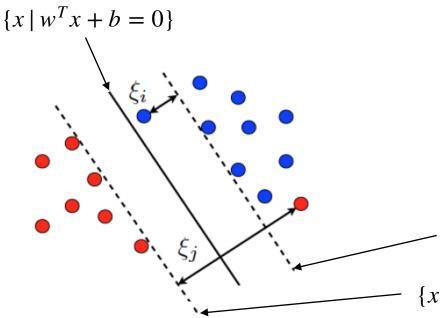


Two issues

- it does not generalize to non-separable datasets
- max-margin formulation we proposed is sensitive to outliers



What if the data is not separable?



 we introduce slack so that some points can violate the margin condition

$$y_i(w^T x_i + b) \ge 1 - \xi_i$$

$$\{x \mid w^T x + b = +1\}$$

$${x \mid w^T x + b = -1}$$

• this gives a new optimization problem with some positive constant $c \in \mathbb{R}$

$$\operatorname{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|_2^2 + c \sum_{i=1}^n \xi_i$$

subject to
$$y_i(w^Tx_i + b) \ge 1 - \xi_i$$
 for all $i \in \{1, ..., n\}$ $\xi_i \ge 0$ for all $i \in \{1, ..., n\}$

the (re-scaled) margin (for each sample) is allowed to be less than one, but you pay $c\xi_i$ in the cost, and c balances the two goals: maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

for the optimization problem

$$\operatorname{minimize}_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \|w\|_2^2 + c \sum_{i=1}^n \xi_i$$

subject to
$$y_i(w^Tx_i + b) \ge 1 - \xi_i$$
 for all $i \in \{1, ..., n\}$

$$\xi_i \ge 0$$
 for all $i \in \{1, ..., n\}$ $\mathbf{w} \cdot \mathbf{x} + b = -1$

notice that at optimal solution, ξ_i 's satisfy

- $\xi_i = 0$ if margin is big enough $y_i(w^Tx_i + b) \ge 1$, or
- $\xi_i = 1 y_i(w^Tx_i + b)$, if the example is within the margin $y_i(w^Tx_i + b) < 1$
- so one can write
 - $\xi_i = \max\{0, 1 y_i(w^T x_i + b)\}$, which gives

minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

Sub-gradient descent for SVM

SVM is the solution of

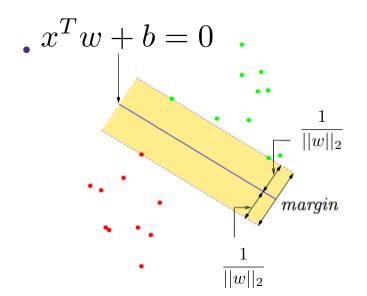
minimize_{$$w \in \mathbb{R}^d, b \in \mathbb{R}$$} $\frac{1}{c} ||w||_2^2 + \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i + b)\}$

- as it is non-differentiable, we solve it using sub-gradient descent
- which is exactly the same as gradient descent, except when we are at a non-differentiable point, we take one of the sub-gradients instead of the gradient (recall sub-gradient is a set)
- this means that we can take (a generic form derived from previous page) $\partial_w \mathcal{E}(w^Tx_i+b,y_i) \ = \ \mathbf{I}\{y_i(w^Tx_i+b) \le 1\}(-y_ix_i)$ and apply

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \left(\sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i x_i) + \frac{2}{c} w^{(t)} \right)$$

$$b^{(t+1)} \leftarrow b^{(t)} - \eta \sum_{i=1}^{n} \mathbf{I} \{ y_i ((w^{(t)})^T x_i + b^{(t)}) \le 1 \} (-y_i)$$

What if the data is not linearly separable?



some points don't satisfy margin constraint:

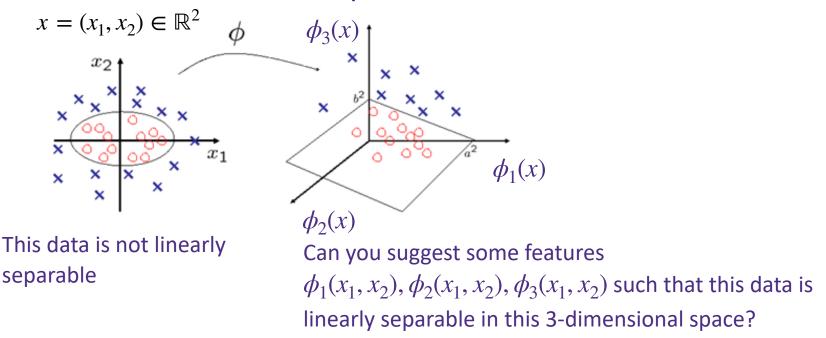
$$\min_{w,b} ||w||_2^2$$
$$y_i(x_i^T w + b) \ge 1 \quad \forall i$$

Two options:

- 1. Introduce slack to this optimization problem (Support Vector Machine)
- 2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

Use features, for example,



- Generally, in high dimensional feature space, it is easier to linearly separate different classes
- However, it is hard to know which feature map will work for given data
- So the rule of thumb is to use high-dimensional features and hope that the algorithm will automatically pick the right set of features
- What is wrong with this approach?

Creating Features

• Feature mapping $\phi:\mathbb{R}^d\to\mathbb{R}^p$ maps original data into a rich and high-dimensional feature space (usually $d\ll p$)

For example, in d=1, one can use

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_k(x) \end{bmatrix} = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix}$$

For example, for d>1, one can generate vectors $\{u_j\}_{j=1}^p \subset \mathbb{R}^d$

and define features:

$$\phi_j(x) = \cos(u_j^T x)$$

$$\phi_j(x) = (u_j^T x)^2$$

$$\phi_j(x) = \frac{1}{1 + \exp(u_i^T x)}$$

- Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials for $x=(x_1,...,x_d)\in\mathbb{R}^d$?
- At a first glance, it seems inevitable that we need memory (to store the features $\{\phi(x_i) \in \mathbb{R}^p\}_{i=1}^n$) and run-time that increases with p where $d < n \ll p$

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel for a map ϕ if $K(x, x') = \phi(x) \cdot \phi(x')$ for all x, x'.

This notation is for dot product (which is the same as inner product)

- So, if we can represent our
 - training algorithms and
 - decision rules for prediction
- as functions of dot products of feature maps (i.e. $\{\phi(x)\cdot\phi(x')\}$) and if we can find a kernel for our feature map such that

$$K(x \cdot x') = \phi(x) \cdot \phi(x')$$

then we can avoid explicitly computing and storing (high-dimensional) $\{\phi(x_i)\}_{i=1}^n$ and instead only work with the kernel matrix of the training data

$$\{K(x_i, x_j)\}_{i,j \in \{1,...,n\}}$$

Ridge Linear Regression as Kernels

- Consider Ridge regression: $\hat{w} = \arg\min_{w \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}w\|_2^2 + \lambda \|w\|_2^2$
- As an exercise, we will represent prediction with \widehat{w} using linear kernel defined as $K(x, x') = x^T x'$
- Training: $\widehat{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{d \times d})^{-1} \mathbf{X}^T \mathbf{y}$ $= \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y} \qquad \text{(when } n \ll d \text{ via linear algebra)}$
- Prediction: $x_{\text{new}} \in \mathbb{R}^d$ $\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}}$

$$= \mathbf{y}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{X} x_{\text{new}}$$

Hence, to make prediction on any future data points, all we need to know is

$$\mathbf{X}x_{\text{new}} = \begin{bmatrix} K(x_1, x_{\text{new}}) \\ \vdots \\ K(x_n, x_{\text{new}}) \end{bmatrix} \in \mathbb{R}^n, \text{ and } \mathbf{X}\mathbf{X}^T = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \cdots \\ \vdots & \vdots & \\ K(x_n, x_1) & K(x_n, x_2) & \cdots \end{bmatrix} \in \mathbb{R}^{n \times n}$$

• Even if we run ridge linear regression on feature map $\phi(x) \in \mathbb{R}^p$, we only need to access the features via kernel $K(x_i, x_j)$ and $K(x_i, x_{\text{new}})$ and not the features $\phi(x_i)$

Kernel (i.e., dot-product) of polynomial features

- Recall kernel is defined as $K(x, x') = \phi(x) \cdot \phi(x') = \langle \phi(x), \phi(x') \rangle = \phi(x)^T \phi(x')$
- ullet As illustrating examples, consider polynomial features of degree exactly k

$$\phi(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 for $k = 1$ and $d = 2$, then $K(x, x') = x_1 x_1' + x_2 x_2'$

$$\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_2 x_1 \end{bmatrix}$$
 for $k = 2$ and $d = 2$,

then
$$K(x, x') = x_1^2(x_1')^2 + x_2^2(x_2')^2 + 2x_1x_2x_1'x_2' = (x_1x_1' + x_2x_2')^2$$

- Note that for a data point x_i , **explicitly** computing the feature $\phi(x_i)$ takes memory/time $p=d^k$
- For a data point x_i , if we can make predictions (as we saw in the previous slide) by only computing the kernel, then computing $\{K(x_i, x_j)\}_{j=1}^n$ takes memory/time dn
 - The features are **implicit** and accessed only via kernels, making it efficient

Examples of popular Kernels

Polynomials of degree exactlyk

$$K(x, x') = (x^T x')^k$$

- Polynomials of degree up to k

$$K(x, x') = (1 + x^T x')^k$$

 Gaussian (squared exponential) kernel (a.k.a RBF kernel for Radial Basis Function)

$$K(x, x') = \exp\left(-\frac{\|x - x'\|_2^2}{2\sigma^2}\right)$$

Sigmoid

$$K(x, x') = \tanh(\gamma x^T x' + r)$$

The Kernel Trick

- Given data $\{(x_i, y_i)\}_{i=1}^n$
- For a choice of a loss, use a linear predictor of the form

$$\widehat{w} = \sum_{i=1}^n \alpha_i x_i$$
 for some $\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}_n \in \mathbb{R}^n$ to be learned

Prediction is
$$\widehat{y}_{\text{new}} = \widehat{w}^T x_{\text{new}} = \sum_{i=1}^{\infty} \alpha_i x_i^T x_{\text{new}}^T$$

- Design an algorithm that finds α while accessing the data only via $\{x_i^Tx_j\}$
- Pick a kernel $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
- . Substitute $x_i^T x_j$ with $K(x_i, x_j)$, and find α using he above algorithm

Make prediction with
$$\widehat{y}_{\text{new}} = \sum_{i=1}^{n} \widehat{\alpha}_{i} K(x_{i}, x_{\text{new}})$$

The Kernel Trick for regularized least squares

$$\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum_{i=1}^n \alpha_i x_i$

(We will prove it later)

$$\widehat{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j \langle x_j, x_i \rangle)^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \langle x_i, x_j \rangle$$

(Write an algorithm in terms of $\hat{\alpha}$)

$$\widehat{\boldsymbol{\alpha}}_{\text{kernel}} = \arg\min_{\alpha} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{n} \alpha_j K(x_i, x_j))^2 + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

(Switch inner product with kernel)

$$= \arg\min_{\alpha} ||\mathbf{y} - \mathbf{K}\alpha||_2^2 + \lambda \alpha^T \mathbf{K}\alpha$$

Where
$$\mathbf{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

(Solve for $\widehat{\alpha}_{\text{kernel}}$)

Thus,
$$\hat{\alpha}_{\text{kernel}} = (\mathbf{K} + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y}$$

Why do we need regularization when using kernels?

• Typically, $p \gg d$ and $\mathbf{K} > 0$. Why?

- So \mathbf{K} is invertible and $\widehat{\alpha} = (\mathbf{K} + \lambda \mathbf{I}_{n \times n})^{-1} \mathbf{y}$ is well defined, but we still want to choose positive λ .
- What if $\lambda = 0$? What goes wrong? $\underset{\alpha}{\arg\min} \|\mathbf{y} \mathbf{K}\alpha\|_2^2$

The Kernel Trick for SVMs

$$\widehat{w} = \arg\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + w^T x_i)\} + \lambda ||w||_2^2$$

There exists an $\alpha \in \mathbb{R}^n$: $\widehat{w} = \sum \alpha_i x_i$

(We will prove it later)

$$\widehat{\alpha}, \widehat{b} = \arg\min_{\alpha \in \mathbb{R}^n, b} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(b + \sum_{j=1}^n \alpha_j x_j^T x_i)\} + \lambda \sum_{i=1, j=1}^n \alpha_i \alpha_j x_i^T x_j$$

(Write an algorithm in terms of $\widehat{\alpha}$)

$$\widehat{\alpha}_{\text{kernel}}, \widehat{b}_{\text{kernel}} = \arg\min_{\alpha \in \mathbb{R}^n, b} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(b + \sum_{j=1}^n \alpha_j K(x_j, x_i))\} + \lambda \sum_{i=1, j=1}^n \alpha_i \alpha_j K(x_i, x_j)$$

(Switch inner product with kernel)

$$= \arg\min_{\alpha \in \mathbb{R}^n, b} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i(b + \mathbf{K}\alpha)\} + \lambda \alpha^T \mathbf{K}\alpha$$
Where $\mathbf{K}_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$

Prediction for x_{new} :

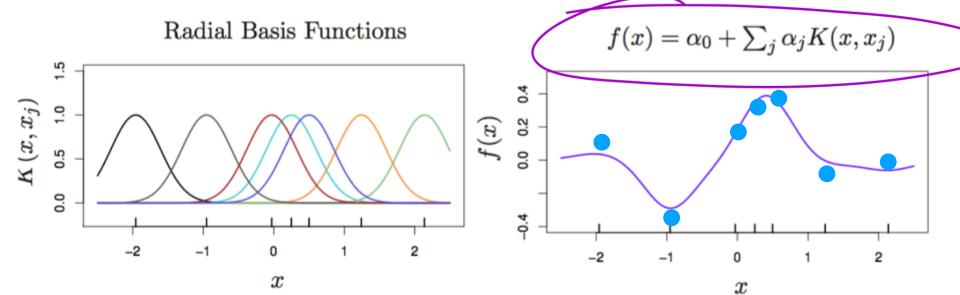
(Solve for $\widehat{\alpha}$, \widehat{b} using optimization) $\hat{y} = \text{sign} \left(\sum_{i=1}^{n} \hat{\alpha}_{i} K(x_{i}, x_{\text{new}}) + \hat{b} \right)$

RBF kernel
$$k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}$$

bandwidth: σ

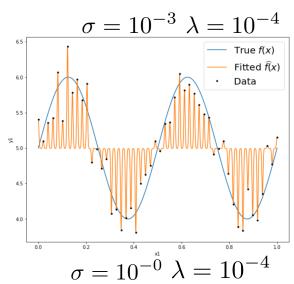
predictor is taking weighted sum of ${\cal N}$ kernel functions centered at each sample points

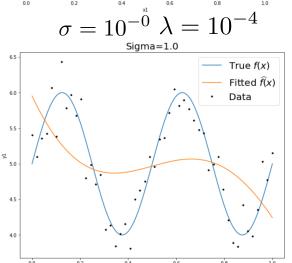
 \boldsymbol{x}

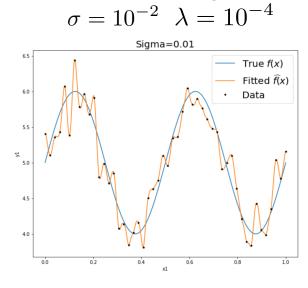


RBF kernel
$$k(x_i, x) = \exp\left\{-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right\}$$

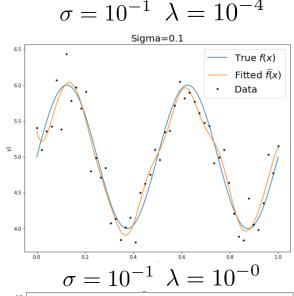
- $\mathcal{L}(w) = \|\mathbf{K}w \mathbf{y}\|_2^2 + \lambda \|w\|_2^2$
- The bandwidth σ^2 of the kernel regularizes the predictor

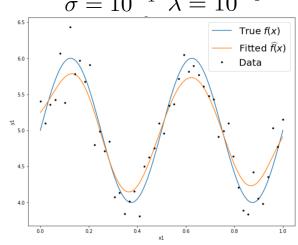






$$\widehat{f}(x) = \sum_{i=1}^{n} \widehat{\alpha}_i K(x_i, x)$$





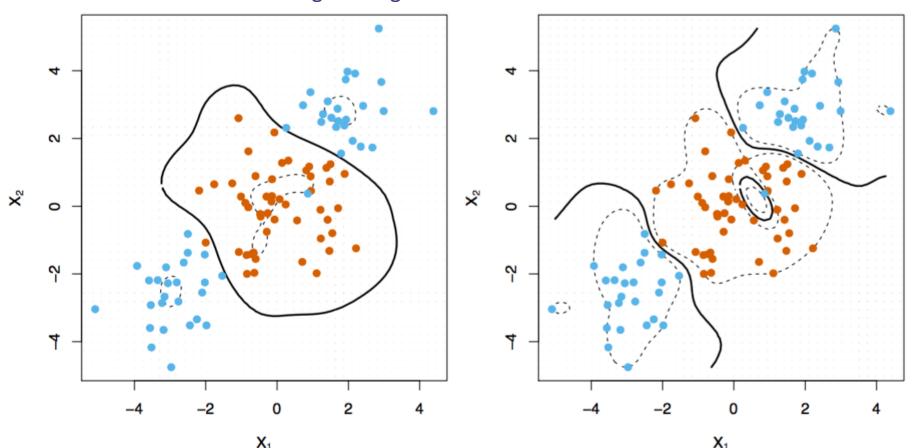
RBF kernel and random features

$$\widehat{w} = \arg\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + w^T x_i)\} + \lambda \|w\|_2^2$$

$$\widehat{\alpha}, \widehat{b} = \arg\min_{\alpha \in \mathbb{R}^n, b} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(b + \sum_{j=1}^{n} \alpha_j K(x_j, x_i))\} + \lambda \sum_{i=1, j=1}^{n} \alpha_i \alpha_j K(x_i, x_j)$$

Bandwidth σ is large enough

Bandwidth σ is small



RBF kernel and random features

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||_2^2}{2\sigma^2}\right)$$

If n is very large, allocating an n-by-n matrix is tough.

$$\phi(x) = \begin{bmatrix} \sqrt{2}\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta) \\ e^{jz} = \cos(z) + j\sin(z) \end{bmatrix}$$

$$w_k \sim \mathcal{N}(0, 2\gamma I)$$

$$\vdots$$

$$b_k \sim \text{uniform}(0, \pi)$$

$$\mathbb{E}_{w,b} \left[\frac{1}{p} \phi(x)^T \phi(x') \right] = \exp(-\gamma ||x - x'||_2^2)$$

Random features approximate RBF kernel with $\gamma = \frac{1}{2\sigma^2}$ [Rahimi, Recht NIPS 2007] "NIPS Test of Time Award, 2018"

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

- x1 IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI
- PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA

 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK
 LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) $p=20^3=8,000$

$$h_{\text{LQE}}^3(x_1) = 1 \text{ and } h_{\text{LQE}}^3(x_2) = 2.$$

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping $\phi:\mathbb{R}^d o\mathbb{R}^p$ from data also?

Questions?