Lecture 16:
Kernels

Support Vector Machine

we cheated a little in the sense that the reparametrization of ||w||, = —is

possible only if the the margins are positive,
l.e. the data is linearly separable with a positive margin

o otherwise, there is no feasible solution
* the examples at the margin are called support vectors

x|wlx+b=0)
minimize,.criper [IWIl5

subjectto y(w'x;+b)>1 forallie {(1,...,n}
1

l” [|w
%;;;\\\\\\\uhﬁk+b=+l}

! \{xlex+b=—l}

2

Two issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers

+ |
+ | +
- - + - | +
_- + = Ty
o\ + - .+
- + - +

What if the data is not separable?

(xlwix b =0) e we introduce slack so that
some points can violate the
margin condition

ywlx, +b) > 1-¢

No x|wix+b=-1)

e this gives a new optimization problem wi;tlh some positive constant ¢ € R
minimize,,crd peRr scRrr ||w||% +c Z &;
i=1
subjectto y(w'x.+b)>1—¢ foralli € {1,...,n}
& >0 foralie{l,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations

Support Vector Machine

w-Xx+b=0
e for the optimization problem @

n
minimize,,cr4 peR scRrn ||w||% +c Z E; @',

i=1 O
subjectto y(wlx;+b)>1—-¢ foralli € {1,...,n}

& >0 forallie {1,...,n} w-x-+b=—1>

notice that at optimal solution, &;'s satisfy
o & = 0 if margin is big enough yl-(wal- +b)>1,o0r
_ T : . . T
o & =1—y(w"x;+ b), if the example is within the margin y,(w" x; + b) < 1

e SO one can write

e £ =max{0,] — yi(wal- + D)}, which gives

n
] . . 1 2 T
minimize,,erd per —|[W||5 + E max{0,1 —y(w'x; + b)}
c
i=1

Sub-gradient descent for SVM

SVM is the solution of

1 n
minimize,epiper —[IWII3 + » max{0.1 — y,(w'x,+b)}
C
i=1
as it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
and apply

< 2
WD w® = (3 T Or)+ b0) < 1) =yp) + Zw)
C
nl=1

b(l‘+1) «— b(t) — 1 Z I{yi((W(t))Txi + b(t)) < 1)}(_yl)
i=1

What if the data is not linearly separable?

some points don’t satisfy margin constraint:

min ||wl[3
w,b

yi(zlw+b)>1 Vi

Two options:
1. Introduce slack to this optimization problem (Support Vector Machine)
2. Lift to higher dimensional space (Kernels)

What if the data is not linearly separable?

e Use features, for example,
x = (x,%,) € R? b P3(x)
T T~ % x X

b2

e

(%)

Can you suggest some features
d1(x1, X5), Pr(x1, X5), P5(x1, X5) such that this data is
linearly separable in this 3-dimensional space?
e Generally, in high dimensional feature space,
it is easier to linearly separate different classes

This data is not linearly
separable

e However, it is hard to know which feature map will work for given data

e So the rule of thumb is to use high-dimensional features and hope that the
algorithm will automatically pick the right set of features

e What is wrong with this approach?

Creating Features

e Feature mapping ¢ : RY — R” maps original data
into a rich and high-dimensional feature space (usually d < p)

For example, for d>1,

For example, in d=1, one can use) ;
one can generate vectors {u;j}i—; CR

451(36) [x| et

_ || _ x? and detine Teatures:

(/)(X) - a k ¢j(x) — COS(uij)
¢k(x) | X" | o = (uij)Z

Pjx) = 1 + exp(u x)

» Feature space can get really large really quickly!
- How many coefficients/parameters are there for degree-k polynomials

for x = (x,...,x;) € R4?
At a first glance, it seems inevitable that we need memory (to store

the features{ ¢(x;) € RP}’__) and run-time that increases with p where

d<n<p

How do we deal with high-dimensional lifts/data?

A fundamental trick in ML: use kernels

A function K : R? x RY — R is a kernel for a map ¢
if K(x,x") = ¢(x) - ¢(z') for all z,2’.

This notation is for dot product (which is the same as inner product)

e So, if we can represent our

e training algorithms and

e decision rules for prediction
e as functions of dot products of feature maps (i.e. {¢p(x) - P(x")})

and if we can find a kernel for our feature map such that
K(x.x") = ¢(x) - p(x)

then we can avoid explicitly computing and storing (high-dimensional)
and instead only work with the kernel matrix of the training data

Ridge Linear Regression as Kernels

. Consider Ridge regression: W = arg mind ly — lel% + /1||w||%
weR

e As an exercise, we will represent prediction with W using linear kernel
defined as K(x, x") = x'x’
e Training: W = (X' X + AL,)" ' X'y
= X'XXT+ 1,)y (when n < d via linear algebra)

e Prediction: x,.,, € RY

/\T

y new = W xIlCW

= y!XXT"+ A1,)" Xx, .,
e Hence, to make prediction on any future data points, all we need to know is
K(x, Xpey) K(xy,x)) K(xq,x,)
XX = : € R", and XX’ = : :
K(x,, x

E Rl’lx}’l

[J
new)

_K(xn, x) K(x,, x,)
e Even if we run ridge linear regression on feature map ¢(x) € R”, we only need to
) and not the features ¢ (x;)

access the features via kernel K(x;, x;) and K(x;, X,

Kernel (i.e., dot-product) of polynomial features
e Recall kernel is defined as K(x, x') = ¢(x) - p(x') = {(p(x), p(x")) = p(x)" p(x")

e As illustrating examples, consider polynomial features of degree exactly k

X
L Px) = x; fork = 1 and d = 2, then K(x, X') = x,x| + x,x}

xp

2
dx)=| *2 [fork=2andd =2,
. X142

then K(x, x') = x7(x))* + x5(x3)* + 2x,0,X}x5 = (x,x] + x,x5)*
e Note that for a data point x;, explicitly computing the feature ¢(x;)

takes memory/time p = d*
e For a data point x;, if we can make predictions (as we saw in the previous slide) by

only computing the kernel, then computing { K(x;, xj) }}Ll takes memory/time dn

e The features are implicit and accessed only via kernels, making it efficient

Examples of popular Kernels

. Polynomials of degree exactlyk

K(x,x") = (xTx")*
. Polynomials of degree up to £

K@, x") = (1 + xTx)k

- Gaussian (squared exponential) kernel
(a.k.a RBF kernel for Radial Basis Function)

2
l|x — x'||2)
202

K(x,x') = exp(-

- Sigmoid
K(x,x") = tanh(yx'x' + r)

The Kernel Trick
. Given data {(x;,y,)}',

« For a choice of a loss, use a linear predictor of the form
o

n
w = 2 a;x;forsomea = | : | € R"to be learned

=1 a,

-n
Predictionis y . = Wlx = Z ;X Xy
i=1

. De?ign an algorithm that finds o while accessing the data only via
{Xl- X}
]

. Pickakernel K : RYx R? - R
. Substitute xl.ij with K(x;, xj), and find a using he above algorithm

n
Make prediction with y . = Z o K (X, X o)
=1

The Kernel Trick for regularized least squares

N~

w o= argmln Z(yl wlx)? + Allwll3
i=1

There exists an o € R"™: w = Z ;T (We will prove it later)
i=1
n n mn mn
a = arg min Z(yz - Z (T,)% + A Z Z ;o (Ti, T)
i=1 j=1 i=1 j=1

(Write an algorithm in terms of Q)

n n
X kernel = arg mO}n E :(y’& T E :OéjK(CU,L-, x] ‘|‘ A E E OézOéj 33'@, ZCJ
i=1 j=1

=1 7=1
(Switch inner product with kernel)

= argmin|ly — Ka||3 + Ao’ Ka Where K;; = K(x;, x;) = (¢(x)), p(x)))

(Solve for @ qe1)

ThUS akemel (K + /11an) Yy

Why do we need regularization when using
kernels?

e Typically, p > d and K > 0. Why?

o So Kis invertible and @ = (K + AL ..)"y is well defined,

but we still want to choose positive A.
e What if A = 0? What goes wrong? 2
argmin ||y — Ke||5
a

nxn

The Kernel Trick for SVMs

N~

W = argmin —Zmax{O 1—yb+wix)} + ﬂllwllz

w,b I’ll 1
There exists an o € R"™: w = Z ;T (We will prove it later)
i=1
a,b = arg min — » max{0,1 —y(b+) ax; x)} + 2 a0, x
min — Z W+ Y a >

j=1 i=1,j=1
(Write an algorithm in terms of Q)

6x\kernel’ bkernel = arg aglﬂé?b ;ZIHB.X{O 1 _yz(b + Z OIK(]’ z))} + A Z aaK(xl,x)
j=1 i=1,j=1

(Switch inner product with kernel)

= arg min —Z max{0,1 — y(b + Ka)} + ia'Ka
acR%L 15T Where K;; = K(x;, x;) = (p(x)), p(x)))

Prediction for x,, (Solve for @, b using optimization)

37\ = sign Z o K(x;, Xpey) + ?5)

RBF kernel k(x;, x) = eXp{ —

K(.’L‘,.’L‘j)

2
[loc; — 13 }

202
3 - °®
S - ® .
i o PR
S ® bandwidth :\ ¢
. o / |
? - Il Il lI | - I 1] | e . : _
-2 -1 0 1 2 xl
I

predictor is taking weighted sum of 71 kernel functions centered at each sample points

Radial Basis Functions _ . N
f(z) = a0+)_; a;K(z, z))
2 - —
g]
3 I ~~ o
B e ®
2 - R S 4
®
o | .
e <
ll Il 11 L1 T l ll ? -1 rl [L1 I |]l
-2 -1 0 1 2 -2 -1 1 2
T

RBF kernel k(x, x) = exp{ -

L(w) =

IKw —yll5 + Alwllz

2
loc; — 12 }

20?2

The bandwidth ¢ of the kernel regularizes the predictor
c=10"2 A=10""*

Sigma=0.01

oc=10"3\x=10"*

—— True f(x)

Fitted f(x)
. Data

c=10"1 A=10"*%

Sigma=0.1

o =10\ =104

Sigma=1.0

—— True f(x)
Fitted f(x)

65 .

80 o Data
55

50 '

—— True f(x)
Fitted f(x)

/ \/

—— True f(x)

Fitted f(x)
. Data

0_10—1)_10 0

60 . y . Data
- M .
A
.
55 \
M -- 4 .
50 A A
R
4
45 \ .
40
.
00 02 04 06
x

— True f(x)
Fitted f(x)

v/

Xz

RBF kernel and random features

S

S

= arg min —ZmaX{O 1=y +wlix)} + w3
w,b I’ll 1

= are min —) max{0,1 —y.(b + oK (x;, x; + A oo K(x., x;
gaeRnan {0,1 — y(Jz:, (X, %)) izlzjf,:l”(,])

Bandwidth o is large enough Bandwidth o is small

RBF kernel and random features
K(u,v) =ex (_Hu—VH%)
9 _ p

202

If n is very large, allocating an n-by-n matrix is tough.

Zcos(a) cos(f3) = cos(av +) + cos(av —)

e’* = cos(z) + jsin(z)

(V2 cos(wlz + by)] W ~ N(O, 2y [)

o(x) = b ~ unifOl“m(O, 7T)

V2 cos(u;gm +b,) |
1
E, 5 [;qb(x)%(x')] = exp(—7llx — x'|I3)

Random features approximate RBF kernel with y = — o
262 [Rahimi, Recht NIPS 2007]

“NIPS Test of Time Award, 2018”

String Kernels

Example from Efron and Hastie, 2016

Amino acid sequences of different lengths:

IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQTVQGGTV
ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x1

PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA
X2 RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAY QIEELMILLEYKIPRNEADGMLFEKK
LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

All subsequences of length 3 (of possible 20 amino acids) p = 20° =8,000
h},.(x1) = 1 and k] (x2) = 2.

LQE

Fixed Feature V.S. Learned Feature

Can we learn the feature mapping ¢ : R4 — R? from data also?

Questions?

