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Lecture 15:
Coordinate Descent
(continued)

- How to solve non-smooth optimization like Lasso?
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Coordinate descent for Lasso

* |et us apply coordinate descent on Lasso, which minimizes
minimize,, £ (w) + A||lw]|; = || Xw — yllg + 1w,

« the goal is to derive an analytical rule for updating w]bs/

« let us first write the update rule explicitly for wl(t)

o first step is to write the loss in terms of w,

2
X 10wy = (v = XE 22 dbwng) |+ 201w 1+ Tl )
N~ i constant
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* hence, the coordinate descent update boils down to

wl(t) < arg min ||X[: Alw, — (y - X[:,2: d]w(t 1) H + Alwy|
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How do we find the minima?

¢ for convex differentiable functions, the minimum is achieved at points
where gradient is zero

80

e for convex non-differentiable functions, the minimum is achieved at
points where sub-gradient includes zero
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Finding the minima for (aw, — b)* + 4| w, |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0

2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0

Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0
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Finding the minima for (aw, — b)* + | wy |

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

Bue = <5
L b2 for 2ab > 4ﬂ>)&j i:\ p
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How do we find the minimizer?

e the minimizer wl(t) is when zero is included in the sub-gradient

2a(aw; —b) + X for wy; >0
Of(wy) = | —2ab— X\, —2ab+ )] for w; =0
2a(awy —b) — A for wy <0

e case 1:
e 2a(aw; — b) + 1 = 0 for some w; > 0
 this happens when
—A+ 2ab
Wl — > O
2a?
* hence, ]
1 a 2a?

minimum

if A < 2ab



* case 2:
e 2a(aw; — b) — A = 0 for some w; < 0
e this happens when

A+ 2ab

w = ——<0( \j
a2
[ hence, -10 7.5 -5 A5 25 5 7.5 10
0 A |
Wl A Z + 2a2’ minimum
ifA < —2ab
e case 3:

e 0 € [-2ab— A, —2ab + /]
eandw; =0

* hence,
wl(t) < 0,

if —A <2ab < A

minimum



Coordinate descent on Lasso

e considering all three cases, we get the following update rule by setting the
sub-gradient to zero

g—ﬁ for 2ab > \
w 0 for — A< 2ab< A
by 2 for A < —2ab

X[, 1 (y = X[: .2 : dlw_y)
VXL 17X]: 1]
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where a = \/X[: A17X[: ,1],and b =
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When does coordinate descent work?

» Consider minimizing a differentiable convex function f(x),
then coordinate descent converges to the global minima

A 7

-

e when coordinate descent has stopped, that means

S =0forallj € {1,...,d}

ox;

e this implies that the gradient V. f(x) = 0, which happens only
at minimum




When does coordinate descent work?

e Consider minimizing a non-differentiable convex function
f(x), then coordinate descent can get stuck
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When does coordinate descent work?

* then how can coordinate descent find optimal solution for Lasso?
e consider minimizing a non-ddifferentiable convex function but has a

structure of f(x) = g(x) + 2 hj(xj) , wi?diﬁerentiable convex

| el =2 ] |
function g(x) and coordinate-wise non-differentiable convex functions
hi(x;)’s, then coordinate descent converges to the global minima
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Questions?
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Lecture 16:
Support Vector Machines

- how do we choose a better classifier?

W



How do we choose the best linear classifier?

* informally, margin of a set of examples to a decision boundary is
the distance to the closest point to the decision boundary

* for linearly separable datasets, maximum margin classifier is a natural
choice

* large margin implies that the decision boundary can change without losing

accuracy, so the Iearn%%/ m[g?el is more robust against new data points
<
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Geometric margin
given a set of training examples {(x;, y,) }'—;, withy, € {—1,+ 1}

i=1’
and a linear classifier (w, b) € R? x R
such that the decision boundary is
a separating hyperplane {x | b + wx[1] + wox[2] + --- + w x[d] = 0},

wl x+b
which is the set of points that are orthogonal to w with a shift of b
we define functional margin of (b, w)
with respect to a training example (x;, y;) as

the distance from the point (x;, y;) to the
decision boundary, which is

(w'x; + D) i
Yi =i
Iwll, -

(The proof is on the next slide)

{x|wix+b=0)



Geometric margin

« the distance y; from a hyperplane {x | wlix+b= 0} to a point x; can be
computed geometrically as follows
e We know that if you move from Xx;

in the negative dir of w by length 7,
you arrive e line, which.can be written as

/\/\/—/\\ -
<xl— i yl->isin{x|wa+b=O} -
Iwll> )

e so0 we can plug the point in the formula:

wT<xl-— d yi>+b =0 )

o lwll,
which is
T ||w||/2f x|wix+b=0)
and henc
wlix, +b
Yi = —0 1
Iwll,

and we multiply it by y; so that for negative samples we use the opposite
direction of —w instead of w



Geometric margin

* the margin with respect to a set w
is defined as

w x + b
MorX y = min y;, = mlnyl( )
NS i€{l1,....n} i ||\)
f
e among all linear classifiers,

we would like to find one that has -
the maximum margin {x|wlx+b=0)

e We will derive an algorithm that finds the maximum margin
classifier, by transforming a difficult to solve optimization into an
efficient one



Maximum margin classifier L e
(we transform the optimization into an efficient one) X @0‘5&‘*‘ go(c&‘é\/\ © < SG'&

“ . % »j
X . .
we propose the following optimization problem: [ U/\ffL*,T_' ) P CC w.C ‘7 T

S al¢o oh?’t
MaxImize,,crd per yer ¥ (maximize the margin) ol.
. yi(WTXi + D) . .
subject to >y foralli € {1,...,n} (s.t. y is a lower bound on
[Iwll2 the margin)

if we fix (w, b), the optimal solution of the optimization is the margin
together with (w, b), this finds the classifier with the maximum margin

note that this problem is scale invariant in (w, b), i.e. changing a (w, b) to (2w,2b) does not
change either the feasibility or the objective value, hence the following reparametrization is valid

the above optimization looks difficult, so we transform it using reparametrization

maximize,,crd peR yeR ¥ }/+
(w'x; + b) . +
subject to Y ’ >y foralli € {1,...,n} - +
Il -
Iwlly =— - - *

Because of scale invariance, the optimal solution does not change, -
as the solutions to the original problem did not depend on ||w/||,,
and only depends on the direction of w




. maximize,,crd per yeR ¥
X))

. yiw' x; + b) :
subject to >y foralli € {1,...,n}

v,
Il == 1 = M,

* the above optimization still looks difficult, but can be transformed into

(—k—le) Maximizeyerd,per (maximize the margin)

W||2

T
w'x.+ b
ylw i + ) > foralli € {1,...,n}(now ”

W ~lw e
Iwll, wll2 a lower bound

on the margin)

plays the role of

subject to

which simplifies to \
22 minimize,eriper W3 oo LLwlly oL
subject to yl-(wal- +b)>1 foralli € {l1,...,n}

* this is a quadratic program with linear constraints, which can be easily solved

. once the optimal solution is found, the margin of that classifier (w, b) is W
2



What if the data is not separable? —

we cheated a little in the sense that the reparametrization of

possible only if the the margins are positive,
i.e. the data is linearly separable with a positive margin

e otherwise, there is no feasible solution
* the examples at the margin are called support vectors

{x|wlx+b =0}
minimize,,criper W3

subjectto y,(wlx;+b)>1 forallie {1,...,n}
1

w

F [wll2
m‘aﬂ“gz'n\{x|wa+b=+1}
~ .. F

{x|w'x+b=-1}




Two Issues

* it does not generalize to non-separable datasets
* max-margin formulation we proposed is sensitive to outliers
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What if the data is not separable?

Lelwix+b=0)  we introduce slack so that
some points can violate the
margin condition

yl-(wal- +b) > 1-¢

Mo x|wix+b=-1)
e this gives a new optimization problem wi;[/lh some positive constant c € R
minimize,,crd peRr seRn ||w||% +c Z &;
i=1
subjectto y(wlx,+b)>1—¢ foralli€ {1,...,n}

& >0 forallie {1,...,n}

the (re-scaled) margin (for each sample) is allowed to be less than one,

but you pay c¢; in the cost, and ¢ balances the two goals:
maximizing the margin for most examples vs. having small number of violations



Support Vector Machine

e for the optimization problem

n
minimize,,crd peRr R ||w||% +c Z E;
i=1
subjectto y,(wlx;+b)>1—¢ forallie€ {1,...,n}
& >0 forallie {1,...,n}

notice that at optimal solution, &;'s satisfy
&, = 0 if margin is big enough yl-(wal- +b)>1,0r
— T . . L ) T
e &, =1—y,(w"x;+ b), if the example is within the margin y;,(w”* x; + b) < 1

e SO one can write
e &, =max{0,1 —y,(w"x;+ b)}, which gives

1 n
minimize,,crd per —||w||% + Z max{0,1 — y,(w’x; + b)}
c

i=1



Sub-gradient descent for SVM

SVM is the solution of

minimize,verd per ||w||2 + Z max{0,1 — y(w'x, + b))

i=1
as it is non-differentiable, we solve it using sub-gradient descent

which is exactly the same as gradient descent, except when we are at a
non-differentiable point, we take one of the sub-gradients instead of the
gradient (recall sub-gradient is a set)

this means that we can take (a generic form derived from previous page)
awf(wal- +Db,y,) = I{yl-(wal- + D) < 1}(=yx;)
and apply

>
WD <Zl{yl((w(t))Tx +5D) < 1) (=yx) + —w(’)>

nll

pED O Zl{yi((w(t))Txi +b®) < DIH-y)
i=1



Questions?



